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Preface

Software engineering is a rapidly growing and changing field. Over the last dec-
ade, it has gained significant popularity, and it is now heralded as a discipline of
its own. This edited collection presents recent advances in software engineering
in the areas of evolution, comprehension, and evaluation. The theme of the book
addresses the increasing need to understand and assess software systems in order
to measure their quality, maintain them, adapt them to changing requirements
and technology, and migrate them to new platforms. This need can be satisfied
by studying how software systems are built and maintained, by finding new
paradigms, and by building new tools to support the activities involved in devel-
oping contemporary software systems.

The contributions to the book are from major results and findings of leading
researchers, under the mandate of the Consortium for Software Engineering Re-
search (CSER). CSER has been in existence since 1996. The five founding in-
dustrial and academic partners wanted to create a research environment that
would appeal to the applied nature of the industrial partners, as well as to ad-
vance the state of the art and develop fresh expertise. The research projects of
the Consortium are partially funded by the industrial partners, and partially by
the Natural Sciences and Engineering Research Council of Canada. Technical
and administrative management of the Consortium is provided by the National
Research Council of Canada—specifically by members of the Software Engi-
neering Group of the Institute for Information Technology.

Software engineering research today overlaps with and borrows from many
disciplines in social, pure, and engineering sciences, outside its traditional core
disciplines of computer science and computer engineering. Examples are statis-
tics, mathematics, economics, information management systems, systems engi-
neering, cognitive science, sociology, and anthropology, to name a few. This
many-faceted nature of the discipline is strongly reflected by the coverage of
this book.

The book is organized into four parts: Empirical Studies, Architectural Re-
covery, Maintainability, and Tool Support. The central themes—evaluation,
comprehension, and evolution—are present simultaneously in each of the parts
and in most of the individual contributions.

The topics in the book will appeal to different groups of readers:
students wishing to get an understanding of the state of the art,
managers who want to appreciate issues related to legacy systems,
software researchers who want better understanding of particular areas,
practitioners who wish to see real-world examples,
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e and software educators who are looking for thesis topics as well as a
framework for industrial and academic collaboration.

For the field of software engineering to grow, it needs a proliferation and ap-
plication of good ideas to produce novel solutions. We hope the readers will feel
that this book provides some answers and plants seeds for future ideas to grow
upon.
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1
Introduction

Hakan Erdogmus
Oryal Tanir
Anatol W. Kark
Frangois Coallier

1.1  Introduction

This edited collection reports on the projects, results, and directions of a collabo-
rative Canadian software engineering research initiative. It is mandated by the
organizational body of this initiative, the Consortium for Software Engineering
Research (CSER). Section 1.4 provides more details about the Consortium.

Software engineering is still a maturing field. Its many facets and highly
multidisciplinary nature make it both difficult and risqué to give a universally
accepted definition. Thus, instead of attempting a definition, we provide an ex-
cerpt from the mission statement of the Software Engineering Group at the Na-
tional Research Council of Canada. According to SEG, the goal of software en-
gineering research is to “advance the state of software development to an engi-
neering level by evaluating and improving the processes and technologies with
which software is created, and demonstrating these processes and technologies
through pilot projects and using both the engineering and the scientific ap-
proaches....”

This goal is sufficiently inclusive to cover the wide spectrum of issues ad-
dressed by the contributors of this collection. At the same time, we believe that
it brings out the focal points. First, it implies that both process and technology
are parts of the discipline. Second, it emphasizes the synergy between the engi-
neering and the scientific approaches-between theory and empiricism-to tackle
the underlying complex issues. As such, it hints at the increasingly multidisci-
plinary nature of the research.

Software engineering research today overlaps with and borrows from many
disciplines in social, pure, and engineering sciences, outside its traditional core
disciplines of computer science and computer engineering. Examples are statis-
tics, mathematics, economics, information management systems, systems engi-
neering, cognitive science;-sociology;-and anthropology, to name a few. This
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multifaceted nature of our discipline is strongly reflected by the coverage of this
book.

The book is centered on three interrelated topics: comprehension, evaluation,
and evolution. The choice of these topics is not incidental. Together they have
constituted the core of CSER’s research activities since its inception in 1996.
Underlying the three topics is first and foremost the compelling need to under-
stand software systems—both new and old—and how they are built and main-
tained. The topics consequently also address the need to assess these systems, to
measure their quality, to maintain them, to adapt them to changing requirements
and technology, to migrate them to new platforms, to discover new paradigms,
and to build new tools to support all of these activities.

All contributions in this book have a CSER connection. However, the book
is by no means a comprehensive account of all CSER research activities. The
majority of the chapters originated directly from the different research groups
and individual researchers within CSER. These contributions are officially con-
nected to one or more CSER projects, and most are active as of this writing.
Two have completed their term and are being pursued outside the structure of
the Consortium. Two other contributions are peripheral to CSER, in that they are
either partially funded or pursued outside while maintaining close ties with the
Consortium.

Many overlaps and dependencies exist among the contributions, both in
terms of the issues they tackle and their authorship. This situation is representa-
tive of the high level of synergy among the different research projects.

All contributions have undergone a stringent peer review process to maintain
a high quality. The only exception is Chapter 18, which is an invited contribu-
tion. This work was included for historical reasons: it had a significant impact
on the central themes and projects of the Consortium. The majority of its authors
are still actively involved in many CSER projects, and continue to influence the
evolution of the Consortium.

This book is targeted at both software practitioners and researchers. It con-
tains information valuable to project managers and tool developers. Its organiza-
tion around a central theme makes the individual parts suitable for use as refer-
ence material in a graduate seminar. Contributions range from survey articles to
experience reports, from experimental studies to original research results. Their
collective intent is to give the reader a snapshot of the state of the art in the
comprehension, evaluation, and evolution of software systems.

1.2 Organization of the Book

The book is organized into four parts: Empirical Studies, Architectural Recov-
ery, Maintainability, and Tool Support. The central themes—comprehension,
evaluation, and evolution—are present simultaneously in each of the parts and in
most_of the individual contributions. Additionally, significant overlap exists
among the different parts. The part titles indicate the focus of the contributions.
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1.2.1 Part One: Empirical Studies

Part One, Empirical Studies, contains four chapters. It addresses an often-
neglected aspect of software engineering research: empiricism. How do we
know that the tools and methods being developed work? What can we learn
from practicing software engineers? Chapters 2 and 5 attempt to answer the first
question with a focus on quantitative techniques, while Chapters 3 and 4 attempt
to answer the second question with a qualitative focus.

El Emam contributes a survey of object-oriented metrics in Chapter 2. This
informative and comprehensive review dispels some common myths with an
intelligent interpretation of the key results that the object-oriented metrics re-
search has so far yielded. With more than 100 bibliographic references, it also
doubles as a valuable account of the underlying literature.

Chapter 3 by Lethbridge and Singer describes the techniques that the authors
have developed and used in their field studies of the work practices of software
engineers. They identify and represent work patterns to help software engineers
maintain large and complex systems. One of the conclusions they draw from
their studies is that the efficiency and effectiveness of search tools is critical for
dealing with large bodies of source code.

In Chapter 4, Lethbridge and Herrera report on their experience evaluating
the usefulness of a particular software exploration tool in an industrial context.
Again, their ultimate goal with this empirical study was to find ways to improve
the efficiency of software maintenance for large systems by investigating how
existing development tools are being used by practicing software engineers. This
chapter highlights the factors that make the evaluation process difficult, and
provides pointers for assessing the usefulness of complex development tools.

Chapter 5 deals with a common and controversial software development
practice: cloning. Cloning, or producing new code by copying and modifying
old code, is often cited as a significant driver of maintenance costs. In this chap-
ter, Dagenais, Patenaude, Merlo, and Lagué first describe a metrics-based ap-
proach to clone detection, and then report on the application of their approach to
experiments performed on a number of large object-oriented systems. Their re-
sults confirm that modern software systems are also prone to cloning. They hy-
pothesize that the extent of this practice depends on several factors unrelated to
the programming language used.

1.2.2  Part Two: Architectural Recovery

Part Two, Architectural Recovery, attacks the problems associated with under-
standing and modernizing large software systems. It contains four chapters, or-
dered according to the level of abstraction with which they address program
comprehension. The first chapter of this part describes an environment for re-
verse engineering based on the concept of design patterns. The second and third
chapters discuss approaches torautomatic program clustering as a way of re-
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modularizing systems whose explicit architecture has been lost. The last chapter
tackles a critical problem associated with the migration of non-object-oriented
code to object-oriented code.

In Chapter 6, Keller et al. introduce the SPOOL reverse engineering envi-
ronment. Their main hypothesis is that important design decisions and the
thought processes of the designers often manifest themselves as recurring pat-
terns of organization among design-level components, and that by extracting
these patterns much can be gleamed about the system and its design rationale.
The SPOOL environment is built upon this hypothesis.

In Chapter 7, Lethbridge and Anquetil provide a taxonomy for automatic
clustering techniques, describe their main features, and discuss the criteria for
their evaluation. Chapter 8, by Tzerpos and Holt, is a survey of automatic clus-
tering techniques borrowed from other disciplines. While Chapter 8 overlaps
with Chapter 7, Tzerpos and Holt focus exclusively on generic approaches and
argue for their suitability in the software context.

The final chapter of Part Two, Chapter 9, presents an algorithm to convert
non-object-oriented C programs with pointers to object-oriented Java programs
with inheritance. In this chapter, Martin and Miiller point out that the use of
pointers in legacy systems written in such languages as C is a major problem.
They argue that pointers often implicitly express inheritance relationships be-
tween structured data types. By detecting such usage of pointers in C programs,
their algorithm is able to construct a Java-class hierarchy.

1.2.3  Part Three: Maintainability

Part Three, Maintainability, contains three chapters. Chapter 10, by Chaumun et
al., addresses maintainability from the perspective of the potential repercussions
that different kinds of changes may have on a system. The authors define a
change model for the SPOOL environment of Chapter 6, and a technique to ana-
lyze the impact of the modeled changes for object-oriented systems. They also
discuss the results of their experiments with large-scale systems to identify some
design metrics (see Chapter 2) that affect changeability, and hence, maintain-
ability.

In Chapter 11, Johnson links maintainability to the level of cloning in the
code, as hypothesized in Chapter 5. However, his focus is on an alternative ap-
proach to clone detection, rather than on empirical validation of clone occur-
rences in existing systems. Johnson’s approach to clone detection is based on the
raw textual processing of the source code. This approach contrasts with the met-
rics-based approach of Chapter 5, which requires a set of metrics to be computed
from an abstract representation of the code. As a result of its generality, text-
based clone detection is in particular suitable for legacy software where parsers
are not necessarily readily available to obtain the abstract representation other-
wise required.
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Unlike the previous two chapters, which address maintainability as a reverse
engineering problem, Chapter 12 treats maintainability as a forward engineering
problem. In this chapter, Goswami et al. describe an automated environment for
generating parallel applications. They propose to alleviate the high level of
complexity inherent in parallel programming by automatically generating part of
the infrastructure code using packaged solutions. These packaged solutions are
captured and encoded as design patterns. Thus the concept of pattern emerges
once again in this chapter - albeit unlike in Chapter 6, it appears in its traditional
forward engineering context.

1.2.4 Part Four: Tool Support

Part Four focuses on Tool Support for the comprehension, evaluation, and evo-
lution of software systems. It contains six chapters. Chapters 13 and 14 describe
the architecture of two successful reverse engineering environments. The two
environments target systems that have been developed in different programming
paradigms. Chapters 15 and 16, respectively, discuss the mechanisms to deliver
software documentation to distributed software teams and collaborative work
paradigms to support such teams. Chapters 16 and 17 address tool support for
processing source code.

In Chapter 13, Schauer et al. expound on the design and implementation of
the SPOOL environment (the goals and the underlying model of this environ-
ment are discussed in Chapters 6 and 10).

In Chapter 14, Finnigan et al. describe the Software Bookshelf, a software
information management paradigm of historical importance that was developed
at the IBM Toronto Labs. While SPOOL is designed for understanding object-
oriented systems, the Software Bookshelf targets legacy systems typically writ-
ten in non-object-oriented languages, with the aim of migrating such systems to
more modern architectures.

The Software Bookshelf was one of the earliest development environments
to suggest the delivery of information to software teams using a web-based in-
terface. Chapter 15, by Alencar et al., builds upon this now widely popular in-
formation delivery mechanism. In this chapter, the authors tackle the usability
and maintenance issues associated with publishing hyperlink documentation on
the web, and then describe some approaches that are being employed to alleviate
the underlying problems.

Web-based delivery of software documentation is one way in which geo-
graphically separated software teams can share information. However, delivery
of information in a widely accessible form alone is not sufficient to allow dis-
tributed software teams to work on large software projects. Tomek investigates
this question in Chapter 16. He introduces the concept of the collaborative vir-
tual environment (CVE) and discusses the characteristics of such environments.
After a survey of different types of CVEs, the chapter focuses on a particular
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CVE —one that is text-based, high-performance, and easily deliverable on the
web.

Most source code analysis and reverse engineering techniques rely on the
availability of an abstract representation of the source code that captures the
code’s surface semantics. Examples are the clustering techniques discussed in
Chapters 7 and 8, the change impact analysis model of Chapter 10, the metrics-
based clone detection approach of Chapter 5, the code migration algorithm of
Chapter 9, the SPOOL environment of Chapters 6 and 13, and the Software
Bookshelf environment of Chapter 14. Therefore, parsing, the process of obtain-
ing this abstract representation, is of paramount importance. The last two chap-
ters attack central problems associated with parsing.

In Chapter 17, Knapen et al. address a problem often encountered in the in-
dustry: parsing under incomplete information. The question addressed is what to
do when the source code is missing pieces required for successful compilation,
but not necessarily for high level analysis of the source code? Their solution is a
special parser that uses additional rules and type inference mechanisms to re-
solve the ambiguities resulting from the missing pieces.

In Chapter 18, Kontogiannis et al. attack another parsing problem: how to
obtain abstract representations of the source code that are customized with re-
spect to a user-defined model and that can easily be ported to various analysis
tools. Their solution is a systematic methodology that allows the user to generate
the desired representations. All this accomplished with the use of public-domain
parser generators.

1.3  Abstracts

Chapter 2 Object-Oriented Metrics: Principles and Practice

Existing evidence suggests that the majority of faults in software systems occur
in a small proportion of the system’s components. Reliability can be increased,
and rework costs reduced, if these components can be identified early. Subse-
quently, mitigating actions can be taken, such as a redesign or focused inspec-
tions and testing. For object-oriented systems, object-oriented metrics can serve
as leading indicators of faulty classes. This chapter will provide an overview of
object-oriented metrics, their rationale, and their utility in the identification of
faulty classes. It presents empirical evidence as to which metrics have been
found to be good leading indicators, and discusses metrics thresholds. Metrics
thresholds, once identified, provide practical criteria for quality management.
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Chapter 3 Experiences Conducting Studies of the Work
Practices of Software Engineers

The chapter describes various techniques for studying and representing the work
of software engineers. The ultimate objective of the research addressed is to
develop requirements for software engineering tools that will enable software
engineers to more productively make changes to large legacy systems. However,
to develop those requirements, the work practices of software engineers must be
understood. The chapter discusses various techniques employed to observe work
practices, analyze the resulting data, and produce graphical models of work pat-
terns. In particular, it describes techniques that have been developed by the au-
thors, such as synchronized shadowing and the use of Use Case Maps to repre-
sent work patterns. Finally, the chapter highlights some of the results of using
these techniques in a real project. An important observation is that efficiently
performing a search within source code is of paramount importance to software
engineers when they work with large bodies of source code.

Chapter 4 Toward Assessing the Usefulness of the TkSee
Software Exploration Tool: A Case Study

One of the outputs of the CSER initiative has been the development of a soft-
ware tool called TkSee. The TkSee tool allows sofiware engineers to explore
and understand source code. It has been serving as the infrastructure for various
studies of program comprehension. It has also been used intensively by several
practitioners inside Mitel Corporation. This chapter first provides a description
of TkSee’s capabilities and then discusses insights about its usability obtained
during the field studies of the tool. This qualitative empirical study is intended to
provide pointers to those who wish to assess the usability and usefulness of
complex software products.

Chapter 5 Comparison of Clones Occurrence in Java and
Modula-3 Software Systems

Software engineers often build new subprograms by copying, or cloning, an
existing piece of code with similar requirements, and then slightly modifying it.
While this technique may be easier than extracting the common, reusable part
and making it available in a library, it increases the system size and often leads
to higher maintenance costs. The occurrence of clones is highly dependent on
the system architecture, development model, language peculiarities, and soft-
ware management practices. This chapter studies the occurrence of clones in
large sets of object-oriented software libraries and programs, totaling over 1.1
million lines of code, in two different languages, Java and Modula-3. The fac-
tors that affect the clone detection accuracy and their frequency of occurrence
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are discussed. Comparisons are also made between systems written in the two
languages.

Chapter 6 The SPOOL Approach to Pattern-Based Recovery
of Design Components

Many reverse-engineering tools have been developed to derive abstract repre-
sentations from source code. Yet most of these tools completely ignore recovery
of the all-important rationale behind the design decisions that have led to its
physical shape. Design patterns capture the rationale behind proven design solu-
tions and discuss the trades-off among their alternatives. The authors argue that
it is these patterns of thought that are at the root of many of the key elements of
large-scale software systems, and that in order to comprehend these systems, we
need to recover and understand the patterns on which they were built. The chap-
ter presents the SPOOL environment for the reverse engineering of design com-
ponents based on the structural descriptions of design patterns. It first gives an
overview of the environment, then introduces a number of case studies, and fi-
nally discusses how pattern-based reverse engineering helped gain insight into
the design rationale of some large-scale C++ software systems.

Chapter 7 Evaluation of Approaches to Clustering for
Program Comprehension and Remodularization

When presented with a large legacy system which has little design information,
an important approach to understanding and maintaining it is to automatically
divide it into a more understandable set of modules or subsystems - a process
called remodularization. This chapter reviews several remodularization ap-
proaches, which employ clustering technology. These approaches require mak-
ing decisions that include which algorithms to use as well as which information
to use as input to the algorithms. The chapter surveys several alternatives and
presents some experimental evidence to help guide decision making. It also pre-
sents various approaches to evaluating the effectiveness of the existing ap-
proaches, including examining the coupling and cohesion of clusters, as well as
the size of the largest cluster and the number of outstanding files.

Chapter 8 Automatic Architectural Clustering of Software

Early in the history of software engineering as a research field, it was recognized
that the decomposition of a large software system into subsystems was essential
for both the development and maintenance phases of a software project. In real-
ity, however, software projects often fail to follow the principles of software
engineering. This has given rise to architectural recovery that attempts to auto-
matically remodularize, or cluster, a software system into meaningful subsys-
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tems. This chapter surveys current approaches to the clustering problem from
researchers in the software engineering community. It focuses on the clustering
techniques used in other disciplines, and argues that their utilization in a soft-
ware context could lead to better solutions. The chapter concludes with research
challenges and open problems of interest.

Chapter 9 Discovering Implicit Inheritance Relations
in Non-Object-Oriented Code

In order to stay competitive in today’s marketplace, businesses have to move
some of their mission-critical legacy applications to web-based and network-
centric platforms. Because of its wide acceptance as an available programming
language on these kinds of platforms, Java is often cited as the language of
choice for new systems. The size and complexity of legacy applications usually
make it infeasible to rewrite the applications from the ground up, but require
selected parts of the application to be migrated incrementally. A major obstacle
in the migration of legacy systems written in C to Java is the extensive use of
pointers in their source code. This chapter examines common usage patterns of
pointers in C programs, shows how they implicitly express inheritance relation-
ships between structured data types, and presents a formal approach to migrate
such usage patterns to Java by creating an explicit class hierarchy.

Chapter 10  Design Properties and Evolvability of
Object-Oriented Systems

One of the objectives of CSER’s SPOOL project is to explore which properties
of a design have the most impact on its evolvability. Evolvability of software is
strongly related to the effort needed to identify and assess the impact of a change
request. A systematic model to identify the impact boundaries at both the design
and implementation level would reduce this effort and ease the difficult task of
planning future releases. The authors have defined such a change impact model
at the design level, and have carried it over to the implementation level using
C++ as the target language. This chapter presents the change impact model of
SPOOL. The authors show how this model has been used in experiments with
large-scale object-oriented systems to identify some design properties that affect
evolvability.

Chapter 11  Using Textual Redundancy to Study the
Maintainability of Source Code

Large bodies of source code, documentation, and data have internal structure
that_results_partly from_the syntactic_conventions of the representations and
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partly from the semantics of the application and its maintenance history. In par-
ticular, software systems will have multiple similar variants and versions corre-
sponding to different platforms, sites, and points in time. Moreover, a single
version will often have fragments of text copied from one place to another and
modified to serve a new purpose. Although ofien shunned as a bad practice, this
code cloning is to a certain extent inevitable, either because of the pragmatics of
software maintenance or inadequate abstraction mechanisms in the representa-
tion language. This chapter discusses a purely text-based approach to clone de-
tection. Since the approach does not rely on the extraction of a syntax tree to
capture the surface semantics of the code, it is in particular suitable for legacy
systems where parsers may not be readily available. It both contrasts and com-
plements the approach used in the empirical study of Chapter 5.

Chapter 12 Building Parallel Applications
Using Design Patterns

Parallel application design and development is a major area of interest in the
domain of high-performance scientific and industrial computing. In fact, parallel
computing is becoming an integral part of several major application domains -
space, medicine, cancer and genetic research, graphics and animation, image
processing, to name a few. With the advent of fast interconnected networks of
workstations and PCs, it is now becoming increasingly possible to develop high-
performance parallel applications using the combined computing powers of
these networked resources, often at little or no extra cost. Consequently, high-
speed networks and fast, general-purpose computers are contributing towards
the mainstream adoption of parallel computing as an affordable alternative.
However, parallel programs have inherent complexity over sequential code due
to many low-level communication and synchronization details. To address this
complexity, the authors propose a generic model for the design and development
of parallel applications based on design patterns. These reusable components,
called parallel architectural skeletons, hide most of the low-level details, thus
enabling a developer to focus on application-level issues. The generic model
enhances usability. The chapter describes an object-oriented, library-based im-
plementation of the model in C++. The implementation is lightweight in that it
does not necessitate any language extension. The skeleton library can be used as
a building block for systematic, hierarchical development of parallel applica-
tions that are easier to maintain.

Chapter 13 The SPOOL Design Repository:
Architecture, Schema, and Mechanisms

An essential part of reverse engineering is to represent the analyzed systems at a
high,level,of abstraction;satsthesanalysis or design level. End-user tools need
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access to this information, and thus a design repository is required for storing the
analyzed systems. The SPOOL design repository was designed such that its
schema would be resilient to change, adaptation, and extension, in order to eas-
ily address and accommodate new research projects. To this end, the authors
have adopted the metamodel of the Unified Modeling Language (UML) as the
basis of the SPOOL repository schema. In this chapter, they show how UML
was used in reverse engineering by discussing the architecture and schema, as
well as some of the key mechanisms, of the SPOOL design repository. The ar-
chitecture is characterized by a suite of end-user tools, by the repository schema
defining both the structure and the behavior of the repository, and by an object-
oriented database as the persistent data store. The SPOOL repository mecha-
nisms provide advanced functionality to end-user tools, supporting the traversal
of complex object structures, the observation of models by views, and the accu-
mulation of dependencies among high-level elements such as directories and
files. The SPOOL repository constitutes a proof-of-concept of the implementa-
tion of the UML metamodel for reverse engineering purposes.

Chapter 14  The Software Bookshelf

Legacy software systems are typically complex, geriatric, and difficult to
change, having evolved over decades and having passed through many develop-
ers. Nevertheless, these systems are mature, heavily used, and constitute massive
corporate assets. Migrating such systems to modern platforms is a significant
challenge due to the loss of information over time. This chapter reports on a
landmark research project to design and implement an environment to support
software migration. The project focused on migrating legacy PL/I source code to
C++, with an initial phase of looking at redocumentation strategies. Recent
technologies such as reverse engineering tools and World Wide Web standards
now make it possible to build tools that greatly simplify the process of redocu-
menting legacy software systems.

The authors introduce the concept of a software bookshelf as a means to cap-
ture, organize, and manage information about a legacy software system. They
distinguish three roles directly involved in the construction, population, and use
of such a bookshelf: the builder, the librarian, and the patron. From these per-
spectives, they describe requirements for the bookshelf, as well as a generic ar-
chitecture and a prototype implementation. The authors also discuss various
parsing and analysis tools that were developed and integrated to assist in the
recovery of useful information about a legacy system. Finally, they illustrate
how a software bookshelf is populated with the information of a given software
project and how the bookshelf can be used in a program understanding scenario.
Reported results are based on a pilot project that developed a prototype book-
shelf for a software system consisting of approximately 300K lines of code writ-
ten in a PL/I dialect.
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Chapter 15  Dynamic Documents Over the Web

Software and product information is more frequently being delivered as hyper-
text webs or documents because of the availability of the World-Wide Web and
the associated communications infrastructure. However, this type of document,
with its large number of files and hyperlinks, can become very complex and
present significant usability problems for the creator, the maintainer, and the
user. Because of this complexity, it becomes extremely difficult to implement
and maintain dynamic aspects, such as views, of a document—a supposed ad-
vantage of a hyperlinked structure. In this chapter, the authors analyze the
causes for these usability issues, and then describe some approaches that are
being employed to address the underlying problems. They focus on how to make
it easier to build, evolve, and use technical software documentation that is deliv-
ered via the web. In essence, their approach supports the separation of concerns
for web-based documents into four orthogonal components: content, structure or
organization, navigation, and presentation. They accomplish this separation by
storing the information in databases and providing methods and tools to recreate
the necessary views upon demand.

Chapter 16  Support for Geographically Dispersed
Software Teams

Globalization has the universal effect of distributing members of work teams,
such as software development teams, geographically. This makes collaboration
more difficult. Much recent research has been devoted to the exploration of
means of alleviating the resulting problems. One of the approaches that seem
most promising is based on the concept of a collaborative virtual environment.
This contribution surveys the main concepts of collaborative virtual environ-
ments and describes work on a text-based virtual environment.

Chapter 17  Parsing C++ Code Despite Missing Declarations

This chapter addresses the problem of parsing a C++ software system that is
known to compile correctly, but for which some header files are unavailable. A
C++ program file typically depends on numerous included header files from the
same system, a third party library, or the operating system standard libraries. It
is not possible with a conventional parser to analyze C++ source code without
obtaining the complete environment where the program is to be compiled. The
authors study parsing ambiguities that result from missing header files. They
propose a special parser that uses additional rules and type inference in order to
determine the missing declarations. This new parser has reportedly achieved
100% accuracy on a large system with numerous missing header files.
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Chapter 18  Toward Environment-Retargetable
Parser Generators

One of the most fundamental issues in software re-engineering is the representa-
tion of the source code at a higher level of abstraction than source text. Even
though many researchers have investigated a variety of program representation
schemes, one particular scheme, the Abstract Syntax Tree (AST), is of particular
interest for its simplicity, generality, and completeness of the information it con-
tains. This paper presents a methodology to generate Abstract Syntax Trees that
conform to user-defined domain models that can be easily ported to different
CASE tools, and that can be generated using public domain parser generators.
The work reports on a prototypical tool that uses PCCTS and flex as a parser
generator and a lexical analyzer, respectively. The resulting AST can be repre-
sented in terms of the conceptual modeling language Telos and can be used by
various reverse engineering tools such as Rigi and Refine.

1.4 A Synopsis of CSER: Structure, Objectives,
Principles, Results, and Directions

1.4.1 Background

Building and maintaining software products is an intellectual work performed by
highly skilled professionals. The raw material for a successful and thriving
software industry is thus principally the supply of highly qualified personnel.

The shortage of highly qualified personnel in the software industry is not a
new phenomenon. In fact, statistics from around the world indicate that the
problems facing the industry will become even worse in the coming years due to
the explosive growth facing the software industry. Educational institutions can-
not produce graduates fast enough.

Equally critical is the gap between the skills possessed by future software
professionals and researchers produced by university graduate programs and the
skills sought in these graduates by the software industry as well as by academic
and research organizations. David L. Parnas emphasized this gap in a 1999 arti-
cle, “Software Engineering Programs Are Not Computer Science Programs”
(IEEE Software, November-December 1999).

The nature of academic computer science and software engineering research
has shifted substantially over the past twenty years. In the past, the research was
largely individualistic and long term, leading to scientific papers dubbed “re-
search nuggets” by John Mylolpoulos of University of Toronto. The emphasis
has since moved from research that is based on networking and large-scale col-
laboration, such as the Japanese Fifth Generation project or the European Union
ESPRIT initiative, to research that is more team- and mission-oriented, and syn-
ergistic on a smaller, yet on a more effective scale.
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These observations and a conviction that there is more to software produc-
tion than the knowledge of data structures, programming languages, formal lan-
guages and computational complexity led to a series of meetings and brain-
storming sessions among a number of groups from Canadian software and tele-
communication industries, universities, and government laboratories. The result
was the creation in June of 1996 of the Consortium for Software Engineering
Research, or CSER.! The five founding industrial partners were Bell Canada,
IBM Canada, Mitel Corporation, Nortel Networks and Object Technology Inter-
national, Inc. Those partners have recently been joined by Sun Microsystems
Canada. The founding academic partners were Acadia University, Université de
Montréal, the University of Ottawa, the University of Toronto, the University of
Waterloo, the University of Victoria, and the University of British Columbia.
Recent university partners are Carleton University, the University of Alberta,
and the Ecole Polytechnique de Montréal.

The research projects of the Consortium are partially funded by the industrial
partners and partially by the Natural Sciences and Engineering Research Council
of Canada (NSERC)—a Canadian research funding agency. Technical and ad-
ministrative management of the Consortium is provided by the National Re-
search Council of Canada (NRC)—specifically by the members of the Software
Engineering Group of the Institute for Information Technology.

Total funding for Phase 1 (1996-1999) of CSER was about 7.5 million Ca-
nadian dollars (about 4.7 million U.S. dollars) including in-kind industrial con-
tributions. Phase 2 (1999-2002) funding presently stands at about 8 million Ca-
nadian dollars, with additional funding earmarked for projects under review.

1.4.2 Structure

CSER is an industry-directed organization. The industrial involvement is central
to the concept, but it means much more than just providing funds for the re-
searchers. Each of the industrial members takes the lead in defining the research
projects and opens its development environment and proprietary software to the
academic researchers. The industrial partners directly participate in the research
activities by committing own employees.

This direct participation is the main difference between CSER style of col-
laborative research and more traditional research consortiums. It also makes the
recruitment of new industrial partners in CSER more challenging than usual
since the time of key employees is perceived by companies as being more pre-
cious than an equivalent cash contribution.

Another important CSER principle is the sharing of research results among
industrial partners. Each research partner has access to the research results of all

I'The creation of CSER was championed by Dr. W. Morven Gentleman, then with the
National Research Council of Canada, Ottawa, and by Dr. Jacob Slomin, then with the
the IBM Centre for Advanced Studies, Toronto.
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CSER projects. This practice is facilitated by the fact that CSER research is pre-
competitive in nature: industrial partners can significantly leverage their invest-
ment in CSER.

The industry orientation of CSER is also reflected in the governance of the
Consortium. The Board of Directors manages the Consortium. It consists of the
representatives of three industrial partners and two senior, non-funded academic
appointees who represent university interests. A representative of NRC acts as
Research Director, and a representative from NSERC’s Partnership Program
acts as Program Officer. These two positions have non-voting, observer status.
An Executive Director handles legal and financial matters, and is assisted by an
Operations Manager who deals with day-to-day issues.

The research projects of the Consortium are organized into two coherent
themes. At the time of this writing, two themes were active:

1. Empirical Evolution from Legacy Software to Modern Architectures and
2. Software Quality: Verification and Validation.

Projects under each of the themes are directed by a Steering Committee,
which consists of three members selected from the active projects. The Steering
Committee reviews the progress and the direction of the research projects. It
also reviews new proposals and applications. The Steering Committee then
makes recommendations to the Board, which makes the final decisions.

Currently, the total CSER research effort, covering all contributions from all
of the partners, stands at approximately 18 million Canadian dollars for five
research projects from 1996 to 1999 and six research projects from 1999 to
2002.

1.4.3 Objectives and Principles
The objectives of CSER as stated in its charter are:

1. to focus university research and education on software engineering
problems relevant to the industry,

2. to contribute through these research projects to the body of knowledge
of the software engineering field,

3. to provide to its industrial and academic members an environment con-
ducive to research, in which each research project will benefit from syn-
ergies with other projects, and

4. to improve the competence in the field of software engineering among
university graduates through relevant educational programs and among
current software professionals through dissemination of research results.

The research projects achieve these objectives by conforming to the strict re-
quirements;imposed-onsthem:Eachiresearch project must:



16 Erdogmus et al.

1. be conducted at least partly in an industrial setting;
2. address industrial-scale problems using industrial-scale data; and
3. include empirical studies.

These requirements provide reciprocal benefits to the contributing research-
ers: They give the researchers, both faculty and supported students, the oppor-
tunity to spend time in the industrial laboratories, work with industrial-size and
industrial-quality code that is hard to obtain otherwise, pursue real problems,
and validate their results, thus increasing the quality and credibility of the re-
search.

CSER is cognizant of the issues facing faculty members at the universities.
Projects reconcile short-term goal-oriented research with longer-term higher-risk
research. This approach creates an environment that nurtures innovation while
addressing current problems.

A strong emphasis on continuity ensures the quality of the research and real-
izes the desired impact on education and training. Continuity is present in the
research programs, in the commitment of the industrial partners, and in the over-
all project objectives.

Regular meetings are a key feature of the Consortium. All of the partici-
pants—industry, university, and government researchers, as well as students—
attend the general meetings held twice a year and usually hosted by an industrial
member. The meetings provide a forum for the exchange of ideas, problems, and
their solutions. CSER participants credit these meetings with maintaining both
the quality and the progress of the research projects.

Each research project clearly identifies the benefits to the industrial partners,
academic partners, CSER, and the software engineering community at large.
The Consortium supports and encourages the incorporation of the generated
knowledge into the academic curriculum. It is this feature that defines CSER’s
emphasis on education and training.

1.4.4 Results

Despite the very short time during which CSER has been in existence, it can
claim many successes. Those successes and benefits are directly attributed to the
stated objectives and principles.

First—as evidenced by this book - CSER has witnessed significant research
results. It generated well over 100 publications and presentations directly attrib-
utable to the individual projects. Many of those publications are co-authored
with the industry partners. At least three academic partners - namely the Univer-
sity of Ottawa, the University of Victoria, and the University of Waterloo - have
been developing new software engineering curricula. At least 15 new courses
throughout the participating universities originated from the CSER experience.
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Dr. Timothy Lethbridge states that “CSER research directly influenced the
design of the Software Engineering program in the School of Information Tech-
nology and Engineering at the University of Ottawa.” He adds that CSER has
provided him, as one of the principal designers of the program, “with direct ac-
cess to top software companies and academics.... No other Canadian organiza-
tion brings together the same kind of software engineering brainpower.”

Second, some of the results of CSER research have found their way into the
processes and methodologies by which industrial partners develop and maintain
their software products. The industrial partners claim significant cost and time
savings. Peter J. Perry, Head of the Strategic Technology Group at Mitel Corpo-
ration, comments on a tool developed by a CSER research team and field-tested
at his organization:

In the first of phase of CSER, we halved the time taken to get new staff pro-
ductive from 12 to 18 months to 6 to 9 months. Commercial tools of similar
function cost much more than the cost of the research to Mitel.

In addition to having specific problems solved, industry partners benefit
from improved access to university researchers and their graduate students.
Many industrial partners have hired the students who have worked on their
CSER projects.

Third, CSER-sponsored students have been major beneficiaries. The consor-
tium environment is an excellent setting for applied graduate work. CSER has
provided funding for over 80 students. Students benefit from the exposure to
many leading researchers and industry practitioners well beyond the capabilities
of a single academic institution. CSER provides two opportunities for such ex-
posure. On the one hand, students carry out some of their research at the com-
pany site, working alongside industry researchers. On the other hand, they par-
ticipate in the semi-annual CSER meetings where they interact with the other
CSER participants.

A great majority of these students have or will graduate with masters and
doctoral degrees. CSER is proud of the fact that some of the Ph.D. graduates and
post doctoral fellows progressed into lead researcher positions within the Con-
sortium. Additionally, many more graduate and undergraduate students have
been affected by the new and modified courses designed by CSER researchers.

Fourth, and possibly the most significant benefit of the Consortium, is a
change in the attitudes both within the research community and among the in-
dustrial partners.

Initial meetings of CSER were characterized by rather narrow and inward-
looking research reports. Since the problems encountered and the tools needed
by the researchers to address these problems were very similar among the vari-
ous projects, the discussions slowly converged toward the commonalties. The
most recent semi-annual meeting took the form of a series of mini-workshops
devoted to these common topics. The synergy was also demonstrated at the In-
ternational Conference on Software Engineering held in June 2000. CSER re-
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searchers organized two of the collocated workshops, based on the issues that
have directly originated from previous CSER meetings.

CSER has established a framework for collaboration that engenders trust and
reciprocity. Not only are the university researchers exchanging ideas, but CSER
industrial partners share proprietary software with the other CSER members. For
example, IBM has agreed to make its VisualAge C++ Professional APIs avail-
able to all CSER participants. Similarly, Bell Canada licensed the use of its
Datrix analysis suite for research purposes to all CSER participants. Moreover,
some of the tools developed within an IBM-led project are being deployed at
Mitel Corporation.

1.4.5 Directions

The first research theme—Empirical Evolution from Legacy Software to Mod-
ern Architectures—was selected after lengthy discussions. That selection was in
part precipitated by the then impending Year 2000 problems. But the partici-
pants felt that the migration of software—whether due to changing user re-
quirements, changing platforms, or other reasons—will dominate software in-
dustry for years to come.

Clearly, they have been proven right. The meteoritic rise of the World Wide
Web and related technologies have caused a new wave of migration issues. We
need to concern ourselves with new computing paradigms, new system architec-
tures, and new applications enabled by an enormous increase in computing
power. We now need to migrate not only code but also the whole wealth of en-
terprise assets encapsulated in the underlying data. Isn’t the maintenance of very
large websites merely an instance of the migration problem?

If we can be so bold, the recently created second theme of CSER research —
Software Quality: Verification and Validation—will also endure. It is clear that
software is ubiquitous. Software is written in massive amounts all over the
world. User expectations of the functionality to be provided are growing at a
much faster rate than our ability to provide that functionality. The user demands
reliable, usable, and high-performance software. The research community is
being challenged to develop tools and methodologies that would enable the
software industry to fulfill these needs.

1.4.6 Conclusions

It is evident that the Consortium for Software Engineering Research has em-
braced the challenges that it originally set out. It has increased the number of
university graduates with the right skills in order to meet software engineering
industry needs. It has increased the capability of software professionals to ad-
dress complex problems in software engineering and to keep abreast of changes
in software technology. It has created strong linkages between industry person-
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nel and university-based researchers, permitting the exchange of ideas and the
fostering of solutions to industry driven problems. And finally, it has increased
the number of academic resources and expertise in the software engineering
practice.
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Object-Oriented Metrics:
A Review of Theory and Practice

Khaled El-Emam

2.1 Introduction

In today’s business environment, competitive pressures demand the production
of reliable software with shorter and shorter release intervals. This is especially
so in commercial high-reliability domains such as telecommunications and the
aerospace industry. One recipe for success is to increase process capability.
There is recent compelling evidence that process capability is positively associ-
ated with productivity and quality. (Clark, 1997; El-Emam and Birk, 2000a,
2000b; Flowe and Thordahl, 1994; Goldenson and Herbsleb, 1995; Jones, 1999;
Krishnan and Kellner, 1999). Quantitative management of software quality is a
hallmark of high-process capability (EI-Emam et al., 1998; Software Engineer-
ing Institute, 1995).

Quantitative management of software quality is a broad area. In this chapter
we focus on only one aspect: the use of software product metrics for quality
management. Product metrics are objective! measures of the structure of soft-
ware artifacts. The artifacts may be, for example, source code or analysis and
design models.

The true value of product metrics comes from their association with meas-
ures of important external attributes (ISO/IEC, 1996). An external attribute is
measured with respect to how the product relates to its environment (Fenton,
1991). Examples of external attributes are testability, reliability and maintain-
ability. Practitioners, whether they are developers, managers, or quality assur-
ance personnel, are really concerned with the external attributes. However, they
cannot measure many of the external attributes directly until quite late in a pro-
ject’s or even a product’s lifecycle. Therefore, they can use product metrics as

1 Objective means that if you repeatedly measure the same software artifact (and the arti-
fact does not change), then you will get the same values. This is because in most cases
the metrics are automated. The alternative is to have subjective metrics. Subjective met-
rics are not covered in this chapter.
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leading indicators of the external attributes that are important to them. For in-
stance, if we know that a certain coupling metric is a good leading indicator of
quality as measured in terms of the number of faults, then we can minimize cou-
pling during design because we know that in doing so we are also reducing re-
work costs.

Specifically, product metrics can be used in at least three ways:

Making system-level predictions.
¢  Early identification of high-risk software components.
e  The construction of preventative design and programming guidelines.

These uses allow an organization, for instance, to get an early estimate of qual-
ity, and to take early action to reduce the number of faulty software components.

Considerable effort has been spent by the software engineering research
community in developing product metrics for both procedural and object-
oriented systems, and empirically establishing their relationship to measures of
important external attributes. The latter is known as the empirical validation of
the metric. Once the research community has demonstrated that a metric or set
of metrics is empirically valid in a number of different contexts and systems,
organizations can take these metrics and use them to build appropriate predic-
tion models and guidelines customized to their own context.

The objective of this chapter is to provide a review of contemporary object-
oriented metrics. We start by describing how object-oriented metrics can be used
in practice by software organizations. This is followed by an overview of some
of the most popular object-oriented metrics, and those that have been studied
most extensively. The subsequent section describes current cognitive theories
used in software engineering that justify the development of object-oriented
metrics. This is followed by a further elaboration of the cognitive theory to ex-
plain the cognitive mechanisms for metric thresholds. The empirical evidence
supporting the above theories is then reviewed. The chapter is concluded with
recommendations for the practical usage of object-oriented metrics, a discussion
of the match between the empirical results and the theory, and directions for
future research.

2.2 The Practical Use of Object-Oriented Metrics

In this section we describe how product metrics can be used by organizations for
quality control and management.

2.2.1 Making System-Level Predictions

Typically, software product metrics are collected on individual components for a
single system. Predictions on individual components can then be aggregated to
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give overall system level predictions. For example, in two recent studies using
object-oriented metrics, the authors predicted the proportion of faulty classes in
a whole system (El-Emam et al., 2001). This is an example of using predictions
of fault-proneness for each class to draw conclusions about the overall quality of
a system. One can also build prediction models of the total number of faults and
fault density (Evanco, 1997). Similarly, another study used object-oriented met-
rics to predict the effort to develop each class, and these were then aggregated to
produce an overall estimate of the whole system’s development cost (Briand and
Wuest, 1999).

2.2.2 Identifying High-Risk Components

The definition of a high-risk component varies depending on the context. For
example, a high-risk component may be one that contains any faults found dur-
ing testing (Briand et al., 1993; Lanubile and Visaggio, 1997), one that contains
any faults found during operation (Khoshgoftaar et al., 1999), or one that is
costly to correct after an error has been found (Almeida et al., 1998; Basili et al.,
1997; Briand et al., 1993). Recent evidence suggests that most faults are found
in only a few of a system’s components (Fenton and Ohlsson, 2000; Kaaniche
and Kanoun, 1996; Moller and Paulish, 1993; Ohlsson and Alberg, 1996). If
these few components can be identified early, then an organization can take
mitigating actions. Examples of mitigating actions include focusing defect
detection activities on high-risk components by optimally allocating testing re-
sources (W. Harrison, 1988), or redesigning components that are likely to cause
field failures or be costly to maintain.

Early prediction is commonly cast as a binary classification problem.2 This
is achieved through a quality model that classifies components into either a high-
or low-risk category. An overview of a quality model is shown in Figure 2.1. A
quality model is developed using a statistical modeling or machine learning
technique, or a combination of techniques. This is done using historical data.
Once constructed, such a model takes as input the values on a set of metrics
M, ... My) for a particular component, and produces a prediction of the risk
category (say either high or low risk) for that component.

A number of organizations have integrated quality models and modeling
techniques into their overall decision making process. For example, Lyu et al.
(1995) report on a prototype system to support developers with software quality
models, and the EMERALD system is reportedly routinely used for risk assess-
ment at Nortel (Hudepohl et al., 1996a, 1996b). Ebert and Liedtke describe the

21t is not, however, always the case that binary classifiers are used. For example, there
have been studies that predict the number of faults in individual components (Khoshgoftaar
et al., 1996) and that produce point estimates of maintenance effort (Jorgensen, 1995; Li and
Henry, 1993).
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Figure 2.1. Definition of a quality model.

application of quality models to control the quality of switching software at Al-
catel (Ebert and Liedtke, 1995).

In the case of object-oriented metrics, an example of a quality model was
presented in a recent study using design metrics on a Java application (El-Emam
et al., 2001). This model was developed using logistic regression (Hosmer and
Lemeshow, 1989):

1

= 3.97+0.464 NAI +1.47OCMEC+1.06 DIT) 2.1

1+e

In the above equation:

¢ The variable T is the predicted probability that a class will have a fault.

e NAIis the total number of attributes defined in the class.
OCMEC is the number of other classes that have methods with parameter
types of this class (this is a form of export coupling).

e DIT is the depth of the inheritance tree that measures how far down an in-
heritance hierarchy a class is.

NAI, OCMEC, and DIT are examples of object-oriented metrics. In fact, in
this case, all of these metrics can be collected easily from high-level designs,
and therefore one can in principle use this model to predict the probability that a
class will have a fault at an early stage of development. A calibration of this
model, described in ElI-Emam et al., (2001), indicated that if the predicted prob-
ability of a fault was greater than 0.33, then the class should be flagged for spe-
cial managerial action (i.e., it would be considered to be high risk).

The metrics in the above example are class-level static metrics. Object-
oriented metrics can also be defined at the method level or at the system level.
Our focus here is only on class level metrics. Furthermore, metrics may be col-
lected statically or dynamically.

Static metrics can be collected by an analysis of the software artifact. Dy-
namic metrics require execution of the software application in order to collect
the metric values, which makes them difficult to collect at early stages of the
design. The focus in this chapter is on static metrics.
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2.2.3 Design and Programming Guidelines

An appealing operational approach for constructing design and programming
guidelines using software product metrics is to make an analogy with conven-
tional statistical quality control: identify the range of values that are acceptable
or unacceptable, and take action for the components with unacceptable values
(Kitchenham and Linkman, 1990). This means identifying thresholds on the
software product metrics that delineate between acceptable and unacceptable.
In summarizing their experiences using software product measures, Szentes and
Gras (1986) state “the complexity measures of modules may serve as a useful
early warning system against poorly written programs and program designs...
Software complexity metrics can be used to pinpoint badly written program
code or program designs when the values exceed predefined maxima or min-
ima.” They argue that such thresholds can be defined subjectively based on ex-
perience. In addition to being useful during development, Coallier et al. (1999)
present a number of thresholds for procedural measures that Bell Canada uses
for risk assessment during the acquisition of software products. The authors note
that the thresholds result in 2 to 3 percent of the procedures and classes that are
flagged for manual examination. Instead of thresholds based on experience,
some authors suggest the use of percentiles for this purpose. For example,
Lewis and Henry (1989) describe a system that uses percentiles on procedural
measures to identify potentially problematic procedures. Kitchenham and Link-
man (1990) suggest using the 75™ percentile as a cut-off value. More sophisti-
cated approaches include identifying multiple thresholds simultaneously, such as
in Almeida et al. (1998) and Basili et al. (1997).

In an object-oriented context, thresholds have been similarly defined by Lo-
renz and Kidd (1994) as “heuristic values used to set ranges of desirable and
undesirable metric values for measured software.” Henderson-Sellers (1996)
emphasize the practical utility of object-oriented metric thresholds by stating
that “an alarm would occur whenever the value of a specific internal metric ex-
ceeded some predetermined threshold.” Lorenz and Kidd (1994) present a num-
ber of thresholds for object-oriented metrics based on their experiences with
Smalltalk and C++ projects.

Similarly, Rosenberg et al. (1999) have developed thresholds for a number
of popular object-oriented metrics that are used for quality management at
NASA GSFC. French (1999) describes a technique for deriving thresholds, and
applies it to metrics collected from Ada95 and C++ programs. Chidamber et al.
(1998) state that the premise behind managerial use of object-oriented metrics is
that extreme (outlying) values signal the presence of high complexity that may
require management action. They then define a lower bound for thresholds at the
80" percentile (i.e., at most 20% of the observations are considered to be above
the threshold). The authors note that this is consistent with the common Pareto
(80/20) heuristic.
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2.3 Object-Oriented Metrics

Structural properties that capture interconnections among classes are believed to
be important to measure (for example different types of coupling and cohesion).
This is because they are considered to affect cognitive complexity (see next sec-
tion). Object-oriented metrics measure these structural properties. Coupling met-
rics characterize the static usage dependencies among the classes in an object-
oriented system (Briand et al.,1999). Cohesion metrics characterize the extent to
which the methods and attributes of a class belong together (Briand et al., 1998).
In addition, inheritance is also believed to play an important role in the under-
standability of object-oriented applications.

A considerable number of such interconnected object-oriented metrics have
been developed by the research community. For example, see (F. Brite e Abreu
and Carapuca, 1994; Benlarbi and Melo, 1999; Briand et al., 1997; Cartwright
and Shepperd, 2000; Chidamber and Kemerer, 1994; Henderson-Sellers, 1996;
Li and Henry, 1993; Lorenz and Kidd, 1994; Tang et al., 1999). By far, the most
popular of these is the metrics suite developed by Chidamber and Kemerer
(1994) (known as the CK metrics). For historical reasons the CK metrics are the
most referenced (Briand et al., 1999), and most commercial metrics collection
tools collect these metrics. Another comprehensive set of metrics that capture
important structural characteristics, namely different types of coupling, have
been defined by Briand et al. (1997). These two sets of metrics have received a
considerable amount of empirical study. A summary of the metrics can found in
Table 2.1. Many of the metrics can be collected at the design stage of the life
cycle. The table indicates which of the metrics can be collected accurately at the
design phase. If the entry in the “Des” column is “Y,” then the metric is typi-
cally available during design. Even though some of the metrics can be collected
at design time, in practice, they are frequently collected from the source code
during validation studies. Of the set shown, only the CK metrics suite currently
is known to have a number of commercial and public domain analyzers (for
Java, see CodeWork, 2000, Metameta, 2000, Power-Software, 2000b; and for
C++, see Devanbu, 2000, ObjectSoft, 2000, Power-Software, 2000a)3. In addi-
tion there is at least one tool that can be used to collect the CK metrics directly
from design documents (Number-Six-Software, 2000).

2.4  Cognitive Theory of Object-Oriented Metrics

A theoretical basis for developing quantitative models relating product metrics
and external quality metrics has been provided in (Briand, Wuest, Ikonomovski,

3 Note that this is not a comprehensive list of tools available on the market today. Also,
please note that not all of the analyzers will collect all of the CK metrics; some only col-
lect a subset.
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and Lounis, 1998), and is summarized in Figure 2.2. This theory hypothesizes
that the structural properties of a software component (such as its coupling) have
an impact on its cognitive complexity. Cognitive complexity is defined as the
mental burden of the individuals who have to deal with the component.

Table 2.1. Summary of object-oriented metrics.

Metric Des
Acronym

Definition

CBO N  This is the coupling between object classes coupling metric
(Chidamber and Kemerer, 1994). A class is coupled with another if
the methods of one class use the methods or attributes of the other.
In this definition, uses can mean as a member type, parameter type,
method local variable type or cast. CBO is the number of other
classes with which a class is coupled. It includes inheritance-based
coupling (i.e., coupling between classes related via inheritance). A
variant of CBO, known as CBO’, excludes inheritance-based cou-
pling (Chidamber and Kemerer, 1991).

RFC N  This is the response for a class coupling metric (Chidamber and
Kemerer, 1994). The response set of a class consists of the set M of
methods of the class, and the set of methods invoked directly by the
methods in M (i.e., the set of methods that can potentially be exe-
cuted in response to a message received by that class). RFC is the
number of methods in the response set of the class. A variant of
RFC excludes methods indirectly invoked by a method in M
(Chidamber and Kemerer, 1991).

DIT Y  The depth of inheritance tree (Chidamber and Kemerer, 1994)
metric is defined as the length of the longest path from the
class to the root in the inheritance hierarchy.

NOC Y  This is the number of children inheritance metric (Chidamber and
Kemerer, 1994). This metric counts the number of classes that in-
herit from a particular class (i.e., the number of classes in the inheri-
tance tree down from a class).

LCOM N  This is a cohesion metric that was defined in Chidamber and Ke-
merer, (1994). It measures the number of pairs of methods in the
class that have no attributes in common, minus the number of pairs
of methods that do. If the difference is negative, the metric value is
set to zero.
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Table 2.1. (continued).

WMC Y4  This is the weighted methods per class metric (Chidamber and
Kemerer 1994), and can be classified as a traditional complexity
metric. It is a count of the methods in a class. It has been suggested
that neither methods from ancestor classes nor friends in C++ be
counted (Basili et al. 1996; Chidamber and Kemerer, 1995). The
developers of this metric leave the weighting scheme as an imple-
mentation decision (Chidamber and Kemerer, 1994). Some authors
weight it using cyclomatic complexity (Li and Henry, 1993). How-
ever, others do not adopt a weighting scheme (Basili et al.,, 1996;
Tang et al., 1999). In general, if cyclomatic complexity is used for
weighting, then WMC cannot be collected at early design stages.
Alternatively, if no weighting scheme is used, then WMC becomes
simply a size measure (the number of methods implemented in a
class), also known as NM.

IFCAIC Y  These coupling metrics are counts of interactions among classes.

ACAIC Y  The metrics distinguish among the class relationships (friendship,

OCAIC Y  inheritance, none), different types of interactions, and the locus of

FCAEC Y  impact of the interaction (Briand et al., 1997).

DCAEC Y The acronyms for the metrics indicate what types of interactions

OCAEC Y  are counted:

IFCMIC Y e The first or first two letters indicate the relationship:

ACMIC Y e A: coupling to ancestor classes;

OCMIC Y e D:coupling to descendents;

FCMEC Y e  F: coupling to friend classes;

DCMEC Y e [IF: inverse friend coupling; and

OCMEC Y e O: other (i.e., none of the above).

OMMIC N e  The next two letters indicate the type of interaction be-

IFMMIC N tween classes c and d:

AMMIC N e CA: there is a class-attribute interaction between

OMMEC N classes c and d if ¢ has an attribute of type d.

Individuals that may be prone to cognitive complexity are the developers,
testers, inspectors, and maintainers. High cognitive complexity leads to a com-
ponent exhibiting undesirable external qualities, such as increased fault-

4 Only the unweighted version of WMC is available during design. If weights are used,
then this would depend on the characteristics of the weighting scheme. For example,
cyclomatic complexity weights would certainly not be available during design.
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Figure 2.2. Theoretical basis for the development of object-oriented product metrics

proneness and reduced maintainability. Accordingly, object-oriented product
metrics that affects cognitive complexity will be related with fault-proneness.

It should be noted that if a cognitive theory is substantiated, this could have
important implications. It would provide us with a clear mechanism that would
explain the introduction of faults into object-oriented applications.

2.4.1 Distribution of Functionality

In applications developed using functional decomposition, functionality is local-
ized in specific procedures, the contents of data structures are accessed directly,
and data central to an application is often globally accessible (Wilde et al.,
1993). Functional decomposition is believed to make procedural programs easier
to understand because such programs are built upon a hierarchy in which a top-
level function calls lower-level functions to carry out smaller chunks of the
overall task (Wiedenbeck et al., 1999). Hence tracing through a program to un-
derstand its global functionality is facilitated. This is not necessarily the case
with object-oriented applications.

The object-oriented strategies of limiting the responsibility of a class and re-
using it in multiple contexts results in a profusion of small classes in object-
oriented systems (Wilde et al., 1993). For instance, Chidamber and Kemerer
(Chidamber and Kemerer, 1994) found in two systems studied? that most classes
tended to have a small number of methods (0-10), suggesting that most classes
are relatively simple in their construction, providing specific abstraction and
functionality. Another study of three systems performed at Bellcore® found that
half or more of the methods are fewer than four Smalltalk lines or two C++
statements, suggesting that the classes consist of small methods (Wilde et al,,
1993). Many small classes imply many interactions among the classes and a
distribution of functionality across them.

In one experimental study with students and professional programmers,
Boehm-Davis et al. (1992) compared maintenance time for three pairs of func-

3 One system was developed in C++ and the other in Smalltalk.

6 The study consisted of analyzing C++ and Smalltalk systems and interviewing the de-
velopers for two of them. For a C++ system, method size was measured as the number of
executable statements, and for Smalltalk size was measured by uncommented nonblank
lines of code.
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tionally equivalent programs (implementing three different applications,
amounting to a total of nine programs). Three programs were implemented in a
straight serial structure (i.e., one main function, or monolithic program), three
were implemented following the principles of functional decomposition, and
three were implemented in the object-oriented style, but without inheritance. In
general, it took the students more time to change the object-oriented programs,
and the professionals exhibited the same effect, although not as strongly. Fur-
thermore, both the students and professionals noted that they found that it was
most difficult to recognize program units in the object-oriented programs, and
the students felt that it was also most difficult to find information in the object-
oriented programs.

Widenbeck et al. (1999) make a distinction between program functionality at
the local level and at the global (application) level. At the local level they argue
that the object-oriented paradigm’s concept of encapsulation ensures that meth-
ods are bundled together with the data on which they operate, making it easier to
construct appropriate mental models and specifically to understand the individ-
ual functionality of a class. At the global level, functionality is dispersed among
many interacting classes, making it harder to understand what the program is
doing. They supported this in an experiment with equivalent small C++ (with no
inheritance) and Pascal programs where the subjects answered questions about
the functionality of the C++ program more easily. They then performed an ex-
periment with larger programs. The number of correct answers for the subjects
with the C++ program (with inheritance) on questions about its functionality
was not much better than guessing. While this study was done with novices, it
supports the general notions that high cohesion makes object-oriented programs
easier to understand and high coupling makes them more difficult to understand.

2.4.2 A Cognitive Model

Cant et al. (1995) have proposed a general cognitive theory of software com-
plexity that elaborates on the impact of structure on understandability. At the
core of the cognitive theory proposed is a human memory model that consists
mainly of short-term and long-term memory.’ In the same light, Tracz (1979)
has claimed that “the organization and limitations of the human memory are
perhaps the most significant aspects of the human thought process which affect
the computer programmer.” Hence, there is a view within the software engineer-
ing community that the human memory model is a reasonable point of departure
for understanding structural properties on understandability.

7 Tracz (1979) also discusses very-short-term memory, which plays a role in attention and
perception. However, this does not play a big role in cognitive theories that are used to
associate software product metrics to understandability. Neither does the concept of ex-
tended memory presented by Newell and Simon (1972). Therefore, they will not be dis-
cussed further.
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Cant et al. argue that comprehension consists of both chunking and tracing.
Chunking involves recognizing groups of statements and extracting from them
information that is remembered as a single mental abstraction. These chunks are
further grouped together into larger chunks forming a hierarchical structure.
Tracing involves scanning through a program, either forwards or backwards, in
order to identify relevant chunks. Subsequently, they formulate a model of cog-
nitive complexity for a particular chunk, say D, which is the sum of three com-
ponents: (1) the difficulty of understanding the chunk itself; (2) the difficulty of
understanding all the other chunks upon which D depends; and (3) the difficulty
of tracing the dependencies on the chunks upon which D depends. Davis (1984)
presents a similar argument where he states that “any model of program com-
plexity based on chunking should account for the complexity of the chunks
themselves and also the complexity of their relationship.”

In order to operationalize this model, it is necessary to define a chunk. Tracz
(1979) considers a module to be a chunk. However, it is not clear what exactly a
module is. Cant et al. (1995) make a distinction between elementary and com-
pound chunks. Elementary chunks consist only of sequentially self-contained
statements. Compound chunks are those that contain within them other chunks.
Procedures containing a number of procedure calls are considered as compound
chunks. At the same time, procedures containing no procedure calls may also be
compound chunks. If a procedure contains more than one recognizable subunit,
it is equivalent to a module containing many procedure calls in the sense that
both contain within them multiple subchunks. Subsequent work by Cant et al.
(1994) operationally defined a chunk within object-oriented sofiware as a
method. However, Henderson-Sellers (1996) notes that a class is also an impor-
tant type of (compound) chunk.

One factor contended to have an impact on complexity is chunk familiarity
(Henderson-Sellers, 1996). It is argued that chunks that are referenced more
often (i.e., high export coupling) will be more familiar since they are used more
often. Davis (1984) makes a similar argument for procedural programs. There-
fore, when tracing other chunks more traces will lead to those with the highest
export coupling. Furthermore, Henderson-Sellers (1996) applies the concept of
cohesion to chunking by stating that a chunk with low cohesion will be more
difficult to recognize since functions performed by the chunk will be unrelated,
and hence more difficult to understand.

Henderson-Sellers (1996) notes that tracing disrupts the process of chunking,
This occurs when it becomes necessary to understand another chunk, as when a
method calls another method in a different class (method-method interaction), or
when an inherited property needs to be understood. Such disruptions may cause
knowledge of the original chunk to be lost. This then is contended to have a
direct effect on complexity. In fact, tracing dependencies is a common task
when understanding object-oriented sofiware.

Cant et al. (1994) also performed an empirical study whereby they compared
subjective ratings by two expert programmers of the complexity of understand-
ing classes with objective measures of dependencies in an object-oriented sys-
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tem. Their results demonstrate a concordance between the objective measures of
dependency and subjective ratings of understandability.

Wilde et al.’s (1993) findings are also concordant with this conclusion, in
that programmers have to understand a method’s context of use by tracing back
through the chain of calls that reach it, and tracing the chain of methods it uses.
Their findings were from an interview study of two C++ object-oriented systems
at Bellcore and a PC Smalltalk environment. The three systems investigated
span different application domains.

Related work on mental representation of object-oriented software provides
further insights into the structural properties that are most difficult to under-
stand. These works build on theories of text comprehension. Modern theories of
text comprehension propose three levels of mental representation (Dijk and
Kintsch, 1983; Kintsch, 1986). The first level, the verbatim representation con-
sists of the literal form of the text. The second level, the propositional textbase,
consists of the propositions of the text and their relationships. The third level,
the situation model represents the situation in the world that the text describes.
Pennington (1987a, 1987b) subsequently applied this model to the comprehen-
sion of procedural programs, where she proposed two levels of mental represen-
tation, the program model and the domain model, which correspond to the latter
two levels of the text comprehension model above. The program model consists
of elementary operations and control flow information. The domain model con-
sists of data flow and program function information.

Burkhardt et al. (1997) applied this three level model to object-oriented
software. For the situation model they make a distinction between a static part
and a dynamic part. The static part consists of (a) the problem objects which
directly model objects of the problem domain; (b) the inheritance/composition
relationships between objects; (c) reified objects; and (d) the main goals of the
problem. The dynamic part represents the communication between objects and
variables. The static part corresponds to client-server relationships, and the dy-
namic part corresponds to data flow relationships. Based on this model, Burk-
hardt et al. performed an experiment. They asked their subjects to study an ob-
ject-oriented application and then answer questions about it. Subsequently the
subjects were asked to perform either documentation or a reuse task. The au-
thors of the study found that the static part of the situation model is better devel-
oped than the dynamic, even for experts. Furthermore, there was no difference
between experts and novices in their understanding of the dynamic part. Their
findings suggest that inheritance and class-attribute coupling may have less of
an impact on understandability than both cohesion and coupling.

Even though the above studies suggest that inheritance has little impact on
understandability, within the software engineering community inheritance is
strongly believed to make the understandability of object-oriented software dif-
ficult. According to a survey of object-oriented practitioners 55% of respondents
agree that inheritance depth is a factor in understanding object-oriented pro-
grams (Daly et al.,, 1995). “Inheritance gives rise to distributed class descrip-
tions. That is, the complete description for a class D can only be assembled by
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examining D as well as each of D’s superclasses. Because different classes are
described at different places in the source code of a program (often spread
across several different files), there is no single place a programmer can turn to
get a complete description of a class” (Leijter et al., 1992). While this argument
is stated in terms of source code, it is not difficult to generalize it to design
documents. The study by Wilde et al. (1993) indicated that, to understand the
behavior of a method, one has to trace inheritance dependencies, which may be
considerably complicated due to dynamic binding. A similar point was made by
Leijter et al. (1992) about the understandability of programs in such languages
as C++ that support dynamic binding.

In a set of interviews with 13 experienced users of object-oriented program-
ming, Daly et al. (1995) noted that if the inheritance hierarchy is designed prop-
erly, then the effect of distributing functionality over the inheritance hierarchy
will not be detrimental to understanding. However, it has been argued that there
exists increasing conceptual inconsistency as one travels down an inheritance
hierarchy (i.e., deeper levels in the hierarchy are characterized by inconsistent
extensions or specializations of super classes) (Dvorak, 1994). Therefore inheri-
tance hierarchies are likely to be improperly designed in practice. The study by
Dvorak supports this argument. He found that subjects were more inconsistent in
placing classes deeper in the inheritance hierarchy than they were in placing
them lower levels in the inheritance hierarchy.

2.4.3 Summary

This section provided a theoretical framework to explain the mechanism by
which object-oriented metrics could be associated with fault-proneness. If this
hypothesized mechanism matches reality, then we would expect object-oriented
metrics to be good predictors of external quality attributes, in particular, fault-
proneness. In the subsequent sections, we will review the empirical studies that
test these associations.

It must be recognized that the above cognitive theory suggests only one pos-
sible mechanism of what could impact external metrics. Other mechanisms can
play an important role as well. For example, some studies have showed that
software engineers experiencing high levels of mental and physical stress tend to
produce more faults (Furuyama et al., 1994, 1997). Reducing schedules and
many changes in requirements may induce mental stress. Physical stress may be
a temporary illness, such as a cold. Therefore, cognitive complexity due to struc-
tural properties, as measured by object-oriented metrics, can never be the reason
for all faults. For instance, the developers of a particular set of core functionality
in a system may be placed under schedule pressure since there are many de-
pendencies on their output. These developers may introduce more faults into the
core classes due to stress.

It is not known whether the influence of object-oriented metrics dominates
otheryeffects: Thesonlysthingsthaticanybe stated reasonably is that the empirical
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relationships between object-oriented metrics and external metrics are not very
likely to be strong. This is due to effects that are not accounted for, but as has
been demonstrated in a number of studies, they can still be useful in practice.

2.5 Object-Oriented Thresholds

As noted in above, the practical utility of object-oriented metrics would be en-
hanced if meaningful thresholds could be identified. The cognitive theory de-
scribed above can be expanded to include threshold effects. Hatton (1997) has
proposed a cognitive explanation as to why a threshold effect would exist be-
tween complexity metrics and faults. 8

Hatton argues that Miller (1957) shows that humans can cope with around 7
+/- 2 pieces of information (or chunks) at a time in short-term memory, inde-
pendent of information content. He then refers to the text of Hilgard et al.
(1971), where they note that the contents of long-term memory are in a coded
form and the recovery codes may get scrambled under some conditions. Short-
term memory incorporates a rehearsal buffer that continuously refreshes itself.
Hatton suggests that anything that can fit into short-term memory is easier to
understand and less fault-prone. Pieces that are too large or too complex over-
flow, involving use of the more error-prone recovery code mechanism used for
long-term storage. In a subsequent article, Hatton (1998) extended this model to
object-oriented development. If we take a class as a definition of a chunk, then if
the class dependencies exceed the short-term memory limit, one can expect de-
signers and programmers to make more errors.

2.5.1 Size Thresholds

A reading of the early software engineering literature suggests that when soft-
ware components exceed a certain size, fault-proneness increases rapidly. This
is in essence a threshold effect. For instance, Card and Glass (1990) note that
many programming texts suggest limiting component size to 50 or 60 SLOC. A
study by O’Leary (1996) of the relationship between size and faults in knowl-
edge-based systems found no relationship between size and faults for small
components, but a positive relationship for large components; again suggesting a
threshold effect. A number of standards and organizations had defined upper
limits on components size (Bowen, 1984), for example, an upper limit of 200
source statements in MIL-STD-1679, 200 HOL executable statements in MIL-
STD-1644A, 100 statements excluding annotation in RADC CP 0787796100E,

8 Hatton also suggests that components that are of low complexity do not use short-term
memory efficiently, and that failure to do so also leads to increased fault-proneness.
However, this aspect of his model has been criticised recently (El-Emam et al., 2000) and
therefore will not be considered further.
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100 executable source lines in MILSTAR/ESD Spec, 200 source statements in
MIL-STD-SDS, 200 source statements in ‘MIL-STD-1679(A), and 200 HOL
executable statements in FAA ER-130-005D. Bowen (1984) proposed compo-
nent size thresholds between 23-76 source statements based on his own analysis.
After a lengthy critique of size thresholds, Dunn and Ullman (1979) suggest two
pages of source code listing as an indicator of an overly large component.
Woodfield et al. (1981) suggest a maximum threshold of 70 LOC.

Hatton (1998) argues that the concept of encapsulation, central to object-
oriented development, lets us think about an object in isolation. If the size of
this object is small enough to fit into short-term memory, then it will be easier to
understand and reason about. Objects that are too large and overflow the short-
term memory will tend to be more fault-prone.

2.5.2 Inheritance Thresholds

According to the above threshold theory, objects that are manipulated in short-
term memory possessing inherited properties require referencing the ancestor
objects. If the ancestor objects are in short-term memory then this tracing does
not increase cognitive burden. However, if the ancestor objects are already en-
coded in long-term storage, access to long-term memory breaks the train of
thought and is inherently less accurate. Accordingly, it is likely that classes will
be more fault-prone if they reference inherited chunks that cannot be kept in
short-term storage, and this fault-proneness increases as the extent of inheritance
increases. An implication is that a certain amount of inheritance does not affect
cognitive burden, it is only when inheritance increases beyond the limitations of
short-term memory that understandability deteriorates. For example, Lorenz and
Kidd (1994), based on their experiences with Smalltalk and C++ projects, rec-
ommended an inheritance nesting level threshold of 6, indicating that inheri-
tance up to a certain point is not detrimental.

2.5.3 Coupling Thresholds

When there is a diffusion of functionality, then an object in short-term memory
may be referencing or be referenced by many other objects. If each of these
other objects is treated as a chunk and they are within short-term memory, then
tracing does not increase cognitive burden. However, if more objects need to be
traced than can be held in short-term memory, this requires retrieval (and pat-
tern-matching in the case of polymorphism) of many other objects in long-term
memory. Hence, the ensuing disruption leads to comprehension difficulties, and
therefore greater fault-proneness. Therefore, one can argue that when the inter-
acting objects overflow short-term memory, this will lead to an increase in fault-
proneness. The implication of this is that a certain amount of coupling does not
affect cognitive burden, until a non zero coupling threshold is exceeded.
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2.6 Empirical Evidence

A considerable number of empirical studies have been performed to validate the
relationship between object-oriented metrics and class fault-proneness. Some
studies have covered the metrics that were described earlier in this chapter,
(Basili et al., 1996; Briand et al., 1997; Briand et al., 2000; Briand et al., 1998;
Tang et al,, 1999). Other studies validated a set of polymorphism metrics
(Benlarbi and Melo, 1999), a coupling dependency metric (Binkley and Schach,
1998), a set of metrics defined on Shlaer-Mellor designs (Cartwright and Shep-
perd, 2000), another metrics suite (F. Brito e Abreu and Melo, 1996), and a set
of coupling metrics (R. Harrison, Counsell, and Nithi, 1998). Other external
measures of interest that have been studied are productivity (Chidamber et al.,
1998), maintenance effort (Li and Henry, 1993), and development effort
(Chidamber et al., 1998; Misic and Tesic, 1998; Nesi and Querci, 1998). How-
ever, here we will focus on the fault-proneness external measure.

It would seem that with such a body of work we would also have a large
body of knowledge about which metrics are related to fault-proneness. Unfortu-
nately, this is not the case. A recent study (ElI-Emam et al., 2001) has demon-
strated a confounding effect of class size on the validity of object-oriented met-
rics. This means that if one does not control the effect of class size when vali-
dating metrics, then the results would be quite optimistic. The reason for this
argument is illustrated in Figure 2.3. Class size is correlated with most product
metrics, and it is also a good predictor of fault-proneness: Bigger classes are
simply more likely to have a fault.

Empirical evidence supports an association between object-oriented product
metrics and size. For example, in Briand et al., (2000) the Spearman rho correla-
tion coefficients go as high as 0.43 for associations between some coupling and
cohesion metrics with size, and 0.397 for inheritance metrics. Both results are
statistically significant (at an alpha level of say 0.1).

Similar patterns emerge in other studies. One study by Briand et al. (1998)
reports relatively large correlations between size and object-oriented metrics. In
another study (Cartwright and Shepperd, 2000) the authors display the correla-
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Figure:2:3=lilustratiomof confounding effect of class size.
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tion matrix showing the Spearman correlation between a set of object-oriented
metrics that can be collected from Shlaer-Mellor designs and C++ LOC. The
correlations range from 0.563 to 0.968, all statistically significant at an alpha
level 0.05. This result also indicates very strong correlations with size. In fur-
ther support of this hypothesis, the relationship between size and defects is
clearly visible in the study by Cartwright and Shepperd (2000), where the
Spearman correlation was found to be 0.759 and statistically significant. An-
other study of image analysis programs written in C++ (R. Harrison et al., 1996)
found a Spearman correlation of 0.53 between size in LOC and the number of
errors found during testing, also statistically significant at an alpha level of 0.05.
Finally, Briand et al. (2000) find statistically significant associations between six
different size metrics and fault-proneness for C++ programs, with a change in
odds ratio going as high as 4.952 for one of the size metrics.

A number of validation studies did not control for size (Binkley and Schach,
1998; Briand et al., 2000; Briand et al., 1998; R. Harrison et al., 1998; Tang et
al., 1999). This means that if an association is found between a particular metric
and fault-proneness, this may be due to the fact that higher values on that metric
also mean higher size values. In the following sections, we therefore only draw
conclusions from studies that did control for size, either statistically or experi-
mentally.

2.6.1 Inheritance Metrics

As noted in Deligiannis and Shepperd (1999), the software engineering commu-
nity has been preoccupied with inheritance and its effect on quality. Many stud-
ies have investigated that particular feature of the object-oriented paradigm.

An experimental investigation found that making changes to a C++ program
with inheritance consumed more effort than a program without inheritance, and
the author attributed this to the subjects finding the inheritance program more
difficult to understand based on responses to a questionnaire (Cartwright, 1998).
Another study by Cartwright and Shepperd (2000) found that classes with in-
heritance tend to be more fault prone. This suggests that, holding everything
else equal, understandability of classes is stable when there is no inheritance, but
falls if there is any inheritance.

In two further experiments (Unger and Prechelt, 1998), subjects were given
three equivalent Java programs to modify, and the maintenance time was meas-
ured. One of the Java programs was flat, in that it did not take advantage of
inheritance; one had an inheritance depth of 3; and one had an inheritance depth
of 5. In an initial experiment, the programs with an inheritance depth of 3 on the
average took longer to maintain than the flat program, but the program with an
inheritance depth of 5 took as much time as the flat program. The authors at-
tribute this to the fact that the amount of changes required to complete the main-
tenance task for the deepest inheritance program was smaller. The results for a
secondstaskiin the first-experiment:andithe results of the second experiment indi-
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cate that it took longer to maintain the programs with inheritance. This was at-
tributed to the need to trace call sequences up the inheritance hierarchy in order
to understand what a class is doing,.

However, another study (Daly et al., 1996) contradicts these findings. The
authors conducted a series of classroom experiments comparing the time to per-
form maintenance tasks on a flat C++ program and a C++ program with three
levels of inheritance. The result was a significant reduction in maintenance ef-
fort for the inheritance program. An internal replication by the same authors
found the results to be in the same direction, albeit the p-value was larger. This
suggests an inverse effect for inheritance depth to the one described above.

More recent studies also reported similar contradictory results. Two studies
found that there is a relationship between the depth of inheritance tree and fault-
proneness in Java programs (EI-Emam et al., 2001; Glasberg et al., 2000).
However, two other studies found no such effect with C++ programs (El-Emam
et al., 1999, 2000).

Overall, then, it seems that the evidence as to the impact of inheritance depth
on fault-proneness is rather equivocal. This is usually an indication that there is
another effect that is confounded with inheritance depth. Further research is
necessary to identify this confounding effect and disentangle it from inheritance
depth in order to assess the effect of inheritance depth by itself.

2.6.2 Coupling Metrics

The most promising results with object-oriented metrics were obtained using
coupling metrics. A summary of three recent results is given Table 2.2. The “*”
indicates that for this particular study ACMIC was not evaluated because it had
too few observations that were non-zero, and hence lacked variation. It can be
seen that both import and export coupling metrics tend to be associated with
fault-proneness. The type of coupling depends on the system, likely a reflection
of the overall design approach.

Table 2.2. Summary of validation results for coupling metrics.

(El-Emam et al., 1999) (El-Emam et al., 2001) (Glasberg et al., 2000)

(C++ system) (Java system) (Java system)
CBO X Not evaluated Not evaluated
OCAEC X X No association found
ACMIC X Not evaluated * X
OCMEC X X No association found
OMMEC X Not evaluated Not evaluated
OCMIC No association found X X

OCAIC No association found  No association found X
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2.6.3 Cohesion Metrics

Three studies that evaluated the effect of cohesion, in the form of the LCOM
metric, found no effect of cohesion on fault-proneness (Benlarbi et al., 2000; El-
Emam et al., 1999; ElI-Emam et al., 2000). This is not surprising given that the
concept of cohesion is not well understood.

2.6.4 Thresholds

A recent series of studies led by the author investigated thresholds for object-
oriented metrics (Benlarbi et al., 2000; El-Emam et al., 2000; Glasberg et al.,
2000). The first study demonstrated that an absence of size thresholds for object-
oriented classes (El-Emam et al., 2000). The remaining two studies demon-
strated that an absence of threshold effects for a subset of the metrics described
earlier (Benlarbi et al., 2000; Glasberg et al., 2000). The results are consistent
across all of the three studies: there are no thresholds for contemporary object-
oriented metrics, including class size.

Absence of thresholds does not mean that the claims of limits on short-term
memory are not applicable to software engineering. However, the applicability
of this cognitive model to object-oriented applications needs to be refined fur-
ther. It is plausible that a chunk in the object-oriented paradigm is a method
rather than a class. It is also plausible that dependencies between chunks need to
be weighted according to the complexity of the dependency. These hypotheses
require further investigation. The main result remains, however, that the exis-
tence of thresholds for contemporary object-oriented metrics lacks evidence.

The existing object-oriented thresholds that have been derived from experi-
ential knowledge, such as those of Lorenz and Kidd (1994) and Rosenberg et al.
(1999) may, however, still be of some practical utility despite these findings.
Even if there is a continuous (i.e., no threshold) relationship between these met-
rics and fault-proneness as we have found, if you draw a line at a high value of a
measure and call this a threshold, classes that are above the threshold will still
be the most fault-prone. The situation is illustrated in the left panel of Figure 2.4
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Figure 2.4. Different types of thresholds. An arbitrarily chosen threshold is illustrated
on the left. A genuine threshold effect is illustrated on the right.
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(where 7T is the probability of a fault). Therefore, for the purpose of identifying
the most fault-prone classes, such thresholds will likely work. Classes with val-
ues below the threshold can still mean high fault-proneness, just not the highest.

Had a genuine threshold effect been identified, then classes with values be-
low the threshold represent a safe region whereby designers deliberately restrict-
ing their classes within this region can have some assurance that the classes will
have, everything else being equal, minimal fault-proneness. This genuine
threshold effect is illustrated in the right panel of Figure 2.4.

2.7 Conclusions

This chapter reviewed contemporary object-oriented metrics, the theory behind
them, and the empirical evidence that supports their use. The results obtained
thus far can provide the basis for concrete guidelines for quality management in
object-oriented applications. These can be summarized as follows:

® The most important metrics to collect seem to be those measuring the dif-
ferent types of export and import coupling. Most of these metrics have the
advantage that they can be collected at the early design stages, allowing for
early quality management. Assign your best people to work on classes with
high values on the coupling metrics.

¢ Ifhistorical data is available, it would be even better to rank your classes by
their predicted fault-proneness. This involves constructing a logistic regres-
sion model using the above coupling metrics (and a measure of size). This
model would predict the probability of a fault in each class. Assign your
best people to work on classes with the largest predicted fault-proneness.

¢  Other managerial actions that can be taken are larger and more experienced
inspection teams for classes with high fault-proneness and development of
more test cases for these classes. Given that these classes are expected to be
the most fault-prone, such defect detection activities will help identify and
remove these faults before the software is released.

It is clear from the above studies that we are not yet at the stage where pre-
cise prescriptive or proscriptive design guidelines can be developed. However,
the findings so far are a useful starting point. The results do not, in general, con-
tradict the cognitive complexity theory presented earlier. We did not find com-
pelling evidence that the depth of inheritance tree is a major contributor to fault-
proneness. However, this may be due to other ancestor-based coupling metrics
being the main effect predicted by the theory rather than inheritance depth itself.

From a research perspective, the following conclusions can be drawn:

¢ Contemporary cohesion metrics tends not to be good predictors of fault-
proneness. Further work needs to be performed at defining cohesion better,
and developing metrics to.measure. it.
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¢ The evidence as to the impact of inheritance depth itself on fault-proneness
is equivocal. This is an issue that requires further investigation.

e No threshold effects were identified. This most likely means that the man-
ner in which theories about short-and long-term human memory have been
adapted to object-oriented applications needs further refinement.

In closing, it is important to note that the studies from which these
recommendations were derived looked at commercial systems (i.e., not student
applications). This makes the case that the results are applicable to actual
projects more convincing. Furthermore, the studies focused only on fault-
proneness. It is plausible that studies that focus on maintenance effort or
development effort might give rise to different recommendations.
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3
Studies of the Work Practices of
Software Engineers

Timothy Lethbridge
Janice Singer

3.1 Introduction

In this chapter we describe various techniques for studying and representing the
work of software engineers! (SEs) and using the results to develop requirements
for software engineering tools.

The ultimate objective of our research is to discover techniques that will en-
able software engineers to more productively make changes to large legacy real-
time software systems. However, to achieve this objective we must understand
software engineers’ work practices. We describe various techniques we em-
ployed to observe work practices, analyze the resulting data, and produce
graphical models of work patterns. In particular, we describe techniques that we
have developed such as synchronized shadowing and the use of Use Case Maps
to represent work patterns. Finally, we highlight some of the results of using
these techniques in a real project: An important observation is that efficiently
performing searches within source code is of paramount importance to the SEs
when they work with large bodies of source code.

Our work began with collaboration between a computer scientist building
tools for software maintainers (T. Lethbridge) and a psychologist (J. Singer) just
hired in a software engineering research group. Although our research goal was
to improve software maintainers’ productivity, improving productivity was a
very open-ended problem. It was not at all clear, when we began our work, what
aspects of software maintenance could be most improved; it was even less clear
what tools would be appropriate. However, since we both had a background in
human/computer interaction, we were certain that we wanted to build usable
tools for software maintainers.

1 By software engineers, we are referring to people who perform software engineering
work; but-who.may-not.be Professional-Engineers in the legal sense.
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Our first task involved a literature review. From the Empirical Studies of
Programmers workshops, there were a few papers on software maintainers (e.g.,
Litman et al., 1996; Boehm-Davis et al., 1992). This research, primarily con-
ducted from an information processing perspective, helped us understand indi-
vidual processes in software maintenance. However, it was not clear how to take
these results and build systems that could be used in real industrial practice with
real software engineers. As Curtis (1986) appropriately asked about these types
of studies, “By the way, did anyone study any real programmers?” meaning that
the results might not apply in industrial practice.

There have been field studies in software design (Walz et al., 1993; Curtis et
al., 1988; Kraut and Streeter, 1995), but again, it is not clear how design relates
to maintenance. Also, these studies tended to look at larger issues that were not
necessarily pertinent to building tools for individual software engineers.

Bendifallah and Scacchi (1987) did look at software maintenance as a form
of articulation work. However, again, their work examines academic researchers
and their maintenance of a relatively small tool. While Bendifallah and Scac-
chi’s work assured us that the study of work practices was feasible in this field,
it was not clear how their results would generalize to our target group of indus-
trial maintainers.

This lack of relevant literature led us to broaden our emphasis from usability
to usefulness. The questions of what do software maintainers do on a daily basis,
in what activities are they involved, with what frequency, and using which tools,
were all unanswered in the literature. Without this knowledge, we could not be
sure about what would be useful tools for this domain. Thus, we went back to
the literature. A review of the work of researchers in participatory design (e.g.,
Kyng and Mathiassen, 1997), distributed cognition (e.g., Hutchins, 1994), situ-
ated cognition (e.g., Suchman, 1987), and activity theory (e.g., Bannon and
Bgdker, (1991)? led us to believe that we could not ignore the context within
which the work took place. Because of this, we decided to implement a field
study in software maintenance (Singer and Lethbridge, 1998a; Lethbridge et al.,
1997). This study used several ethnographic methods for data collection, in-
cluding questionnaires, interviews, and observations. Following Glaser and
Strauss’ (1967) grounded theory approach, we were able to determine that soft-
ware maintainers typically follow a just-in-time comprehension approach to
program comprehension. That is, at any given time, they understood only the
specific portion of the source code that would help them solve their current
problem.

While we were closer to an answer about the usefulness of different software
maintenance tools, we were unhappy with our methods of data collection and
analysis. The difficulty of moving from field work to design requirements has
been highlighted by other researchers (e.g., Button and Dourish, 1996; Blom-

ZA comprehensive review of this literature will not be undertaken in this paper. Please
refer to the individual papers and/or books for further information.
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berg et al., 1996; Simonsen and Kensing, 1997)3. In fact, tools are now being
created to help researchers record and represent their understanding of work
(Pycock et al., 1998; Jordan et al., 1995).

Our dissatisfaction, however, focused not on adequate representations of the
field, but rather on the fact that we felt we were collecting the wrong data. The
field data was incomplete because software engineers were so quick that it was
impossible to get all the actions recorded in observation sessions. Technical and
practical issues did not allow us to videotape sessions. Additionally, our obser-
vations did not allow us to answer certain fundamental questions such as what is
an individual's goal in doing a task, or how much time is spent on a task. Finally,
the work required to represent the data was extreme. We spent over six months
making transcripts and poring over them. While this might be appropriate in a
research environment, it is entirely unfeasible in industry. These two concerns
led us to develop both a new method for collecting data, Synchronized Shadow-
ing, and a new method for representing it, using Use Case Maps (UCMs).

This chapter will discuss both of these innovations in the context of another
field study that we subsequently implemented. We begin with a discussion of a
general model of empirical studies in software engineering and situate our own
observational field studies within this. Then we give more details about Syn-
chronized Shadowing and our use of UCMs. We conclude with a case study
showing how we applied these techniques to meet our objectives of building
effective tools.

The methodology we developed as a result of our work is outlined in Figure
3.1. It combines synchronized shadowing with the use of Use Case Maps. We
call it Work Analysis with Synchronized Shadowing (WASS).

se Case

Synchronized Maps
Shadowing Describing
the Work

System
Requirements
to Improve

the Work

Work
Patterns

Figure 3.1. The Work Analysis with Synchronized Shadowing (WASS) methodology.

3 Again, these references are in no way meant to be a comprehensive view, but rather an
overview of current thinking.
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3.2 An Overview of Approaches to Empirical Studies
of Software Engineering Practices

Broadly defined, one calls a study empirical if it involves observing or measur-
ing something. In analytical studies, in contrast, one deduces conclusions by
applying logical and other mathematical reasoning to physical laws and other
established facts. Since there are few unchallengable facts in the domain of
software engineering processes, research in this domain will normally be em-
pirical in nature.

Figure 3.2 shows a way of categorizing empirical studies of software proc-
esses using three dimensions: The environment, the degree of human contact,
and the level of control. Most of the research discussed in this chapter falls close
to the origin; it involves interactively gathering information about what people
do in their natural work environments: We refer to all this as work practices
studies.

3.2.1 Natural vs. Artificial Environments

The first dimension in Figure 3.2 distinguishes between field studies in natural
work environments and studies performed in laboratory environments.

Field studies are conducted with practicing software engineers in the indus-
try, whereas laboratory studies often involve groups of students in classroom or
lab settings. Field studies often take more effort than laboratory studies. Rela-
tionships must be established with industrial companies, suitable software proj-

DISTANCE FROM HUMAN CONTACT

third-degree (study work artifacts left by people,
e.g., looking at reports they have
written)

second-degree (indirect involvement of participants

in study, e.g., logging tool usage)

first-degree (direct involvement of participants
in study, e.g., answering questions)

information natural work artificial ® DISTANCE FROM

gathering environment environment NATURAL WORK
(field studies - (lab studies - ENVIRONMENT
in vivo) in vitro)

formal controlled
experiments

CONTROL

Figure 3.2. An approach to categorization of empirical studies of software processes.
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ects and individual participants must be found, and the uncertain nature of the
day-to-day activities of the company and its employees mean that the direction
of the research is somewhat out of the researchers’ hands (Lethbridge et al.,
2000).

For the most part, studies of students performing software engineering tasks
in laboratories are easier to conduct since there is a ready supply of students in
university classes, and a faculty member can dictate their goals. While the con-
clusions of laboratory studies are useful, they are not as likely to be relevant to
industrial practice since students lack experience and goals, and since their
methods will not normally be the same as those of industrial practitioners.

One counter example is that Porter and Votta (1998) found no difference in
results for professional vs. graduate student programmers. However their ex-
periment was artificial in the sense that the exercises used were designed strictly
for the experiment. It might be that people work differently with known materi-
als than experimental ones. It is probably also true that graduate students are
closer to professionals than undergraduates are in terms of their programming
ability. Nonetheless, since we wanted to absolutely ensure our work was indus-
trially relevant, the work discussed in this chapter falls in the field study cate-
gory: We studied real programmers in real industrial environments.

3.2.2 Degree of Human Contact

The second way of categorizing empirical studies shown in Figure 3.2 relates to
the degree of human contact that the technique involves.

We define first-degree empirical studies to be those involving human-to-
human interaction between researchers and participants. Such techniques can
include brainstorming, interviews, surveys, and observational studies.

We consider second-degree studies to be those where human processes are
monitored, but where the researchers do not interact directly with the humans
themselves, e.g., by gathering information automatically as people work.

Third-degree studies involve analysis of the artifacts resulting from work,
e.g. source code, documents, and problem reports. The work reported in this
chapter was first-degree (primarily observational studies), although we also used
some second- and third-degree information.

3.2.3 Information-Gathering vs. Experimentation

The final dimension in Figure 3.2 contrasts information-gathering studies with
experiments. Information gathering studies are suitable for generating hypothe-
ses, while controlled experiments are more suitable for confirming or testing
hypotheses.

In general, information-gathering studies are used to gather raw information
about a phenomenon; the information may then be used to build a qualitative or
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quantitative model of the phenomenon. Techniques for producing qualitative
models are discussed in detail by Glaser and Strauss (1967). Neuman (1997) and
Denzin and Lincoln (1994) also give more detailed information on how to con-
duct qualitative studies.

Quantitative models can be used to develop hypotheses that can be tested in
experiments. Experiments require the existence of a model and hypotheses about
that model that are to be tested; formal experiments follow the scientific method
rigorously and involve setting up some situation where extraneous variables are
controlled, varying some independent variable(s), and measuring some depend-
ent variable(s) in order to refute the null hypothesis.

In software engineering, it is usually very difficult to adequately control the
extraneous variables, so true experiments are less widely used. However, there is
one type of experiment that sits in the middle of this continuum and is useful in
software engineering. Quasi-experiments are experiments where subjects are not
randomly assigned to treatments. For instance, one could conduct a quasi-
experiment on two different groups who had decided to implement two different
programming processes. Here the two groups were not assigned randomly to the
processes, but rather self-selected to them. For more information on quasi-
experiments, see Cook and Campbell (1979).

Our studies of work practices are information-gathering in nature since we
want to describe and model the work of software engineers.

3.2.4 Summary of the Three Dimensions of Empirical Studies

The three dimensions of empirical studies are largely orthogonal, with all points
in space being possible, although not equally probable. For example, experi-
ments are more likely to be performed in artificial environments where it is eas-
ier to control variables. Nevertheless it is possible to conduct large-scale ex-
periments in an industrial context - for example, competitive development of a
product by two teams that use different tools. In the above three-dimensional
model of empirical studies, we have organized the types of empirical studies
according to their data-generation phase, which we discuss in more detail in the
next section. However, the resulting information must also be analyzed so con-
clusions can be drawn. This is usually the most time-consuming phase, since
vast amounts of data can be generated, especially for information-gathering
studies. Techniques for the analysis phase are discussed in section 3.4.

3.3 Techniques for Gathering Data in Observation

Sessions

One of the techniques most widely used to understand work practices is obser-
vation. Shadowing is a form of observation where the observer moves around
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with the observee, recording what they are doing as they go about their normal
daily routine. There are two big difficulties with shadowing: one is to effectively
capture information; the other is to analyze the copious resulting data. To cap-
ture data, there are two widely used alternatives, simple note-taking or video-
taping. Both require the output to be coded following the observation session
before any analysis is undertaken. In this section we review these classic tech-
niques, and then present our synchronized shadowing technique.

3.3.1 Note-Taking and Videotaping

Simple note-taking has two key problems: First, many details may be missed by
the note-taker, partly because he or she may not notice all the nuances of what is
going on, and partly because it is difficult to rapidly take accurate notes using a
consistent format. Second, it is not feasible for the note-taker to record precise
times when events occur, especially where action occurs quickly - the process of
looking at his or her watch would cause the note-taker to miss an important ac-
tivity.

Videotaping does not suffer from these problems since it allows one to rec-
ord almost all details of a session. However, the process of coding can be very
time consuming because one has much more data to work with.

There are some automatic logging tools that record precisely what occurs on
the computer, such as every key press or every mouse click. These are impracti-
cal for our purposes, though, for two key reasons. First, they only record com-
puter activity. We are interested in obtaining information about the work envi-
ronment which includes situations when the participant looks at documentation,
talks to neighbors, etc. The automatic logging tools do not capture this informa-
tion. Second, because many programmers personalize their computer environ-
ment, the output of these tools in often difficult to interpret. For instance, the
tools might tell you that a programmer is in Emacs, but they would not be able
to interpret the macros that the programmer has set up to search for specific
strings in Emacs. This makes these tools less useful in our context.

New tools are being developed that record the screen as well as the user’s
voice and synchronize them. We have not tried these tools because they have
one fundamental problem in our context: Our software engineers move around
from place to place, using different computers (e.g., in special hardware labs).
We do not want to use observation techniques that interfere with the natural
work processes.

3.3.2  Synchronized Shadowing

In our case, to make shadowing more practical, we developed an approach that
has many of the advantages of videotaping, but without many of the drawbacks
of note-taking. Our approach uses a program on a laptop computer to provide



58 Lethbridge and Singer

automated assistance to note-takers. The program improves the note-taking pro-
cess in the following two ways:

e The note-taker can simply press one of many buttons to record an event that
recurs frequently. This results in substantially increased note-taking speed,
and hence fewer missed events. The notes will also be more consistent and
hence faster to analyze since the buttons correspond to event categories:
Much of the coding takes place at the time of observation. The meaning of
the buttons can be preassigned following pilot studies, although adding new
buttons dynamically during the observation session remains a possibility.
Also, the note-taker can type other information after pressing any button, so
nothing is lost from the ordinary note-taking process.

e Timing information is automatically recorded along with every button
press, allowing for a level of accuracy in data analysis that would normally
be available only by analyzing videotape.

Automated note-taking as described above can be very useful, but we devel-
oped the technique one step further: A single person using our program will still
tend to miss much information. This makes sense because it is well known that
when analyzing videotapes, one has to replay sections of the tape several times
in order to notice all the details. We therefore arrange for rwo note-takers to par-
ticipate in the shadowing, each using the automated note-taking program, but
with different meanings for the buttons so they record somewhat different as-
pects of the work being observed. The two records are be merged after the ses-
sion to form a more complete picture of what happened. A key process that
makes this merging feasible is synchronizing the clocks of the two laptop com-
puters so that proper sequences of events can be reconstructed - for this reason,
we call our approach synchronized shadowing (Singer and Lethbridge, 1998).

It is very simple to create basic synchronized shadowing tools. For the event-
recording buttons, we created macros in Microsoft Word that redefine certain
keys (control sequences or function keys). Each such button adds a time stamp
as well as an identifying string of characters to the current document. Before the
observation session starts, we synchronize the computers’ clocks. After the ses-
sion we concatenate the documents and sort them. Figure 3.3 is the source code
for two of the macros and Figure 3.4 illustrates the output of a session.

In addition to MS-Word macros, we have also created a more advanced syn-
chronized shadowing tool, illustrated in Figure 3.5. This tool allows events to be
nested within two levels of activities. For example, the highest level of activity
might represent the primary task being performed; the second level might be the
tool being used; and the events might be specific actions performed with the
tool. Our new synchronized shadowing tool allows the user to dynamically add
events, and manipulate various preferences. It provides similar output to that
shown in Figure 3.4.
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Public Sub MAIN()
Dim count_$
Dim counti

count_$ = WordBasic. [GetDocumentVar$] ("statementNumber")
counti = WordBasic.Val (count_$)

counti = counti + 1

count_$ = Str(counti)

WordBasic.SetDocumentVar "statementNumber", count_$
WordBasic.InsertPara

WordBasic.Insert "* "

WordBasic.Insert count_S$

WordBasic.Insert " - "

WordBasic.InsertDateTime DateTimePic:="H:mm:ss", InsertAsField:=0
WordBasic.Insert " "

End Sub

Public Sub MAIN()

WordBasic.ToolsMacro Name:="InsDate", Run:=1
WordBasic.Insert "GREP = "
End Sub

Figure 3.3. Two examples of MS-Word macros for automated note-taking while shad-
owing. The first inserts time, and the second inserts the time plus the keyword GREP; it
is an example of one of many macros that would be bound to specific buttons.

13:32:40 NEW-GOAL Friday, August 01, 1997 Jane Smith
13:39:26 still explaining stuff
13:39:52 UNIX 1ls cd

13:40:12 EDITOR srh

13:40:22 EDITOR quit

13:40:28 GREP in system

13:40:40 VIS at results

13:41:02 EDITOR open found file
13:41:33 EDITOR open empty

13:41:45 EDITOR copy

13:41:52 EDITOR paste

13:42:00 EDITOR save as xxdbllg.c
13:42:21 MODIFY part of query text
13:44:08 EDITOR save

13:44:12 MODIFY func name

13:44:38 EDITOR save

13:44:59 stop observing

WO oYU bW

[ ==
SO WNE O

Figure 3.4. Output of a synchronized shadowing session using MS-Word macros (lower-
case text was typed by the person operating the program).




60 Lethbridge and Singer

2% Graphical Synchionized Shadowing Toal (GS5T)

File Edit View Help

Ermvironments: Objects: Actions: :| Simpiified Use Case Map: Press enter for new event
Fl.Unbt .. 1. malmw... Is | unix Emacs Netscape
: 10 vwxdoc.ht
F2. TkSee .. 2uc - opentile | | 11 maimwcc 10 doc i
i 2cd 5 searchinfile
F3. Emacs .. Juh . cd L Sresd 12 followlink uf
14 ik >
F4. AcToRe... 4. vwxalgs_. followlink | 7 orem 8 openfile
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| 16orepfitnode | 9read
F6. Extern... read >
arep
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Status: “paperexample gss™ and "paperexample bl saved

Figure 3.5. User interface of our second-generation Graphical Synchronized Shadowing
Tool (GSST).

Synchronized shadowing is not perfect: The note-takers tend to vary the
amount of time between the occurrence of an event and pressing the appropriate
button. Timing, therefore is likely to be accurate only to the nearest 10 or 15
seconds, but this is adequate for our purposes.

3.4 Modeling Work to Develop Requirements

In this section we discuss how we use various techniques, including Use Case
Maps (UCMs), to analyze the data obtained by synchronized shadowing. In the
next section we provide a case study, illustrating the use of these techniques.

3.4.1 Coding Observational Data and Detecting Patterns

It is very difficult to analyze data that result from observational studies. The first
step is to code, or categorize, all interesting events that occurred during the ses-
sion. This is a subjective process normally requiring several iterations as the
coders refine the coding scheme.

Once the raw observations are coded (at least preliminarily), there are two
important approaches that can be used individually or together to obtain inter-
esting information from the coded data:

e Counting occurrences of types events or summing the total amount of time
spention’classesiofractivitiesn Thisican be useful to give an overall impres-
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sion of how people spend their time. If one has enough data for different
classes of people, one can discover differences among the classes.

e Detecting and modeling patterns of activities. This involves looking for
repeating sequences and cycles that can be used to describe parts of the ob-
served activity at a higher level of abstraction. Doing this is described in the
paragraphs below.

The above approaches can be used synergistically. The counting and analysis
of occurrences of these patterns can follow the process of modeling and building
patterns. Similarly, the process of counting can lead to the development of pat-
terns by pointing out the important types of events that should be included in
those patterns.

A useful first step in discovering and representing patterns of activities is
finding subsequences that are repeated frequently in the coded data. Several al-
gorithms are known that can help with this. A basic approach simply divides an
entire coded sequence of events into all possible subsequences of length n
(called n-grams where n is normally at least 3) and counts the occurrences of
each n-gram. Useful subsequences appear as the n-grams that occur most fre-
quently. Even more interesting subsequences can sometimes be found by pro-
gressively increasing the value of n.

Exploratory Sequential Data Analysis (ESDA), (Sanderson et al., 1994) is
another well-known technique that has been applied to describing software en-
gineering processes (D’ Astous and Robillard, 2000).

We found, however, that we wanted to go beyond merely finding patterns
that are sequences of events. We sought a graphical technique that could show
the context of each event and could more actively assist software designers to
develop tools, as has been advocated by Bannon (1994) and Suchman (1995).

3.4.2 Use Case Maps

The Use Case Map (UCM) notation shows multiple sequences of localized
events. By localized, we mean that each event occurs in a particular context.
Contexts are shown as boxes. Sequences are shown as paths that wind from
context to context, may form loops and may split into independent sequences or
may merge. Events are points on the paths.

The UCM notation was originally invented by Buhr (Buhr 1998; Buhr and
Casselman, 1996) to represent causal flows of responsibilities in real-time soft-
ware systems. In such systems there are normally several parallel processes or
tasks (paths), interacting with different subsystems (contexts) and involving in-
teractions or computations (events).UCMs are also ideal, however, to represent
the detailed flow of the tasks of a single person or a small group. As with com-
puter systems, people work in parallel on multiple tasks (paths), work with vari-
ous different tools, documents or other people (contexts), and perform series of
actions (events).
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Figure 3.6 shows a UCM that is being used to model a user’s particular in-
teraction with Unix and the Emacs editor. Later in the chapter we will show ad-
ditional UCMs containing generalized patterns crystallized from observing
many users.

To understand Figure 3.6, follow the numbered points along the path, and
read the descriptions below:

® The circle is the start symbol.

® The user enters Emacs and opens a directory, the listing of which is shown
. as the first inner box. The user enters the context of this directory.

¢ The user employs an item from the directory listing to initiate the opening

l.
! Emacs
2. open directory

directory listing

open file [19. 3, open file

— N

. 5, 20. search
in editor

(o]

VAT

6. copy

Unix command line

7, 14. issue "grep' command

\ Grep ——)ﬂ
. ppy
‘\ result

grep
results

vl
=]
(] e

13,17

[

9. issue 'more' command

ore
10. search

+}‘- 11. copy

Figure 3.6. An example Use Case Map (UCM) shows the flow of work from context to
context,
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of a file. The bold arrows indicate information being taken to be used later.
After entering the context of a file, the user performs a search.The user per-
forms another search; the loop indicates repetition.

The user places some information in the copy buffer, to be used later.

After leaving Emacs and entering the context of the Unix command line, the
user issues a grep command, using information in the copy buffer as the ar-
gument (represented again by the bold arrow).

In the newly created grep context, the path forks. The upper path is that
taken by the user who wishes to do something else while grep is executing.
The lower path, with the clock symbol, is that taken by the computer that
takes time to perform the grep (the clock symbol indicates a delay that
could at some point be cancelled if the user gets tired of waiting).

The user reenters a Unix command-line context and then issues a more
command.

The user searches using the more tool.

The user copies some text from the information displayed by more.
Meanwhile, the grep started earlier has completed and produced its results.
The user now can get back to dealing with the grep results. The horizontal
line indicates an and-join or synchronization in which the two subpaths
(waiting for grep and the users activities while waiting) are reunited after
both of them are completed.

The user could do something with the grep results, but decides not to. In-
stead he ignores them and issues another grep command using the informa-
tion copied earlier while performing more. The path converges with the
path taken earlier using an or-join; the user will now repeat a subsequence
performed earlier.

There is a fork and a delay again during the execution of grep; the user
again has the opportunity to do other things while waiting.

As before, the results are eventually returned.

The user waits at the and-join for the grep to be complete; this time he
chooses not to work in the more program.

This time, the user copies some text from the result.

Instead of repeating grep for a third time, this time the user goes back to the
Emacs context and opens a file using the contents of the copy buffer (taken
earlier from the grep results) as a file name.

The user searches in the file using Emacs as he did earlier.

The user finishes his task, as shown by the line terminating the path.

The process of creating a UCM from synchronized shadowing data is rela-

tively simple, although it is currently a manual process. Proceeding through the
data sequentially, one draws path segments from event to event, drawing new
contexts and placing events inside them as needed (the contexts need to be
coded as part of the synchronized shadowing process). When a sequence is re-
peated, one makes the path form a loop (having previously detected repeated
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sequences as described above helps one anticipate such loops). We have found
that after a small amount of rearranging, a readable UCM normally emerges.

If a UCM becomes too difficult to read, i.e., with too many events, contexts
and paths, it can be split into several UCMs, each containing paths and contexts
extracted from the large messy UCM. Doing this is how we discover work pat-
terns in the UCMs: A work pattern is shown as a simplified UCM that contains
paths that are followed very frequently, and typically involve just one or two
contexts. UCMs provide a mechanism called stubs and plug-ins to facilitate this.

There are also other notations that can be used to model human work:

® data flow diagrams can, at a very high level, show the movement of infor-
mation around a business;

¢  work-flow diagrams and Petri nets can show the sequences and dependen-
cies among subtasks;

¢ and flow charts can show decision-making processes.

None of these notations, however, can clearly show at a detailed level both
the context of the work and the multiple interacting threads of events. UML ac-
tivity charts perhaps come closest to what we need. They can cope with multiple
threads and contexts, but the current representation of contexts is limited to one
dimension (the so-called swimlanes). UCMs display contexts in two dimensions,
which is usually more understandable and supports hierarchies of contexts.

In this subsection, we have discussed how Use Case Maps can be used to
represent work. Other researchers working on approaches to help people record
and represent their understanding of work include Pycock et al. (1998) and Jor-
dan et al. (1995). More information about use-case maps can be found at
http://www.usecasemaps.org.

3.4.3 Requirements Development

The process described so far that involves developing buttons for synchronized
shadowing, performing the shadowing, detecting patterns in the data, and draw-
ing UCMs containing work patterns, should ideally be done in an iterative man-
ner as a series of studies. Each step can help improve the other steps in the sub-
sequent iterations; for example, the work patterns can give the researchers per-
forming synchronized shadowing a better idea of what to look for.

The final, but certainly not least important, step in our process is taking the
work patterns and interpreting them so as to discover potential software re-
quirements. The essence of this process is examining the patterns looking for
signs of inefficiency such as the following:

Frequent sequences that can be automated.

e Frequent situations where the participant jumps back and forth between
contexts, and where it might be possible to allow the required activity to all
occur in only one context and thus eliminate context switching,
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Situations where the participant must frequently wait, due to system delays.

e  Situations where the participant frequently makes mistakes because he or
she has to rely on memory to transfer information or to perform similarly
mentally taxing activities.

Each of these can lead to a requirement to reduce the inefficiency through
improved software.

3.5 A Case Study: Empirical Studies at Mitel

This section presents a case study in which we applied synchronized shadowing
and Use Case Maps to study and model the work patterns of software maintain-
ers at Mitel Corporation, and then develop tools to make them more productive.
The Mitel software engineers we studied were working on a large telecommuni-
cations system.

Before our first synchronized shadowing sessions, we studied the software
engineers enough to discover the main types of events we would provide as
buttons in the synchronized shadowing tool. Table 3.1 shows the set of control
keys - which we used in place of buttons - that were used by one of the two
note-takers. While the first note-taker recorded the individual actions that the
programmers performed, the other note-taker focused more on their high-level
goals while performing their actions. The programmers were asked to think out
loud while performing their task. It was the job of the second note-taker to code
this information, therefore his codes focused more on hypotheses and plans.

We conducted a total of nine synchronized shadowing sessions with eight
software engineers, each session lasting about an hour. We attempted to coordi-
nate our study of each SE so that it would occur at a time when the SE was per-
forming what he or she considered typical work with source code.

Prior to meeting the participant to begin each session, we synchronized the

Table 3.1. Control sequences in Microsoft Word macros used by one of the observers
during synchronized shadowing.

Control key Description

Ay VIS: Look at something

A-e EDITOR: Issue an editor command

A-m MODIFY: Write or modify some text

A-s SEE: Issue a command in a software exploration tool
Mg GREP: Run grep

At TOOL: Work with some other tool.

Au UNIX: Type a command other than grep

Az NEW-GOAL.: Start something completely new

A-space Miscellaneous
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clocks of the two computers. We also practiced using the synchronized shad-
owing interface to ensure that we were familiar with the coding scheme we had
developed.

When the synchronized shadowing data was obtained, it was scanned manu-
ally for a short while to begin to find patterns. It was clear (as we had initially
expected from earlier observations) that the vast majority of our participants’
time was spent working in text editors or searching for various kinds of things.

Following the procedure outlined in Section 3.4, we worked our way through
the data and developed a variety of UCMs that represent common work patterns.
We found that the data coded during the initial synchronized shadowing sessions
was coded at the level of detail we needed for the UCMs. Therefore we manu-
ally went back through the logs, looking at the free-form notes which had been
added after each button press during synchronized shadowing. We were able to
give more precise codes to each event; e.g., we needed to divide certain types of
search into more detailed categories. The inter-rater reliability of this manual
process was very high once we had agreed on the codes we wanted to use. For
later synchronized shadowing sessions, we were able to add extra buttons to our
tool and therefore reduce the need for subsequent manual analysis.The following
are two examples of UCMs we generated from this work.

While exploring a series of files, our sample logs showed the participants
doing three distinct types of activities: Searching for text, copying text (into the
copy buffer) or merely reading the text. As for searching, it was done either us-
ing previously copied text or by manually typing the parameters. Users would
Jjump repeatedly from file to file, using the contents of the copy buffer to transfer
a piece of text from one file to use as a search parameter in another. Figure 3.7
shows the UCM we constructed to show this work pattern, in the context of a
single file.

Figure 3.8 shows a second example UCM. In this case, the activity being

enter with enter without
cppied text copied text

paste search
larget

‘ exit with o~ exit without

copied text copying

Figure 3.7. A Use Case Map showing an abstract view of the paths taken by users when
exploring files (without editing).
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4b. Enter without
copied text

4a. Enter with copied
text to search for

paste grep
;lrgumcm

execute grep
Exit to

temporarily do
something else

4c. Enter to

look at Cancel grep
grep results § 100k at grep results command
4w, Copy 4x. Copy some text 4y. Grep rh Exit without
entire from no good copying grep
grep results grep results results

Figure 3.8. UCM showing possible paths when performing a search using grep (the clock
symbol represents a period of waiting).

frequently performed is searching through multiple files using grep. The results
of the searches are then manipulated. The figure illustrates all the possible paths
that occur in this activity.

Important observations we make from Figures 3.7 and 3.8, as well as other
UCM s not shown here are:

e  Search within files, and search across files, are fundamental operations
to the maintainers.

e Transfer of information from file to file and from tool to tool was most
commonly performed by copying and pasting. There were two impor-
tant sources of information to place into the copy buffer: text in a file
and text in a search result. There were four different destinations into
which the buffer would be pasted. These are; A file that is being edited,
a file name to open, or a search parameter either in an editor or for

grep.

We used a program to count the occurrences of the various categories and
sequences of events in the UCMs. The results are presented in Tables 3.2 and
3.3. Of the 966 events recorded while performing synchronized shadowing, al-
most 30% involved searching, and almost 20% involved cutting and pasting.

Table 3.3 shows sequences where the user copies some text and then pastes
it. It is clear that most of the time, when a maintainer selects some text in a file,
he or she intends to use that as a search argument to find other occurrences of
the text in the same file or in other files. Similarly, when a maintainer selects
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Table 3.2. Frequencies of the most important categories of events.

Event types Percent of Percent of Number of
total subtotals events
Total number of events 966
Copy text 9.2% 89
Copy from file 66.3% 59
Copy from search results 34.8% 31
Search 28.3% 273
Search in editor (one file) 59.3% 162
Search across files 40.7% 111
Using grep 23.8% 65
Using other tool 16.8% 46
Study (reading) 28.5% 275
Study in editor 87.6% 241
Study search results 12.4% 34
Paste text 10.6% 102
Paste to modify text 7.8% 8
Paste to search in editor 32.4% 33
Paste to open file 22.5% 23
Paste to search across files 37.3% 38

text in a search result, it is generally the name of a file that he or she intends to
open and study in more depth.

Analysis of the data shown above leads us to derive the following require-
ments for a software exploration tool we are developing called TkSee (Leth-
bridge and Anquetil, 1997; Lethbridge and Herrera, 2000).

®  The tool should have a direct way to open a file from search results (e.g., by
simply selecting some result)

¢ Rationale: 71% of copy operations performed on search resuits were per-
formed in order to obtain a file name to open. This requirement would
eliminate a considerable number of keystrokes or mouse movement (both
issuing copy and commands, as well as actions required to exit the search
results and enter).

Table 3.3. Copy-paste transitions

Copy from file Copy from search results

Paste to modify text 5.1% 16.1%
Paste to search in file 27.1% 9.7%
Paste to open file 1.7% 71.0%
Paste as search argument  47.5% 3.2%

Not immediately used 18.6% 0.0%
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e The tool should have a simple command to automatically locate occur-
rences of whatever is in the copy buffer.

¢ Rationale: No matter what the source of copied text, users frequently used
the copy buffer as the argument when performing a search in an editor. This
requirement would save many paste operations and reduce the necessity to
bring up a search dialog box.

e Add a command that allows the user to search for whatever is selected in
the editor without doing a copy and then a paste.

e Rationale: 27.1% of copy operations from a file were immediately used to
search in that file. This would speed this operation.

* In dialog boxes that initiate grep-like searches or searches within a file, pre-
fill the box that specifies the argument with whatever text has just previ-
ously been selected in the editor and/or the search results.

¢ Rationale: This would reduce the need to do some copying.

The requirements above come from the data in Tables 3.2 and 3.3; thus it
might be argued that we could eliminate the Use Case Map step and go straight
from patterns in synchronized shadowing data, to tables, to requirements. The
Use Case Maps however, had two critical roles: Firstly, we developed them
iteratively as we performed pilot studies and improved our coding scheme (the
set of buttons) for synchronized shadowing. As we saw patterns emerging, we
drew the UCMs to obtain an understanding of which buttons should be present
in our synchronized shadowing tool. Secondly, having the UCMs allows us to
better explain the requirements.

Implementing the above requirements has allowed us to improve the func-
tionality of TkSee considerably. TkSee’s overall strengths include its integration
of a variety of techniques for searching through source code (including the re-
quirements illustrated above), its ability to allow maintainers to incrementally
build models of aspects of the software, and its ability to support the manipula-
tion and saving of search results and explorations. These features include those
that our Use Case Maps tell us are the activities that maintainers perform most
often.

3.6 Summary and Conclusions

We have described several techniques for performing observational field studies
of people at work, and analyzing the resulting data. We applied these techniques
to the work of software engineers in order to develop better tools for them; how-
ever, the techniques should be useful whenever one’s objective is to understand
work practices.

We situated our empirical study techniques in a three-dimensional space. On
one axis, our techniques involve observation of people performing their every-
day_work;_therefore, they can.be.called field studies as opposed to laboratory
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studies. On a second axis, our tools involve active observation involving direct
contact with people as they go about their daily work, whereas other techniques
might only indirectly observe people or else study the products of their work. On
the third axis, our techniques involve information gathering for the purpose of
constructing models; we make no attempts to run controlled experiments.

To gather data while observing software engineers at work, we use a note-
taking approach as opposed to videotaping. However, since it is hard to be con-
sistent when manually taking notes, we developed a technique we call synchro-
nized shadowing whereby two people use clock-synchronized computers that
are preprogrammed with buttons that record time-stamped annotations corre-
sponding to different kinds of observed events. This technique allows us to
gather reasonably accurate information in real-time that is already partially
coded, hence analysis time is greatly reduced.

We build models from our synchronized-shadowing data using Use Case
Maps (UCMs), a technique originally invented for modeling real-time systems,
but which is ideally suited to model work practices. From the UCMs we can see
work patterns, and from the work patterns we can deduce requirements for soft-
ware tools. We call our combined approach WASS (Work Analysis from Syn-
chronized Shadowing).

There remain some open research issues with our work: Firstly it would be
nice to analyze the time consumed by the participants performing the work pat-
terns, rather than just the sequences. We know, for example, that copying and
pasting is performed very frequently, but it might be that other less time-
consuming activities actually take more time. We would also like to use the
technique in a wider context. Currently we have only used it in the one Mitel
empirical study.
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Assessing the Usefulness of the
TkSee Software Exploration Tool

Timothy C. Lethbridge
Francisco Herrera

4.1 Introduction

The goal of our research is to find ways to improve the productivity of software
developers who are maintaining very large legacy systems. To help achieve this
goal, we have developed a software tool called TkSee, which allows software
engineers to explore and understand source code. This tool serves as the infra-
structure for various studies of program comprehension, and is used intensively
by several software developers inside Mitel Corporation. As researchers, the
most important part of our mission is to evaluate the usefulness of the ideas we
implement. In this chapter we present a case study in which we obtained insights
about usability while trying to evaluate TkSee’s overall usefulness. The intent of
this chapter is to highlight the factors that made the evaluation process difficult,
and to provide pointers to those who wish to assess the usefulness of complex
software products.

4.1.1 Two Independent Factors Leading to Usefulness:
Utility and Usability

When developing a software system with innovative new capabilities, it is im-
portant for developers to measure the usefulness of these capabilities so that
future designs can be improved. This process may be made difficult, however,
because some users might not adopt the system, while others might adopt the
system but not exploit its functionality as intended. Failure to adopt the system
may be due to the following reasons:

e they do not know that it exists;
¢ they are reluctant to change their work practices;
o they lack of time to learn the system;
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¢ they have difficulty learning it;
¢ they experience minor annoyances with it, or
¢ it does not fit their task.

Failure to exploit functionality as intended may be because of the same rea-
sons, or because the users do not learn it effectively.

The following two factors are necessary if a system is to be both adopted by
users and useful to them:

1. The system’s functionality must provide high wutility; i.e., the system must
have the raw computational capabilities and features that should, in princi-
ple, enable users to perform their work.

2. The system must have good usability; i.c., its design must ensure that users
can easily learn and efficiently exploit its functionality.

This distinction between utility and usability is adopted from the work of
Nielsen (1993) and the usability engineering community.! Both aspects of use-
fulness should be measured only in the context of particular groups of users and
tasks. For example, utility can be seen as the fitness of the functionality to a cer-
tain task. Similarly, a system that a power-user finds usable might be quite un-
usable for an occasional user of the same system (and vice versa).

An important point to consider is that utility and usability, as defined above,
are largely orthogonal. For example, imagine a spreadsheet program developed
for statisticians with all the functional capabilities of Microsoft Excel, but in
which editing a cell involved triple-clicking on the cell to select it and then pull-
ing down a nested menu to open a dialog box containing the cell’s contents.
Such a program would have high utility (the needed ability to edit a cell is pre-
sent), but low usability (users will have difficulties discovering the triple click-
ing and would be annoyed at not being able to directly type data in a cell). Con-
versely, imagine a second spreadsheet program that had exactly the same user
interface as Microsoft Excel (widely recognized as being good), but which
lacked statistical functions. Such a system would be low in utility for the statisti-
cians, but high in usability. Neither system would be very useful, but each for a
different reason.

Much software engineering work is biased away from usability and toward
higher utility. The inventiveness and innovative thinking of most developers is
oriented toward developing as many features as they can. As a result, usability
considerations may be deferred, and then perhaps curtailed as deadlines loom.

1 Note that the ISO 9241 definition of usability, “The effectiveness, efficiency and satis-
faction with which specified users achieve specified tasks in particular environments,”
does not as readily allow one to make the distinction between utility and usability that we
consider so important in this chapter. This is because the word “effectiveness” encom-
passes some aspects of utility.
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This utility bias is often manifested as “feature bloat” - the availability of so
many features, such that the system as a whole becomes so complex that usabil-
ity becomes even worse than it otherwise might have been.

One of the main points we will emphasize in this chapter is that it is essential
to view utility and usability as largely separate issues. Clearly seeing the distinc-
tion between them allows both to be improved. In particular, one’s ability to
measure utility can be significantly reduced by poor usability.

4.1.2 Assessing the Usefulness of a System

Developers should separately assess? both the utility and usability of systems in
order to arrive at an overall assessment of usefulness.

Assessment of utility means evaluating the innovative computational or data-
manipulation facilities that the new software is providing and that are supposed
to help users achieve their goals. The objective of utility evaluation is to confirm
whether the functionality implemented in the system actually helps users to
achieve their goals better or whether it should be improved. In order to make
such an assessment, developers typically give the system or a prototype to a
group of users. The developers then gather information about any missing capa-
bilities as well as ideas for improvements.

It is sometimes feasible to fully assess the utility of a proposed system dur-
ing the review of its requirements, dispensing with a later assessment of the
completed system. However, this is only realistic when developing simple sys-
tems in very well-understood domains. In the case of software that seeks to help
users solve complex problems in new domains, it becomes imperative to assess
the utility by actually having users use the system or a prototype. In the devel-
opment of such software, it is typical that not even experts in the domain are
able to clearly propose the required functionality. Hence requirements tend to
originate from bright ideas, rather than systematic analysis of the problem.
These must be validated by users who actually use the system.

The case study presented in this chapter discusses a program comprehension
tool that is a typical example of a system for solving a complex problem: There
is so far no well-recognized standard approach to program comprehension tool
design, and the comprehension task itself is highly complex. The requirements
for new features are therefore hypotheses that must be validated by their utility
assessment.

Assessment of usability means evaluating factors such as the learnability and
efficiency of use of the system, as well as how well the system guides the users
through their task and provides them with feedback in response to their actions.
These factors should be evaluated largely independently of utility. Later on in
this chapter we will see that usability evaluation can be performed by having

2 We use the words “assess” and “evaluate” interchangeably.



76 Lethbridge and Herrera

usability experts survey the system to look for violations of usability heuristics,
or by observing users use the system.

As mentioned earlier, usability is often neglected in favor of utility. This can
be particularly the case in complex systems for new domains, precisely because
so many new functional ideas are being implemented. Unfortunately ignoring
usability can undermine the ability of developers to accurately assess the utility.
If the usability is poor, the users may not learn to efficiently use the functional-
ity, may not learn parts of it at all, and may reject the system, saying it is not
useful.

If users reject the system, the developers may blame the functionality when
in fact it might have had excellent potential - with its excellence simply masked
by poor usability. Since many developers are not well trained in software usabil-
ity, they may not realize that usability is the real culprit in the failure.

Our thesis, therefore, is that usability must be formally assessed before at-
tempting to evaluate the functionality of software. Failure to do this will make it
impossible to accurately measure the underlying utility of implemented features,
and may lead researchers to draw incorrect conclusions when certain features do
not appear useful.

As part of our CSER research, we developed a code exploration tool called
TkSee which is intended to help software engineers explore and understand
source code more efficiently. The process we used for developing the tool was
similar to the one described above: Research activities were undertaken to dis-
cover the needed functionality, which was then implemented, but without formal
attention to usability. TkSee was given to a group of software engineers so that
they could use it during maintenance of a large software system. Since an inte-
gral part of the research plan was to evaluate the utility of the various ideas we
had implemented, we attempted to determine an appropriate approach for such
an evaluation. We realized that TkSee had not been used as much as we had
initially hoped and therefore we should start by exploring factors contributing to
that situation. One of the issues we realized we should explore was TkSee’s us-
ability: We should explore how it had affected people’s ability to learn and use
the tool.

In the next section, we briefly explain the aspects of TkSee’s functionality
that we believe to be innovative and useful to its users. Following that, we look
at some of the difficulties that arose as we set about evaluating the software.
Most of these difficulties occurred because we had paid far more attention to
utility than to usability.

4.2  Features of TkSee: Optimized Search and
Hierarchical Management of Search Results

In this section, we outline the key functionality of TkSee and the process we
usedstordevelopitherequirementsyforgthat functionality. The purpose of this sec-
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tion is to familiarize the reader with the context in which we performed the us-
ability studies discussed in the next section.

The goal of our research is to improve the productivity of software develop-
ers who are working on large real-time software systems. We are working pri-
marily with software systems and developers in Mitel Corporation, although we
are also cooperating with others within CSER. We attempt to follow a disci-
plined approach to our research. This involves: (a) studying the work practices
of the Mitel developers to discover what causes them the most difficulty; (b)
designing tools that might reduce these difficulties; and (c) evaluating the tools
to determine to what extent the difficulties have been reduced, and what result-
ing productivity increase has occurred.

Studies of software developers we performed prior to deploying TkSee iden-
tified two key challenges they face: Effectively searching through the code, and
managing the results of searches. The developers we studied would normally use
the Unix grep tool to search through the code; this is often very time-consuming
since there are millions of lines of code. After obtaining results (lists of lines or
hits which match a grep pattern) the developers would often perform further
searches or other activities, and quickly lose track of earlier search results; they
often, therefore, would tend to repeat the same searches. Also they often would
want to search by name for what they knew to be either a variable, a type or a
routine. Grep, on the other hand, is oblivious to syntax and returns any line that
matches the search pattern (e.g., words in a comment, or variables when the de-
veloper is looking for a type). This results in excessively long lists of hits that
take time to examine. When something interesting was found, the developer
would often revert to old technology and write it down on paper, lest it be for-
gotten.

We also noted that the developers were using what we call a just-in-time
comprehension strategy to solve problems. This is an opportunistic approach
where developers follow chains of relationships, understanding just the mini-
mum needed for the current subproblem, rather than systematically attempting
to learn and understand entire components of the system.

These observations led us to design and implement the following features in
TkSee: A hierarchy of software objects, instant access to the source code, and an
unlimited hierarchical history of named hierarchies. We outline each of these
features in Sections 4.2.1 through 4.2.3. Further details can be found in Leth-
bridge (2000) and Lethbridge and Anquetil (1997). A schematic view of TkSee
is presented in Figure 4.1, while a screen-dump of the system as it existed prior
to its first usability evaluation is shown in Figure 4.2. Figure 4.3, at the end of
the chapter, shows the system following usability evaluation and also points out
some more details of its design.

As mentioned at the beginning of this chapter, our goal in developing TkSee
is to improve the productivity of the software developers. This may require us to
merely help the developers do their current work faster; sometimes, however it
requires us to restructure their tasks to a certain extent. When doing this we
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must, however, ensure that any restructuring does not scare them away from
adopting our tools by forcing changes they do not have the time to learn.

4.2.1 A Hierarchy of Different Types of Software Objects Found
While Searching

The hierarchy of software objects is shown as region B in Figure 4.1. The soft-
ware objects are color-coded and can be such things as files, routines, variables,
types, and lines in a file. The lines in a file are the same as the classic grep hits;
part of our design philosophy was to provide the developers with a superset of
functionality they had already. The ability to search for the other more specific
software objects such as routines and variables means that developers are no
longer limited to searching for whatever strings match their search pattern.

Indentation in the hierarchy represents any kind of relationship between the
parent software object and the child (indented) software objects. Supported rela-
tionships include: “routine calls routine,” “routine called by routine,” “variable
defined in routine,” “type used in routine,” “line found in file,” etc. Specific
icons distinguish among the relationships. Prior to the deployment of TkSee, the
Mitel developers had visualized these relationships either in their heads or on
paper. Users can perform many operations in the hierarchy: Some operations
create a new hierarchy by performing general searches in the target system for
any of the different types of software objects. Other operations allow subsets of
the objects in the hierarchy to be extracted, or uninteresting objects deleted. Yet
other functions allow the user to select several objects and ask to display related
objects using indentation. Taken together, these operations were designed to
provide those functions the Mitel developers appeared to need to more easily
perform just-in-time comprehension.

4.2.2 Instant Access to the Source Code from Any Software
Object in the Hierarchy

If a file, routine, or line of code is selected in the hierarchy (area B in Figure

B: Software
= Object
Hierarchy

C: Source Code or
Software Object Details

Figure 4.1. A schematic view of the TkSee main window.
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4.1), then the actual code appears in area C of Figure 4.1. The number of key-
strokes or other actions needed to access the code itself is thus minimized.

If a variable or type is selected in area B, then the definition of that variable
or type and a list of places where it is used instantly appear in area C.

4.2.3 An Unlimited History of Named Hierarchies

The hierarchical history of named hierarchies is shown as area A in Figure 4.1.
If a user creates a new hierarchy in area B, they never lose what was there. This
is because the user can select earlier bookmarked hierarchies instantly in area A.
New hierarchies, and hence bookmarks, are created whenever a new global
search is initiated (e.g., searching for all files matching a pattern) or when the
user asks to save a subset of some other hierarchy as a new hierarchy.

Unlike bookmarks in web browsers, no conscious action has to be taken to
save a bookmark. All earlier hierarchies are always available, even those from
previous sessions; also if a user backtracks to older bookmarks and then pro-
ceeds forward again, no bookmarks are lost (an annoying problem in web
browsers). The user can manually delete and rename bookmarks; the ability to
rename bookmarks means that they can serve as to-do lists, for example, to re-
mind the developer of a set of lines of code that need changing.

During design, there was some concern that the history of named hierarchies,
being unlimited in size, might grow so large as to become confusing. In practice,
this has not been the case. Users are readily able to identify the hierarchies that
interest them and rapidly delete those of no further interest.

4.2.4 Other Features of TkSee

TkSee is designed to work extremely fast: A database is built from the compiled
code to allow near-instant searches over millions of lines of code. The premise
for this is that any time spent waiting for an answer represents lost productivity.3

TkSee is also designed to allow users to perform all their exploration within
one window; this contrasts with some other software browsing tools that make
use of many windows, each query often opening a new window. Our one-
window design is intended to minimize the possibility of losing track of search
results, although nothing stops the designer from opening two or more TkSee
windows if he or she desires.

3 The current system is designed for people trying to understand code; once changes are
made, the database has to be rebuilt. This can take considerable time and is a drawback to
our current tool that would need to be rectified if the tool were ever commercialized. In
practice, however, users have not complained much since they tend to start modifying
code only after thoroughly understanding what needs to be done.
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In the above sections, we have outlined the key features of TkSee that we in-
tend to subject to systematic evaluation as part of our research. There are, of
course, many details that we have omitted because they are not central to our
work, and are present in TkSee so it is a practical software exploration tool.

4.2.5 TkSee as One of Many Program Comprehension Tools

There are many software tools that shares the objectives, and some of the fea-
tures, as TkSee. For example, commercial tools such as Source Navigator (Red
Hat, 2000) (used to develop TkSee?) and Sniff+ (WindRiver, 2000) provide ex-
ploration based on relationships among different types of software objects. Re-
search tools such as Rigi (Miiller et al., 1993) and Software Bookshelf (Finnigan
et al., 1997) provide powerful capabilities for visualizing software.

TkSee is not meant to compete with these tools, but rather to serve as an ex-
perimental testbed for various features, notably the indented list hierarchy and
the history of editable and renamable bookmarked hierarchies. The fact that dif-
ferent tool developers have developed different features to solve similar prob-
lems suggests that determining which features are best is nontrivial. The onus is
therefore on researchers to carefully evaluate the utility of each feature and de-
rive conclusions that can be used in the design of future tools. As mentioned in
the last section, the needed evaluation of functionality faces interesting chal-
lenges due to usability and user acceptance concerns. We will address these
concerns in the next section.

4.3  Evaluation of the Usability of TkSee

In this section we continue the case study, discussing our experiences perform-
ing a usability evaluation of TkSee. For more details, the reader may consult
Herrera (1999).

4.3.1 Usage Patterns Prior to the Usability Study

Early versions of TkSee were delivered to users in 1996; subsequent versions
have been in continuous use ever since. Figure 4.2 depicts a screendump from
the tool before the usability study. We discovered that we were not able to con-
vincingly evaluate TkSee’s functionality for two reasons: The tool was used by
relatively few users, and those users only used a small subset of its features in
the intended way.

4 Some people have asked: Why do we not use TkSee to develop itself? We would like to
do this in the future; however, we currently only have parsers to build databases of C,
Pascal, and 68000 Assembler source code. TkSee is written in tcl/tk and C++.
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Figure 4.2. Example of TkSee prior to changes resulting from usability evaluation.

TkSee was made available to a team consisting of about 25 software devel-
opers. These people were performing a mix of new feature development and
fixing defects. We did not notice any difference in the use of TkSee between
feature developers and defect fixers. Both used the system to understand the
code they were considering changing.

Only about 10 out of the 25 Mitel developers used TkSee for significant
amounts of work over a two-year period. Of these ten, four adopted it with pas-
sion, using it almost constantly in their work, while the others used it for a while
and then stopped or else used it only for very specific tasks. A large number of
other users tried TkSee once or twice and then stopped, while many did not even
try it.

We asked a sample of people what motivated them to use or not use TkSee.
Most of the nonusers were happy with their existing tools and work practices, or
else had felt that TkSee did not quite provide what they wanted. Some of the
complaints of these latter users related to facilities that their existing tools pro-
vided but TkSee did not provide (e.g., information about binary executables and
editing within the same window). However, in most cases the nonusers did not
really understand the key features of TkSee either because it had not proved
rapidly learnable or else because they had found some aspect of it difficult to
understand. At some point during their learning attempts, many users had con-
cluded that further learning was not worth additional investment of their very
limited time.



82 Lethbridge and Herrera

Even among the heavy users of TkSee, many functions were hardly being
used at all. An example of such a feature is autogrep. A user can take a relation-
ship between two software objects in the hierarchy subwindow (region B of Fig-
ure 4.1) and ask to display the lines of code involved (e.g., the lines where one
routine calls another). Unfortunately many users were not aware of the availabli-
lity of such a capability nor what performing the operation really does.

It should be noted that we did not provide extensive documentation or train-
ing in the use of TkSee. Documentation consisted of a few web pages describing
the operation of the commands; training consisted of demonstrating the tool pe-
riodically and providing help to anyone having trouble. We feel sure that a more
proactive training program might have helped increase adoption to some extent;
however, we do not feel that more extensive documentation would have helped
much - we hardly ever observed anyone look at the existing documentation. We
believe that, if possible, a tool such as TkSee should be made sufficiently usable
so as not to need extensive training or documentation.

The fact that a few users had eagerly used TkSee was encouraging; it meant
that some of the functionality was probably quite useful. Mitel reports (Leth-
bridge et al., 2000), based on informal observations, that some new hires who
used TkSee took far less time than normal to become productive with maintain-
ing Mitel software. However, we wanted to be scientific in our approach to
evaluation of TkSee, and particularly when evaluating the utility of its individual
features. The low adoption rate made us realize that it would not be possible to
do this until more users efficiently used TkSee. A high adoption rate would have
indicated that utility is high, but a low adoption rate could be blamed on either
poor usability or poor utility (or both), and we did not know which was the case.
To find out, we had to first evaluate and improve usability.

4.3.2 The Usability Study Process

In order to proceed, we designed and performed a usability study of TkSee. Two
main techniques were applied in the study: (a) heuristic evaluation (Nielsen,
1992), and (b) think-aloud usability testing (Nielsen, 1993). We utilized user and
task analysis (Hackos and Redish, 1998) to decide upon users and develop the
tasks necessary for the think-aloud usability testing.

Heuristic Evaluation

The first approach we used is what Nielsen calls heuristic evaluation. We asked
three evaluators to judge TkSee according to a list of usability guidelines found
in Nielsen (1992, 1994). Each evaluator was asked to find as many deficiencies
as they could by systematically examining TkSee. Table 4.1 shows a categorized
summary of the 114 problems found by the evaluators. The main conclusion we
can draw from this table is that the evaluators were able to find many problems
in many different categories.
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Table 4.1. Violations of Nielsen’s usability guidelines found during heuristic evaluation
of TkSee.

Usability guideline violated Number of problems
1. Use simple and natural dialogue 49 (43%)
2. Speak the users' language 20 (18%)
3. Minimize users’ memory load 10 (9%)
4. Be consistent 15 (13%)
5. Provide good feedback 11 (10%)
6. Provide clearly marked exits 1 (1%)
7. Provide shortcuts or accelerators 2 (2%)
8. Provide good error messages5 0

9. Prevent errors 5 (4%)
10. Provide good help and documentation 1 (1%)

The main difficulty with performing the heuristic evaluation was finding
evaluators knowledgeable about usability. In the end, three people performed the
evaluation and each person found different types of problems. One evaluator, for
example, was an expert in usability but not in program comprehension. He
found general usability problems which were not found by the other evaluators.
These problems related to feedback, labeling, graphical design and so on. An-
other evaluator was already knowledgeable about TkSee and program compre-
hension and tended to point out capabilities that were missing (utility problems
as opposed to usability problems) as well as incorrect behavior. The fact that the
three evaluators found different, but intersecting, sets of problems confirm that
multiple evaluators is important.

We consolidated the reports of the evaluators into a single report that was
given to TkSee developers. This included a severity rating for the problems, as
well as descriptions that were more comprehensive than provided by the evalua-
tors. This stage was important since we needed to make it as easy as possible for
the developers to understand the problems and systematically fix them. The
process of reporting usability problems to developers is known to be particularly
difficult and requires special considerations (Jeffries, 1994).

Since the developers were not knowledgeable about usability, they found
some of Nielsen’s guidelines difficult to understand. We therefore developed a
more developer-oriented categorization scheme, which is found in Table 4.2.
This categorization is designed to give developers a better idea about what they
need to do to correct the problem. By using both categorizations, developers
could more easily organize the solution of the problems.

This was the first time that TkSee and its developers were exposed to a us-
ability evaluation. One hundred and fourteen usability problems were identified.

5 As an exploration environment, where most user interaction is performed by selecting
and issuing commands, TkSee has hardly any error messages.
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Table 4.2. Types of problems found during heuristic evaluation of TkSee. A categoriza-
tion designed to help developers understand usability issues.

Cat £ orobl Number of
a m

CBOry of proble problems
1. Poor or missing feedback
The software does not give the user adequate information about what has 11 (10%)

happened following an interaction which is a violation of guideline 5 in Table
4.1.

2. Possible confusion
Users may get confused by something such as certain behavior, situation, etc., 14 (12%)
and do not know what to do next or how to proceed.

3. Possible misinterpretation
Users may expect something such as a label, icon, menu item, command, etc., 11 (10%)
to mean one thing when it means something else.

4. Poor labeling 6  (5%)
Other general problems with labeling.
5. Lack of labeling

2 (2%)
A needed label is missing entirely.

6. Lack of consistency
A violation of guideline 4 in Table 4.1; could refer to consistency of any as- 15 (13%)
pect of the Ul including graphical design, labeling, dialog structure, feedback,

etc.

7. Poor graphical design
Improvements are needed to layout, use of color, spacing, choice of fonts, 9 (8%)
aesthetics, etc.

8. Unnecessary capability

5 @%)
The UI would be better without the capability than with it.

9. Lack of needed capability
A capability is missing but users would expect to be present in order to per- 11 (10%)
form their task; the problem may or may not relate directly to the UL

10. Lack of robustness
A crash, hang, or inability to use a feature under certain conditions; the prob- 6 (%)
lem may or may not relate directly to the UL

11. Incorrect behavior
The system fails to do what is expected; the problem may or may not be re- 2 (2%
lated directly to the UL

12. Nonoptimal interaction 22 (19%)

The way the users must interact to do something is not efficient.
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This number was much larger than expected so the TkSee developers were
somewhat overwhelmed with the results. We worked with them in a series of
meetings, helping them to understand each problem and to decide about suitable
solutions. It proved essential in this process that the usability evaluator had con-
siderable knowledge about TkSee.

We noticed it was difficult for them to understand the problems at an ab-
stract level, and they required considerable time to see solutions that did not lead
to other obvious usability problems, or to compare several proposed solutions.
Insufficient knowledge about usability and about TkSee itself were the main
causes of these difficulties. Many problems were also difficult to repair given
the fact that TkSee is complex and was already implemented.

Prioritizing and organizing the problems became critical to developers. Ac-
cording to the original plan, developers were going to fix as many problems as
possible prior to the think-aloud usability testing. In the end, only the most criti-
cal or quickly fixable problems were solved.

User and Task Analysis

User and task analysis was performed in preparation for think-aloud usability
testing. The objective was to find a set of TkSee users that would provide as
much information as possible for the least effort, as well as to determine an ef-
fective set of tasks. The process also served to gather information about how
users had employed the tool. Aspects of this activity had been performed as part
of the initial requirements gathering for TkSee, but a more detailed and precise
approach was needed prior to usability evaluation.

In order to understand the types of users, we interviewed Mitel developers
and managers and performed some field observations. We ended up classifying
users in several dimensions: (a) their level of experience performing program
comprehension in general; (b) their level of knowledge about the target software
that is to be understood; and (c) their level of knowledge about TkSee.

The next step was to develop a very concrete set of tasks that we could ask
the participants in think-aloud usability testing to perform. These tasks had to:

¢ Cover as many as possible of the work patterns (Lethbridge and Singer,
1997, 2000) typically performed during program comprehension. The
work patterns would include performing various kinds of searches and
manipulations of search results with different goals in mind.
Involve the use of as many TkSee features as possible.
Take 90 minutes maximum to complete.
Give participants the opportunity to make some of their own choices
about how to use TkSee. In other words we wanted to ensure that par-
ticipants would have to think about how to use TkSee to accomplish a
given task, not to be told precisely how to use it.
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Our initial approach for generating the tasks was to work top-down, that is,
to ask other TkSee users to give us suitable work scenarios that we could use as
a basis for the concrete tasks. Unfortunately this approach did not work, because
the TkSee users gave us goals that were just too abstract. For example, “Find out
how many network interfaces can be active at the same time.” Such a goal could
be achieved in many different ways; what we really wanted were step-by-step
scenarios at an intermediate level of detail so that we could plan the evaluation
more precisely.

The approach we eventually adopted was bottom-up. We asked the TkSee
users to give us actual examples of problems they had been faced with in the
source code, along with step-by-step information about how the problems had
been solved. These were embellished to arrive at a set of tasks that met all the
above requirements.

In developing the tasks, there was a certain amount of risk that some partici-
pants in the think-aloud usability testing might already know the relevant sec-
tions of the code. In such a case they might not exercise TkSee as intended be-
cause they might be able to rely on their memory to provide answers instead of
performing the tasks. We therefore phrased the tasks such that they required
each participant to give a very detailed answer, for example, the exact number of
uses of a variable. To complete a task, the participant also had to display some-
thing specific in a TkSee window and write down what they saw.

Think-Aloud Usability Testing

Think-aloud usability testing was used both to look for usability problems that
TkSee users experience when learning and using the tool, and also to explore
how efficiently the developers were capable of using its functionality. We ob-
served ten developers performing the tasks prepared in the user and task analy-
sis. We conducted a pilot study with first two participants (who happened to be
TkSee developers) and then refined the tasks. The following discussion is based
on results from the remaining eight Mitel participants.

Participants were requested to sign an informed-consent form after we ex-
plained to them the nature of the research. For those participants who had never
used TkSee, each session was preceded by a 15-20 minute training session pro-
vided by Mitel support personnel.

The tasks were given to participants one at a time on index cards, and the
participants were asked to verbalize their thoughts as they performed each task.
An observer watched the participants, helped them when necessary, and kept
rough notes. After each session, each participant discussed his or her experi-
ences with the observer, and completed a short questionnaire. Each session
lasted about 90 minutes and was videotaped.

Following the series of sessions, the notes and videotapes were analyzed and
we arrived at a set of 72 usability problems. We categorized these problems us-
ing the same categories as in the heuristic evaluation; the results are in Tables
4.3 and 4.4.
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Table 4.3. Violations of Nielsen’s usability guidelines found during think-aloud usability
testing of TkSee.

Usability guideline violated Number of problems
1. Use simple and natural dialogue 44 (61%)

2. Speak the users' language 9 (13%)

3. Minimize users’ memory load 0

4. Be consistent 1 (1%)

5. Provide good feedback 16 (22%)

6. Provide clearly marked exits

7. Provide shortcuts or accelerators

8. Provide good error messages

9. Prevent errors

10. Provide good help and documentation

(3%)

OO O ON

Table 4.4. Types of problems found during think-aloud usability testing of TkSee. The
same categorization is used in Table 4.2.

Category of problem Number of problems
1. Poor or missing feedback 16 (22%)
2. Confusion 6 (8%)
3. Misinterpretation 8 (11%)
4. Poor labeling 6 (8%)
5. Lack of labeling 0

6. Lack of consistency 1 (1%)
7. Poor graphical design 0

8. Unnecessary element 2 (3%)
9. Lack of needed capability 7 (10%)
10. Lack of robustness 1 (1%)
11. Incorrect behavior 1 (1%)
12. Non optimal interaction 23 (32%)

We also categorized the problems according to whether they affected learn-
ability only (25%), efficiency of use only (47%), or both (28%). In follow-up
interviews, participants reported that while they thought TkSee was easy to
learn, the learning process took considerable time. They also thought that TkSee
was easy to use, but could be made more efficient for users.

A total of 53% of the problems had already been found in the heuristic
evaluation (lower priority problems that had not yet been fixed). Finding the
same problems again proved that the heuristic evaluation had uncovered legiti-
mate problems, but we also showed that testing with users was essential to un-
cover other types of problems. All eight participants encountered 7% of the
problems. 14% of the problems were encountered by more than six and 43% of
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the problems were encountered by less than five. Finally, we noted that those
five participants who were new to TkSee only noticed 20% of the problems
while 7% were only noticed by the three experts.

Think-aloud evaluation was able to find more problems than heuristic
evaluation in the “Use simple and natural dialog” and “Provide good feedback”
categories. This stems from the fact that these categories tend to relate to dy-
namic behavior of the system, something that may be harder to evaluate using
heuristics alone. On the other hand the heuristic evaluation found more problems
than think-aloud evaluation in the “Minimize memory load,” “Be consistent,”
and “Prevent errors” categories.

All the participants completed all the tasks; however, certain tasks were
completed in very inefficient ways. Novices were not always able to discover
the intended way the tool should be used, and experts had never learned certain
useful features. For example, some tasks required looking for all the occurrences
of a particular string in many files. The tool provided a feature for doing this in
one step. However, none of the participants used that feature and, instead, com-
pleted the tasks in a much more cumbersome way.

An interesting side effect of think-aloud usability testing was that it served as
an excellent training and awareness-raising approach in Mitel. TkSee users were
willing to participate in the study even though they had been unwilling to ex-
plore the tool on their own. They were given tasks that exploited the power of
the tool and had incentive to try to use the tool to accomplish them. At the end
of each session, we instructed participants about how they could have achieved
the tasks very efficiently. We saw that they then easily learned the features in-
volved in solving the tasks and made comments such as “If at least somebody
had told me about that feature before, I would have been using this tool for a
long time.” Having learned more about TkSee, the participants then encouraged
other Mitel developers to learn to use the tool as well.

Having the videotapes was extremely helpful. Videotaping released the pres-
sure of having to notice every problem in real-time; some problems were only
noticed later upon reviewing the tapes. On the other hand, the analysis of the
videos was tiring and very time-consuming. We had to spend about three to five
times the duration of a video in order to analyze it.

As with the heuristic evaluation, communicating the problems to the TkSee
developers was carefully planned. We prepared a report that summarized and
categorized the problems and walked through this with the developers - showing
them video clips of the problems to emphasize certain points and convince them
of the seriousness. Following this, the developers implemented most of the rec-
ommended changes. Figure 4.3 shows TkSee following the changes.

4.3.3 The Impact of Usability Studies on the TkSee Development
Team

Invadditionrtordiscoveringusabilityproblems and helping train Mitel developers
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Figure 4.3. Example of TkSee showing some changes resulting from usability evaluation.

as discussed above, performing the usability study also helped raise awareness
of usability among the TkSee development team.

TkSee had been developed in a university research environment following an
informal and opportunistic development process. Features had been added by
students and researchers when they had had bright ideas they wished to experi-
ment with, hence it lacked complete documents describing its requirements, its
design (except that of its database architecture (Lethbridge and Anquetil, 1997)
and how to use it.

There was considerable staff turnover among TkSee developers because
many were students. Also, almost none of the staff had any training in user inter-
face design and usability. The newer staff was often not able to understand the
tool or the purpose of certain features. They did not appreciate why certain user
interface decisions had been made, or even that certain decisions were deliber-
ate, hence they tended to make changes that were poor from a Ul perspective
and that led to usability problems.

Several authors describe the idea of stages of acceptance and commitment to
user centered design in software projects (Bias and Mayhew, 1994; Ehrlich and
Rohn, 1994). They explain that software projects can be in one of the following
stages:
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Stage 1. Skepticism

At this stage, developers focus on creating a large amount of functionality. They
believe that they can create systems with adequate usability and that paying spe-
cial attention to usability will be a waste of time. This was the stage in which the
TkSee project appeared to be when we first set about trying to improve usability.
We discovered that it was much better to focus initial usability activities at cre-
ating awareness and commitment to usability, rather than trying to obtain the
best possible results. It would not be possible to achieve optimum results with
skeptical developers.

Stage 2: Curiosity

At this stage, developers may admit that the system has usability problems, but
are reluctant to do much about it, primarily because they are afraid of losing
control over development. TkSee developers reached this stage gradually as they
were shown the long list of usability problems and as the problems were care-
fully explained to them.

Stage 3: Acceptance

When this stage is reached, the developers accept the assistance of usability spe-
cialists and try to follow approaches that promote usability. By the end of the
usability studies, the TkSee team had reached this stage; however, due to staff
turnover there remained a tendency to slide back to earlier stages.

Stage 4: Partnership

At this stage, usability is considered critically important. Members of the design
team, the managers and members of the user organization all work together to
achieve usability, following a disciplined process. The TkSee team is still far
from this stage - and indeed it is questionable whether it could or should ever be
reached in a university research environment.

Even though the TkSee developers moved from skepticism to acceptance of
usability, their insufficient knowledge about usability meant that they had to be
helped in several ways. They had to be helped to understand usability problems,
to see implications of inefficient solutions, to evaluate the effectiveness of dif-
ferent solutions, to prioritize the problems, and to decide how to fix the prob-
lems so that no new usability problems were introduced. This type of support
was not always easy to give; producing the best results required experience on
the part of the person performing the usability study.

4.4 Lessons Learned

The objective of this chapter has been to communicate insights we have learned
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while preparing to evaluate the usefulness of a software system. We have pre-
sented a program comprehension system called TkSee as a case study. Although
the goal of our research has been to develop new approaches to program com-
prehension, we have realized that it is impossible to evaluate the usefulness of
these approaches unless we separately consider two key aspects of usefulness:
usability and utility. In this chapter, we have discussed usability evaluation,
which we assert must precede functionality evaluation.

We found that particular challenges arose from the fact that we were study-
ing usability in a complex domain where users perform creative problem solv-
ing. One of the most important consequences is that the usability evaluator
needs to have considerable domain knowledge so as to be able to develop ap-
propriate tasks and communicate effectively with both users and developers.

The creation of detailed tasks prior to the think-aloud usability study was
very helpful. These tasks were used in the usability testing, but also helped
TkSee developers test the system and design features planned for the future.

Due to the complex nature of program comprehension, determining the tasks
for the usability testing became particularly difficult, primarily due to the differ-
ent ways that TkSee users could approach the same problem.

We used both heuristic evaluation and think-aloud usability testing. This
proved to be a good decision as both techniques yielded different sets of prob-
lems. In both techniques we used people with varied backgrounds, and again the
different people found or ran into different problems. It proved particularly im-
portant to performing usability tests with Mitel software developers, TkSee’s
intended users.

Communicating effectively with TkSee’s developers proved an essential part
of the process: We found it necessary to carefully structure the list of problems
found, and we developed a categorization scheme that helped the developer
more clearly see the nature of the problem. We confirmed that the process of
bringing developers from the stage of skepticism of usability to acceptance of
effective usability processes requires methodical effort over a period of time.

Although the TkSee project addressed usability somewhat late, it was never-
theless much better than not having done anything. The usability studies pro-
duced immediate benefits: Before the study, for example, we only had a vague
idea why many Mitel developers had not used the tool more. The study exposed
many of the causes and brought to light many ideas to remedy the situation.

After the study, TkSee developers had a much clearer idea of what they
should pay attention to in order to improve the tool. On the other hand, the ad-
vanced development status of the tool meant that not all the problems and im-
provements revealed by the study could be solved or implemented (we imple-
mented all of the important problems and about 60% of the less important ones).
We believe, however, that the usability study allowed us to make TkSee suffi-
ciently usable so that we can now start to scientifically evaluate the utility of the
aspects of its functionality that are at the core of our research.
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5.1 Introduction

Software engineers often build new subprograms by cloning (copying) an exist-
ing one with similar requirements, and then slightly modifying it. While this may
be easier than factoring the common part out, and sharing it from a library, it
increases the system size and often leads to higher maintenance costs. The oc-
currence of clones is highly dependent on the system architecture, development
model, language peculiarities, and software management practices.

This chapter studies the occurrence of clones in large sets of object-oriented
software libraries and programs, totaling over 1.1 million lines of code (LOC),
in two different object-oriented programming languages: Java and Modula-3. The
factors affecting the clone detection accuracy and their frequency of occurrence
are discussed. Comparison is made between systems written in both languages.

5.2 Software Clones

In a single-programmer project, once a certain size is reached (e.g., usually about
10,000 lines of code), many frequent patterns (sorting, lexical analysis, list and
table traversals) have been encountered and hopefully abstracted into reusable
components. Further extensions may involve reusing these components and re-
quire relatively little new code. Occasionally, new reusable components may also
be discovered and added.

This ideal situation is typically not fulfilled in large multiprogrammer projects
with tight schedules. Clones may start to appear for any one of the following
reasons:
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¢ Development time: A software engineer clones a procedure when he needs
similar functionality, instead of extracting the common reusable part. This
practice is perceived as a quick solution; however, while it may be faster
for the initial implementation, it often leads to code that is more expensive
to maintain.

o Communication: A software engineer borrows code from a colleague,
but cannot extract the common reusable part. Either he is not sufficiently
knowledgeable about the cloned procedure, or he cannot convince the other
software engineers involved to include this reusable procedure in the library
and modify their code to use it.

¢ Organizational structure and management factors: A software engineer
borrows code from another subsystem, but cannot avoid cloning because
the other subsystem may not be modified; the other subsystem may belong
to a different department or may not be modifiable. For example, it may
be stored in nonvolatile memory in an embedded system, or frozen after a
lengthy testing/qualification process.

¢ Lack of information: It may happen that two software engineers came
up with similar procedures independently, thus leading to look-alikes more
than clones. It would be beneficial to replace them with a reusable proce-
dure. This sort of redundancy is typically much more difficult to detect as
the procedures may achieve the same functionality with different apparent
structures.

It is important to study the occurrence of clones in software systems in order
to avoid code duplication whenever it is effective to do so (Lagué et al., 1997).
Avoiding code duplication often helps reduce software maintenance costs and
improves quality. Determining the development environment factors affecting the
occurrence of the clones may make their prevention easier.

A cloning relation involves two procedures when one is a copy (perhaps slightly
modified) of the other. Automatic procedures may be used for clone detection.
They may miss some clones because they differ too much (false negative), and
may report as clones procedures with similar structures that are not (false posi-
tive). Rejecting false positives requires examining manually the reported clones,
while false negatives are more difficult to uncover. Once the cloning relations are
identified, the reported clones are analyzed to determine their cause. This process
may be used to:

e remove the clones to replace them with reusable components,

e add links between the clones to insure that they all get updated together, if
applicable, when maintenance is required,

e or to better understand how to prevent new clones from occurring in exten-
sions to the studied system, or in similar systems.
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The next section discusses some of the clone detection experiments conducted
in the past and reported in the literature. The following section details the large
object-oriented systems studied in this paper and the underlying organizational
structures of software development. It is followed by the results of the clone de-
tection analysis performed. The chapter ends with a discussion of the results and
suggestions for further investigations in this area.

5.3 Related Work

Several studies have been conducted to automatically identify cloned procedures
(Baker, 1995; Church and Helfman, 1993; Horwitz, 1990; Jankowitz, 1988; John-
son, 1993; Kontogiannis et al., 1996; Lagué et al., 1997; Mayrand et al., 1996).
The more recent systems (Kontogiannis et al., 1996; Lagué et al., 1997; Mayrand
et al., 1996) have achieved a good compromise in terms of detection accuracy,
and the ability to handle large systems with millions of lines of code.

An interesting scheme is used in (Lagué et al., 1997) in order to improve the
detection accuracy for systems evolving over several versions. The metrics-based
clone detection, where two procedures separated by a proximity metric value of
less than 4; are identified as clones, is complemented by a study of clones identi-
fied in the previous version. Previously identified clones that still exist and that are
less than §2 apart (where §3 is somewhat larger than §,) are kept as clones. This
way, clones that are slowly diverging from one version to another, and would be
missed because their metrics differ by more than d;, but less than d5, are properly
identified.

Another approach to clone detection is to use program text directly without
resorting to parsing first. Such an appraoch is described in Chapter 11 of this
book. The text-based approach is particulary suitable for legacy software, where
parsers and syntactic analyzers are not readily available.

In large systems, clones often represent more than 5% of the code and may in
certain cases reach 20% (Mayrand et al., 1996). The proportion of cloned pro-
cedures varies significantly from one system to another; several factors may be
involved such as the programming environment and software development poli-
cies, application domain, and programming language.

54 Experimental Context

While object-oriented programming started to enjoy recognition in the early eight-
ies (Goldberg and Robson, 1983) and may be traced as far back as to the sixties, it
came to widespread use gradually after 1992 with the popularity of C++ (Strous-
trup, 1991). The lack of safety, garbage collection, and multithreading support in
C++ led to the creation of Java (Gosling et al., 1996) in 1995. Java has most of
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the features found in Modula-3 (Nelson, 1991) and Ada95 (Barnes, 1996), but
retains a C++ like syntax. Because of this recent widespread use, relatively few
large object-oriented systems (developed over several years by multiple software
engineers) are available for study.

54.1 Java

Despite Java’s young age, several medium-sized systems with freely available
source code were found:

e JDK (JDK, 1.1.5), a development kit from Sun Microsystems with 145,000
lines of code,

e SableCC (SABLECC, 2.5), CUP (CUP, 0.10g), ANTLR (ANTLR, 2.2.3),
parser generators from McGill University, S. Hudson, and Magel ang Insti-
tute, respectively, for a total of 74,000 lines of code,

e Swing (SWING, 1.0.2), KFC (KFC, 1.0b), user interface toolkits from Sun
Microsystems, and K. Yasumatsu, with 215,000 and 57,000 lines of code
respectively,

e HTTPClient (HTTPCLIENT, 0.3), a web browser developed by R. Tscha-
laer with 21,000 lines of code.

542 Modula-3

Modula-3 is a modern object-oriented language with modules, opaque types, ob-
jects, safety, exception handling, threads, and garbage collection. It comes with
excellent libraries for graphical user interfaces, 3D graphics, network objects (re-
mote method invocation), and stable persistent objects. It offers most of the same
advanced features as Java (threads, safety, garbage collection) while retaining the
efficiency and low-level capabilities of languages such as Ada95 and C++.

The SRC Modula-3 (Nelson, 1991) distribution, developed over the years at the
DEC Systems Research Center, qualifies as a multiyear, multiperson, multiplat-
form project with a few major reorganizations.

e Its development started in Modula-2+ around 1984, and continued in
Modula-3 since 1990, with several libraries being semiautomatically con-
verted.

e At any given time, between 5 and 20 software engineers were involved
developing applications and libraries.

o The system at one point ran on the experimental Firefly multiprocessor
workstation, and was eventually ported to over 26 different platforms rang-
ing from small 32-bit systems to 64-bit DEC Alpha processors, and running
one of the numerous POSIX-like operating systems or Win32.
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o The interface files in SRC Modula-3 (Modula-3, 3.6) amount to 4,565,355
characters in 123,337 lines. The implementation files contain 21,187 pro-
cedures/methods, 166,500 statements, for 16,236,505 characters in 493,519
lines. It is divided into 145 packages, 62 of which are programs, and the rest
libraries.

54.3 Clone Detection

In Java, there are only methods, and thus no need to perform separate studies of
procedures and methods. In Modula-3, there is no distinction between methods
and procedures. Arbitrary procedures may be used as methods as long as their
signature matches the corresponding method declaration (including the implicit
self argument of the method declaration (Nelson, 1991)). The term procedure
will refer to Java methods for the rest of this text.

The selected granularity for clone detection is thus the procedure. Cloned object
types will appear as several cloned procedures, often in a single module. While in
some cases portions of procedures may be cloned, their detection is much more
difficult and was not attempted here.

Clone detection for Java and Modula-3 systems may be efficiently performed
based on the proximity between a set of computed metrics. For each of n pro-
cedures, p;,¢ = 1,n, a set of m metrics pm; ;,j = 1,m, is computed. Two
procedures are then reported as detected clones if the values of these metrics are
closer than a given threshold. Unless the procedures are identical, manual verifi-
cation is needed to confirm that the two procedures are indeed clones and could be
shared. Proximity may be computed in different ways, such one metric at a time
as absolute distance or as Euclidean distance (Kontogiannis et al., 1996; Mayrand
et al., 1996). Pairwise comparisons between the metrics for tens of thousands
of procedures would be expensive. Therefore, the values are sorted according to
the number of statements metric, and each procedure is only compared to pro-
cedures with up t0 dppstatements more statements. Then, for procedures within
Onbstatements Statements of each other, the other metrics are compared to see if
they differ by less than §;. The clone detection procedure can accept absolute or
relative values of 4 for each metric.

As discussed in (Kontogiannis et al., 1996), a small number of weakly corre-
lated metrics are very effective for clone detection. For each procedure, the num-
ber of statements, cyclomatic number, input variables, output variables, and local
variables were used.

Other more cosmetic metrics such as average identifier length are quite ef-
fective at finding exact clones and rejecting procedures that just happen to have
the same values for the structural metrics, such as size and number of variables.
However, such metrics were not used because of the risk of falsely rejecting a real
clone simply because the identifiers were systematically replaced (as often done
in cloned undergraduate projects) (Jankowitz, 1988).
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5.5 Results

The first experiment, shown in Table 5.1, examines how the number of detected
clones varies with the procedure size. A minimum size of six statements was im-
posed. Indeed, small procedures are frequent and are more likely to have identical
metrics. Even with this minimal size, both Modula-3 and Java analysis report mul-
tiple clones having metrics within 10% of one another. In Modula-3, 6,952 of the
21,187 procedures were involved in 78,418 pairs while in Java, 2,661 of 19,955
procedures were involved in 16,325 pairs.

For small sizes, the number of detected clones is extremely large, most of which
are false positives, as will be seen later. This is explained by the very large num-
ber of small procedures, especially initialization procedures, and for which the
metrics do not vary much.

An interesting element to notice is the higher number of detected clones for
Java procedures with eight or nine statements. This peak is mostly due to a small
procedure in SableCC, called setNode, which is reproduced in many places and
accounts for 6,566 of the 9,624 reported clones. It is not surprising to find this
in a parser generator, since there are many different node types, and that setNode
procedure needs to be called with all these different node types.

The second experiment, in Figures 5.1 and 5.2, measures the variation of the
number of detected clones with the difference d; allowed for each metric. The
minimum size is ten statements. For the section with relative differences, the
other metrics are allowed to be within 10%, and for the section with absolute
differences, the difference allowed for the other metrics is 0.

In both languages the number of detected clones varies greatly with the size
and the cyclomatic number. It is therefore important to appropriately select the
maximum allowed difference. The possible reduction in false negatives is offset
by the large number of additional false positives. Using relative differences is sen-
sible for the number of statements as one may easily add a few statements to a
large cloned procedure. The cyclomatic number, on the other hand, is a more fun-
damental structural measure and it may be preferable to use absolute differences.
It leads to a more controlled increase in the number detected clones, as shown in
Figures 5.1 and 5.2.

In Modula-3, the number of input and output variables is typically very small
and relative differences are impractical for small discrete values. Furthermore,
varying one parameter alone does not change much the number of detected clones
because of correlations with the other metrics. The number of local variables has
a greater impact than input or output variables on the number of detected clones.
It is nevertheless smaller than the impact of the size or cyclomatic measures.

In Java, there are no VAR parameters, typically used as output variables. There-
fore, a different metric was used: the number of nonlocal variables assigned or
used by a procedure. The correlation between this metric and the number of input
and local variables is weaker than between the number of input and output vari-
ables in Modula-3. Nonetheless, absolute differences seem preferable for thresh-
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Table 5.1. Number of clone relations detected for different size ranges. For each size range,
the number of procedures involved is computed. Some procedures, however, may be in-
volved in cloning relations in neighboring size ranges (a 10% difference in size is allowed).

Number of Clones detected Procedures involved
statements M3 Java M3 Java
6,7 48,513 5,583 2,617 1,005
8,9 13,106 9,624 1,591 785
10,11 7,639 514 1,472 292
12,13 4,183 198 1,066 165
14,15 2,106 156 692 142
16,17 769 100 486 84
18,19 539 56 374 66
20,21 400 23 270 27
22,23 233 12 199 21
24,25 158 20 143 17
26,27 112 11 116 12
28,29 299 1 104 2
30,31 55 9 70 10
32,33 48 3 63 6
34,35 32 3 36 6
36,37 24 0 37 0
38,39 35 1 47 2
40,41 38 0 44 0
42,43 17 0 27 0
44,45 13 0 22 0
46,47 12 1 16 2
48,49 9 0 15 0
50-59 55 6 52 9
60-69 11 3 16 6
70-79 4 0 8 0
80-89 0 0 0 0
90-99 3 0 6 0
100-109 1 0 2 0
110-119 1 1 2 2
120-129 2 0 4 0
130-... i 0 2 0
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Table 5.2. Modula-3: Identical clones c, near clones nc, and falsely reported clones (similar
s, vaguely similar vs, and unrelated u) for various sizes.

Nb. of
stmts. c nc s vs u
6 0 0 O 0 20
8 0 0 0 0 20
10 0 0 O 0 20
12 0 0O 0 14 6
14 0 0 O 1 19
16 0O 0 O 0 20
18 1 0 0 0 19
20 0 0 O 0 20
24 1 0 0 0 19
28 9 0 0 0 11
32 2 0 0 0 18
40 11 I 0 0 8
50 7 0 0 7 6
60 5 1 0 8 6
120 2 0 0 1 0

olds on these metrics, and their impact on the number of detected clones is smaller
than for the size and cyclomatic metrics.

The results from Figures 5.1 and 5.2 may be used to have a better feeling for
the process of identifying potential clones. They illustrate the problem of false
positives among small procedures, and outline the need to select appropriately the
proximity thresholds for metrics. The subsequent results presented in this section
directly address the more critical question of what and where are the real clones.
They were obtained with a minimal size of six and each metric with a relative
difference of less than 10%.

In Tables 5.2 and 5.3, for various sizes, the 20 first clones reported are sampled
and their type is determined manually: identical, nearly identical, similar (worth
sharing), similar structure, totally unrelated.

The proportion of false positives is larger for smaller procedures (more than
75%). Indeed, there are relatively few different combinations of number of vari-
ables, and cyclomatic number for small sizes; thus, numerous unrelated proce-
dures have the same values by coincidence. Since small procedures account for
most of the detected clones (in Modula-3, 78% of the 78,418 clones detected are
of size between six and nine versus 93% in Java), a large proportion of the de-
tected clones indeed consists of false positives.

Once again, as with the number of detected clones in Table 5.1, we see the effect
of the SableCC setNode procedure in Table 5.3. Most of the true positives with
eight statements are due to that procedure.

One aspect of Java that favors cloning is that it doesn’t provide generic modules
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or types. Because of this, many procedures are duplicated with only the type of
some attributes being changed. Such clones were found in both small and large
procedures. They account for at least 15% of the true positive clones.

Many clones are also found in the DebugGraphics class from Swing. Indeed, in
debugging mode, the same special instructions need to be added at many places
in the program, in order to produce tracing information.

Swing offers many look-and-feel choices for graphical user interfaces: Metal,
Mac, Motif and Windows. More than 8% of the true positive clones in Table 5.3
are due to these look&feel variants.

In Modula-3, it is interesting to note that the module name and procedure name
are probably the best indicators of cloning. Among the 78,418 clones detected,
2,251 have the same procedure name (identifier), and 279 have the same proce-
dure and module name (qualified identifier, e.g., ModuleName .ProcedureName).
Of these procedures with the same name, 1,803 were derived automatically, pro-
duced by code generators such as network objects or stub generators for stable
objects. These are not part of the source code to maintain and may be ignored.

The remaining clones detected with the same procedure name, but not the same
module name, are in large part false positives with generic names such as Init,
New, Pop, Setup, Check, and Eval. Among 279 detected clones with the same
qualified identifier, 272 have all metrics equal (and are all clones), and 7 have
slight metrics differences (2 are clones and 5 have a similar structure).

In order to further investigate the importance of the name in the clone detec-
tion, the 167 clones detected with size 40 and larger were manually examined:
all those without the same qualified identifier are false positives. The presence of
real clones which don’t have the same name (among the 76,000 detected clones
without the same name) is more difficult to assess. While their proportion is def-
initely very low, a few with very similar structure, perhaps worth sharing, were
found manually (with intimate knowledge of the system content): ParseName vs
ParseCIName (case insensitive or not), and MeetH vs DifferenceH (2D regions
intersection versus difference).

5.6 Discussion

When comparing the occurrence of clones between the DEC SRC Modula-3 dis-
tribution and the collection of Java systems, a number of factors need to be con-
sidered. Despite their different syntactic flavors (Pascal versus C-like), the two
languages have many equivalent features. The differences in how procedures and
types are grouped into interfaces and modules may affect the level of access con-
trol and encapsulation, but should not affect cloning significantly. The multiple
interface inheritance mechanism in Java may help slightly avoiding clones. How-
ever, the most important feature for reducing clones may be generic modules,
supported in Modula-3 but not yet in Java (the keyword generic is reserved for
future use in Java).
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Table 5.3. Java: Identical clones c, near clones nc, and falsely reported clones (similar s,
vaguely similar vs, and unrelated u) for various sizes.

Nb. of
stmts. c nc s Vs u
6 4 2 0 0 14
8 6 13 0 0 1
10 3 3 0 0 14
12 4 5 1 0 10
14 3 0o 2 0 15
16 0 11 0 0 9
18 0 10 O 0 10
20 3 9 0 0 8
24 11 2 0 0 7
28 0 7 0 0 7
32 3 7 1 0 9
40 0 1 0 0 1
50 0 4 0 0 2
60 1 2 1 0 4
120 0 0 0 0 0

Another important factor explaining the differences in the occurrence of clones
is the development environment. Indeed, DEC SRC Modula-3 was developed over
several years by a small to medium team. Experimentation was encouraged, but
a tight control was maintained over who could modify each package. By con-
trast, the Java packages studied were developed independently and simultane-
ously. Thus, no copying could take place across packages. Furthermore, these
young packages have not yet gone through several reorganizations and developer
turnover.

In Modula-3, the largest sources of real clones are in the packages Postcard
and Webcard; Postcard is a mail/news client, and Webcard is a modified version,
by another author, with an integrated Web client. From a maintenance point of
view, Webcard should simply supersede Postcard. The next largest source of real
clones are modules named TextExtras, RealRect, and Reallnterval which are re-
peated in two or three packages. The effort of convincing the maintainers of the
base libraries (where Text and Geometry operations reside) to incorporate these
modules was presumably an obstacle. Colleagues of the auhtors of the modules
simply copied these to their packages upon need, thus creating clones.

Interestingly, there are four clones of a procedure named QuickSort. They
were probably created before the inclusion of Generic modules in Modula-3, and
generic sorting facilities in the base library. Similarly, the 2D and 3D modules, the
INTEGER and REAL modules, and the geometry modules have a lot in common
and could be shared through the careful use of generic modules, which were not
available when these modules were initially developed. In the following example,



5. Clones Occurrence in Java and Modula-3 Systems 107

Axis.T could be defined as X, Y for 2D and as X, Y, Z for 3D, and Length.T could
be defined as INTEGER, REAL, or LONGREAL.

GENERIC INTERFACE
Geometry(Axis, Length);

TYPE
Point = ARRAY Axis.T OF Length.T;

Rect = RECORD pl, p2: Point;

Several procedures with the same structure have a common origin but would
require more work for sharing. The stubs generators for network and stable ob-
jects, the main program for m3build, m3ship, and m3where, the graphical pro-
grams columns and fours, and a few modules to add HTML markup to Modula-3
source code all have a similar structure, and were created by copy and modifica-
tion. However, they fulfill different tasks and parameterizing the code to make it
shareable may affect its readability negatively.

In the Java systems studied, as expected, few clones involve more than one
system. Most of the clones occurred in closely related classes. It appears that
some Java clones could be removed by proper encapsulation within higher level
classes. Typical examples are the List and TableList classes that contain many
nearly identical procedures. These two classes could be derived from a common
ancestor class, sharing common procedures. In other cases, notably the highly
cloned SableCC setNode, the procedures are too simple to be worth sharing.
Finally, several clones could be removed through the use of generic modules, if
such a facility existed in Java.,

5.7 Conclusion

The number of real detected clones in SRC Modula-3 is not negligible (about
1% of 500,000 lines), but somewhat less than in other large systems studied in
the literature (Lagué et al., 1997). In the Java systems analyzed, the cloning level
is higher at 6% of the 512,000 lines. The level of cloning is a direct result of a
system’s history and development environment. SRC Modula-3 was developed in
a research environment with emphasis on quality and novelty; thus, it was sub-
ject to time constraints to a much lesser extent. However, some of the code was
developed through experimentation by cloning existing packages, but was not
maintained later, providing little incentive to remove the clones.

Code duplication by lack of information is less likely in SRC Modula-3 than in
other systems because of the high level of communication between the members
of this relatively small group. However, the quality standards for the base libraries
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were such that several generally useful modules could not be included (because
they did not fit these standards or by lack of time to perform a careful review).
These were cloned in the few packages needing such functionality.

The larger occurrence of clones in the Java systems studied is surprising at first.
Indeed, cloning is more likely in very large multiyear projects, than in smaller
young packages such as the Java systems examined. A closer examination of the
systems brings two plausible explanations. The development of the larger sys-
tems (JDK, Swing) was realized at Sun under considerable pressure, given the
competitive and time sensitive commercial interests at stake. A second factor is
the absence of generic modules in Java, which would have easily prevented a large
number of clones.

As more studies on cloning appear in the literature, it may become possible
to better isolate and measure separately the effect of system size, team compo-
sition, development environment, development history, programming language
(C++, Ada95), and programming paradigm.
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6.1 Introduction

Automated tool support is crucial for the comprehension of large-scale, object-
oriented software and involves compressing and clustering the vast amount of
information that is contained in the source code. However, software comprehen-
sion demands more than the mere understanding of the static structure of the
source code. The clear representation of the system’s physical and logical struc-
ture is still insufficient for a developer to fully comprehend the purpose of a
given piece of software (Beck and Johnson, 1994). Underlining this statement,
Booch estimates that “it takes a professional programmer about 6-9 months to
become really proficient with a larger framework,” and he adds that “this rate
increases rather exponentially to the complexity of software” (Booch, 1996). We
agree with Beck and Johnson that one reason for this gigantic effort for software
comprehension and evolution is that “existing design notations focus on commu-
nicating the what of designs, but almost completely ignore the why.” They argue
that comprehension of the rationale behind the design decisions is equally as
much important as understanding of the software’s structural and logical con-
stituents. Yet, for the most part, current reverse engineering tools completely
neglect recovery of the design rationale.

Design patterns capture the rationale behind recurringly proven design solu-
tions and illuminate the trade-offs that are inherent in almost any solution to a
nontrivial design problem. In forward engineering, the advantages of design
patterns are widely accepted (Beck and Johnson, 1994), but in reverse-
engineering their usefulness encounters strong resistance throughout both the
pattern and the reverse-engineering communities (Buschmann et al., 1996). The
main arguments are that patterns can be implemented in many different ways
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without ever being the same twice, and that the same structure may recur with
widely different intents. In addition, existing studies that were aimed at detecting
design patterns in existing software systems (Antoniol et al., 1998; Kraemer and
Prechelt, 1996) failed to convey the usefulness of this approach to reverse engi-
neering, considering the minimal results of recovered pattern instances. Never-
theless, it is these patterns of thought that comprise the rationale of many pieces
of an existing software system, and to comprehend the software we need to re-
cover these patterns, be it automatically or manually.

In the SPOOL project (Spreading Desirable Properties into the Design of
Object-Oriented, Large-Scale Software Systems), a joint industry/university
collaboration between the sofiware quality assessment team of Bell Canada and
the GELO group at the University of Montreal, we investigated methods and
tools for software comprehension and for assessing software design quality, for
instance, in respect to changeability (see Chapter 10). As part of the project, we
have developed the SPOOL environment for design pattern engineering, which
comprises functionality for design composition (Keller and Schauer, 1998),
change impact analysis (see Chapter 10), and most importantly, support for the
recovery of design patterns.

Note that with “support” we underline the purpose of the environment as an
aid for gaining a pattern-based overview of the software system under investiga-
tion. It would be pretentious to argue that the environment itself can comprehend
the rationale behind a design, “which would go far beyond the current state-of-
the-art in artificial intelligence” (Brown, 1997). However, by generating appro-
priate views, it may lead a human analyzer to the recovery of the rationale be-
hind some of its most critical parts. Using the environment, the analyzer can
zoom into these design components! that resemble patterns, extract them as dia-
grams in their own right, contrast the pattern description with the implemented
structures, or, in the case of a false positive, dismiss the existence of the auto-
matically identified pattern instance.

In this chapter,2 we apply our environment to the reverse engineering of de-
sign components that are based on some of the design pattern descriptions de-
fined by Gamma et al. (1995). The purpose is to introduce pattern-based reverse
engineering as a valuable technique for software comprehension and thus coun-
ter the widely held believe that design patterns are only meaningful in forward
engineering. Applying our approach to several case studies extracted from in-

1 Note that we introduced the term design component as the reification of design ele-
ments, such as patterns, idioms, or application-specific solutions, and their provision as
software components (JavaBeans, COM objects, or the like), which are manipulated via
specialization, adaptation, assembly, and revision. We refer to Keller and Schauer (1998)
for further details on this approach to software composition. For the purpose of this
chapter, we use the term design component as a package of structural model descriptions
together with informal documentation, such as intent, applicability, or known-uses.

2 This chapter is a revised and extended version of Keller et al. (1999).
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dustrial, large-scale software, we show that pattern-based reverse engineering cf
design components is helpful for understanding software-in-the-large. In Section
6.2, we explain the architecture of the SPOOL environment. In Section 6.3, we
describe the three C++ systems that we used for experimentation, present three
case studies that show how we applied pattern-based reverse engineering of de-
sign components, and discuss the findings of our experiments. Section 6.4 com-
pares our approach with related techniques. Section 6.5 concludes the chapter
and provides an outlook into future work.

6.2 The SPOOL Reverse Engineering Environment

The SPOOL reverse engineering environment (Figure 6.1) uses a three-tier ar-
chitecture to achieve a clear separation of concerns between the end-user tools,
the schema and the objects of the reverse-engineered models, and the persistent

Source Code Capturing Visualization and Analysis
Source Code (C/C++, Java) * Source code visualization
‘ ¢ Dependency analysis
Source Code Parser . Seaxjching an(.i browsing
(Datrix) ¢ Design querying
& ® Design inspection and visualization
Intermediate Format .

Datrix/TA-XML Design component editing
. ) ) ® Metrics analysis

Intermediate Format Importer

(xml4j)
Design Repository
Repository Schema

¢ Reverse engineered source code models
® Abstract design components
¢ Implemented design components

\ ® Recovered design models
(Pattern-Based ® Re-organized design models

Design Recovery ﬁf
(automatic, v
semi-automatic, | %
manual
) Object-Oriented
\ ) Database Management System

Figure 6.1. Overview of SPOOL reverse-engineering environment.
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datastore. The lowest tier consists of an object-oriented database management
system, which provides the physical, persistent datastore for the reverse-
engineered source code models and the design information. The middle tier con-
sists of the repository schema, which is an object-oriented schema of the reverse
engineered models, comprising structure (classes, attributes, and relationships),
behavior (access and manipulation functionality of objects), and mechanisms
(higher-level functionality, such as complex object traversal, change notification,
and dependency accumulation). We call these two lower tiers the SPOOL design
repository. For a detailed description of the design repository, refer to Chapter
13. The upper tier consists of end-user tools implementing domain-specific
functionality based on the repository schema, i.e., source code capturing and
visualization and analysis.

In this section, we first describe the environment’s techniques and tools for
source code capturing. Then, we explain its functionalities for pattern-based de-
sign recovery and for design representation.

6.2.1 Source Code Capturing

Source code capturing is the first step within the reverse-engineering process. Its
goal is to extract an initial model from the source code. At this time, SPOOL
supports C++ and uses Datrix (Datrix, 2000) to parse C++ source code files. As
the Datrix team already provides CSER members with a parser for Java, SPOOL
will soon be able to extend its support for reverse engineering Java source code.
Datrix provides complete information on the source code in form of an ASCII-
based representation, the Datrix/TA intermediate format. The purpose of this
intermediate representation is to make the Datrix output independent of the pro-
gramming language being parsed. Moreover, it provides a data export mecha-
nism to analysis and visualization tools, ranging from Bell Canada’s suite of
software comprehension tools to the SPOOL environment and to other CSER
source code comprehension tools.

SPOOL parses the Datrix/TA files, which are generated for each compile
unit, and imports the data into the SPOOL repository. In order to leverage off-
the-shelf parsing technology for this intermediate format, we convert Datrix/TA
into XML (W3C, 1998) syntax (Datrix/TA-XML) and use IBM’s xml4j XML
parser (IBM, 1999) to read and traverse the content of the Datrix/TA-XML files.
The xml4j parser complies with the Document Object Model (DOM) (W3C,
1999) as the industry standard for XML-based file content traversal, and it sup-
ports the Simple API for XML (SAX, 2000). Since the generated Datrix/TA-
XML files are typically quite large, we opted for using SAX, which views an
XML document as a stream of elements that can be discarded quickly. An import
utility as part of the SPOOL repository infrastructure assembles the nodes and
arcs of the Datrix/TA-XML intermediate source code representations and con-
structs the objects of an initial physical model in the SPOOL repository. Note
that-werare currently: workingronssubstituting the Datrix/TA-XML representation
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by an XMlI-based solution (XMI, 2000; Saint-Denis et al., 2000). At the current
state of development, we capture and manage in the repository the source code
information as listed in Table 6.1.

Table 6.1. Source code information managed in the SPOOL repository.

1. Files (name, directory)

2. Classifier - classes, structures, unions, anonymous unions, primitive types
(char, int, float, etc.), enumerations [name, file, visibility]. Class declarations
are resolved to point to their definitions.

3. Generalization relationships [superclass, subclass, visibility].

4. Attributes [name, type, owner, visibility]. Global and static variables are stored
in utility classes (as suggested by the UML), one associated to each file. Vari-
able declarations are resolved to point to their definitions.

5. Operations and methods [name, visibility, polymorphic, kind]. Methods are
the implementations of operations. Free functions and operators are stored in
utility classes (as suggested by the UML), one associated to each file. Kind
stands for constructor, destructor, standard, or operator.

5.1.  Parameters [name, type]. The type is a classifier.
5.2.  Return types [name, type]. The type is a classifier.

5.3.  Call actions - [operation, sender, receiver]. The receiver points to the class to
which a request (operation) is sent. The sender is the classifier that owns the
method of the call action.

5.4.  Create actions. These represent object instantiations.

5.5. Variable use within a method. This set contains all member attributes, pa-
rameters, and local attributes used by the method.

6. Friendship relationships between classes and operations.

7. Class and function template instantiations. These are stored as normal classes
and as operations and methods, respectively.

6.2.2 Pattern-Based Design Recovery

The purpose of pattern-based design recovery is to help structure parts of class
diagrams to resemble pattern diagrams (see Figure 6.2, window 4). We envision
three techniques to support this task: automatic design recovery, manual design
recovery, and semiautomatic design recovery. Automatic design recovery relates
to the fully automated structuring of software designs according to pattern de-
scriptions, which are stored in the repository as abstract design components, We
have implemented query mechanisms that can recognize the structural descrip-
tionsrinrthe sourcercode:models;extract:these from the source code, and visual-
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Figure 6.2. Graphic user interface of the SPOOL environment.

ize them within the class hierarchies. This technique will be further detailed in
Section 6.3.

Manual design recovery relates to the structuring of software designs by
manually grouping design elements, such as classes, methods, attributes, or rela-
tionships, to reflect a pattern. Our environment allows the developer to select
model elements and associate them with the roles of the respective pattern ele-
ments. Manual design recovery gives the human analyzer the possibility to look
at a model from his or her own perspective and cluster design elements to design
components. It provides the flexibility that is necessary to group and communi-
cate ad-hoc solutions as proto-patterns (Appleton, 1998), which may at some
time even become patterns.
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Semiautomatic design recovery combines both strategies, automatic and
manual recovery. It may be implemented as a multiphase recovery process. The
first phase consists of the automatic detection of low-level idioms or the general
core of pattern descriptions. Subsequent phases match the identified instances
with more specific implementation details, which may be provided interactively
by the analyzer who is in control of the recovery process. He or she may inter-
rupt recovery runs to confirm or decline the existence of a pattern occurrence,
and to manually supply specifics that are not covered by the default recovery
queries. At the current stage of development, we have implemented the tech-
niques for automated and manual design recovery.

6.2.3 Design Representation

The purpose of design representation is to provide for the interactive visualiza-
tion and analysis of source code models, abstract design components, and im-
plemented components. It is our contention that only the interplay among human
cognition, automatic information matching and filtering, visual representations,
and flexible visual transformations can lead to the all-important why behind the
key design decisions in large-scale software systems. To date, we have imple-
mented and integrated tools (see Figure 6.1, “Visualization and Analysis”) for
the following:

o Source code visualization (visualizing classes, attributes, methods, operation
calls, instantiations, friendship dependencies, type dependencies based on
the types of parameters, operations and methods, and attributes),

¢ Interactive and incremental dependency analysis (the user may select a
number of classes, files, or directories, and the system loads and visualizes
the dependencies among these elements; see Section 6.4.3),

¢ Design investigation by searching and browsing, based on both structure
and full-text retrieval, using the SPOOL Design Browser (Robitaille et al.,
2000) (cf. Section 6.3.2),

e  Design querying to classes that collaborate to solve a given problem,

o  Design inspection and visualization within the context of the reverse-engi-
neered source code models,

®  Design component editing, allowing for the interactive description of design
components, and

®  Metrics analysis to conduct quantitative analyses on desirable and undesir-
able source and design properties.

Figure 6.2 illustrates the graphic user interface of the SPOOL environment.
Windows 1 and 2 show the inheritance hierarchy of ET++ (Weinand et al.,
1989) (tree layout generated with Dot (Kontsofios and North, 2000) and spring
layout generated with Neato (North, 2000)). Via the property sheet associated
with such diagrams (window 3), all the other association relationships stored in
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the repository, such as instantiation or aggregation relationships, can be illus-
trated as well, in both separate and combined forms. Different colors distinguish
the different kinds of association relationships. On the left hand side of each
window, a tree view can be optionally displayed (windows 1, 4, 5, and 6) to con-
vey in textual form the source code models, abstract design components, or im-
plemented design components. Through a diagram’s pop-up menu, design
queries on the information contents of the current diagram can be launched, with
subsequent visualization of the query results (window 4). In our environment,
each of the supported abstract design components (the pattern like structures to
be discovered) comprises a so-called reference class. This is the class in the
component’s structure diagram that is considered most characteristic of the com-
ponent’s nature.

Upon design recovery, we incrementally draw bounding boxes around the
reference classes of the implementations of an abstract design component (win-
dow 4). In this way, a class that is the reference class for several of these imple-
mented design components (“multiple reference class™) will exhibit a taller
bounding box than a class that is just part of a single component. Keeping the
size of these bounding boxes constant during zooming leads to the effect that
once their diagrams are sufficiently zoomed out (window 4), multiple reference
classes will protrude from the diagram. The implemented design components can
then be extracted into a separate diagram and related to the classes, methods, and
attributes of their respective abstract design components (window 5), which in
this study represent the descriptions of design patterns. The more informal con-
stituents, such as intent, motivation, or applicability, can be viewed in the same
or in separate diagrams (window 6). These informal descriptions are crucial for
understanding the design, as they capture the rationale that may be at the root of
the automatically identified design component.

Design representation also encompasses interactive description of design
components. The SPOOL environment provides a class diagram editor based on
the UML notation 1.1 (UML, 1997) for structural descriptions and an HTML
editor for specifying the informal constituents of design components. Using these
editors, the environment allows for the modeling, documenting, and storing of
new abstract design components in the design repository. The environment also
supports the refinement and generalization of existing abstract components. This
is essential as design components can be rendered in different forms. For exam-
ple, a design component representing an Adapter pattern can be refined into a
Class Adapter or an Object Adapter, and similarly, a Composite may be spe-
cialized into a Transparent Composite or a Safe Composite component (Keller
and Schauer, 1998).

The user interface of the SPOOL environment is implemented based on Java
1.2, the JFC/Swing components (Sun, 2000), and the graphic editor application
framework jKit/GO (Instantiations, 2000). For visualizing the HTML code, the
ICEBrowser (ICESoft, 2000) JavaBeans component is being used. To generate
initial layouts of the system under investigation, we developed an interface to
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external layout generators. We integrated Dot (Kontsofios and North, 2000) for
tree layouts and Neato (North, 2000) for spring layouts.

6.3  Applying Pattern-Based Reverse Engineering

The purpose of this section is to point out the importance of pattern-based re-
verse engineering of design components for the comprehension of large-scale
software. We chose a case study approach to illustrate and discuss some of our
findings when analyzing industrial systems. We have selected the following ab-
stract design components, which we based on the corresponding descriptions in
the pattern catalogue of Gamma et al. (1995): Template Method, Factory
Method, and Bridge.

To assess the feasibility of pattern-based reverse engineering and the useful-
ness of the SPOOL environment, we analyzed the source code of three industrial
C++ systems. Bell Canada provided us with two large-scale systems from the
domain of telecommunications. For confidentiality reasons, we call these sys-
tems System-A and System-B. Our third test system is the well-known applica-
tion framework ET++ 3.0 (Weinand et al., 1989), as included in the SNiFF+
development environment (TakeFive, 2000). Table 6.2 shows some size metrics
for these systems. Note that header files from the compiler are included in these
numbers.

In this section, we first show how we reverse-engineered the selected compo-
nents in System-A, System-B, and ET++, respectively. Then, we discuss the
three case studies.

Table 6.2. Size metrics of industrial systems.

System-A System-B ET++
Lines of code 472,824 291,619 70,796
Lines of pure comments 60,256 71,209 3,494
Blank lines 80,463 90,426 12,892
# of files (.C/.h) 1,900 1,153 485
# of classes (.C/.h) 3,103 1,420 722
# of generalizations 1,422 941 466
# of methods 17,634 8,594 6,255
# of attributes 1,928 13,624 4,460

Size of the system in the repository 63.1 MB 41.0 MB 19.3 MB




122 Kelleretal.

6.3.1 Case Study #1: Template Method

“Template Methods define the skeleton of an algorithm in an operation, defer-
ring some steps to subclasses” (Gamma et al., 1995). Template methods are of-
ten referred to as the characterizing building blocks of white box frameworks,
which let clients extend the framework by overriding predefined hook methods
that are called by the framework (Fayad and Schmidt, 1997). The rationale be-
hind a Template Method is to make the steps of an algorithm easily exchange-
able. The trade-off is that if not used with care, Template Methods can
contribute to overly complex software, especially when the hook methods them-
selves are Template Methods deferring functionality to other hook methods. In
large, framework-based application software, such as System-A, knowledge
about the existence and location of Template Methods is crucial for the judicious
evolution of the applications.

We reified the Template Method pattern (Figure 6.3 shows its structure) as
an abstract design component, stored it in our repository, and associated it with a
query that searches the source code models for the component’s structure. The
default implementation of the Template Method query traverses all classes (4b-
stractClass), goes into each method (TemplateMethod), looks up the operation
call tree for local operation calls (PrimitiveOperation), and verifies if Primi-
tiveOperation is polymorphic. If all conditions are met, all relevant information
is passed to a Design Component Builder object, which creates an Implemented
Design Component containing references to the identified elements in the source
code model. Note that through query options, the human analyzer can specify
deviations from the default behavior of the query, for instance, to recover only
those TemplateMethods in which PrimitiveOperation in AbstractClass is purely
virtual (in the case of a C++ system), or to check if PrimitiveOperation is over-
ridden by at least one other class (ConcreteClass) in the AbstractClass’ subclass
hierarchy.

Figure 6.4 illustrates the recovered Template Methods in one class tree of
System-A (note that the reference class of Template Method is AbstractClass).

Abstract Class

PrimitiveOperation1()
TemplateMethod() [------------- .
PrimitiveOperation1( ) PrimitiveOperation2()
PrimitiveOperation2( ) -

Concrete Class

Primitive Operation1()
Primitive Operation2( )

Figure 6:3=Structureof Template Method (Gamma et al., 1995).
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Figure 6.4. Template Methods in System-A.

This diagram clearly shows the key players within this part of the application,
and conveys an impression of how many such mini-algorithms, which may be
refined in subclasses, exist in the class tree. For instance, the main class, visible
on top of the diagram, contains 43 Template Methods. More detailed informa-
tion can be recovered by zooming into the diagram, showing operations and at-
tributes, or by spawning another diagram that shows the implementation of one
particular Template Method only.

It is our experience that knowledge on both the rationale and the existence of
Template Methods is essential to develop an understanding on how to hook into
the mechanisms that are enforced by a framework like architecture. Such knowl-
edge may be of great help in flattening the learning curve of a framework.

6.3.2 Case Study #2: Factory Method

“Factory Methods define an interface for creating an object, but let subclasses
decide which class to instantiate” (Gamma et al., 1995). Factory Methods are
specialized Template Methods in that the PrimitiveOperation in the Concrete-
Class instantiates a concrete product (see Figure 6.5). Factory Methods are often
used when different objects have the same construction process. The construc-
tion algorithm is coded in the Creator class, and the steps that instantiate the
objects are deferred to the subclasses.
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Creat
Product reaior oy .
FactoryMethod()[ FactoryMethod()
AnQperation()
ConcreteCreator N
return new

ConcreteProduct | I—————""3 . ConcrateProduct

FactoryMethod()

Figure 6.5. Structure of Factory Method (Gamma et al., 1995).

The query for the Factory Method is, obviously, similar to that of the Tem-
plate Method, except for the condition that the FactoryMethod in Concrete-
Creator is required to instantiate a ConcreteProduct. By default, the query does
not enforce that ConcreteProduct be a subclass of another class (Product), but
this additional constraint can be specified through query options.

Figure 6.6 illustrates the results of the Factory Method query as applied to
System-B. The upper window shows the inheritance tree of all classes of System-
B, which we laid out with Neato. Due to the high zooming ratio (the small points
constitute large inheritance trees), the recovered design components protrude
from the diagram. This is crucial information that can help find a basis for un-
derstanding a complex piece of software, which is presented in the lower win-
dow of Figure 6.6. We zoomed into the tallest bounding box and extracted the
detailed information into a separate diagram (lower window). It illustrates a cen-
tral Creator class, which defines 13 abstract FactoryMethod operations, and 57
subclasses, which implement these operations.

This automatically generated diagram provides essential information about
the rationale behind the design of the system. The developers designed this part
of System-B for easy extension with new classes. This was necessary as this part
of the system deals with user interface forms and input tables, which by nature
change very fast. The diagram also tells us that the designers decided to instanti-
ate objects in the same classes that provide the functionality for their manipula-
tion. In the example, a better solution would have been the use of an Abstract
Factory, which “provides an interface for creating families of related or depend-
ent objects” (Gamma et al., 1995). This would have provided for more flexibility
as the manipulation functionality could have evolved independently from the
object created by the factory. Thus, a different family of objects, which may re-
flect changed user requirements or a different user interface platform, could have
been plugged into the class hierarchy without the need of subclassing existing
classes. This would have reduced the number of classes from 57 to about 30,
improving understandability and maintainability. This example illustrates pat-
tern-based reverse engineering of design components as a technique that can
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Figure 6.6. Factory methods in System-B: overview diagram (upper window); extracted
Factory Methods (lower window).

help a human analyzer not only to comprehend a complex piece of software, but
also to make substantial design improvements.

As a further example, window 1 of Figure 6.7 illustrates the occurrences of
the Factory Method pattern in ET++. The user may want to inspect the recov-
ered pattern instances by starting the design inspection tool (window 2). This
diagram shows in its upper part the list of recovered Factory Method patterns,
identified by the Creator class and the FactoryMethod. The middle part shows
the selected Factory Method as a collaboration diagram. The example shows the
class ET_Object with the method GetObserverlter, which calls the Factory-
Method Makelterator (top row). This method is overridden in five subclasses of
ET _Object (middle row). Each of these implementations of Makelterator instan-

e lower part of the window shows the
*4 *
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Figure 6.7. Inspection of Factory Methods in ET++, involving overview diagram, design
inspection tool, the SPOOL Design Browser, and the SNIFF+ source code environment.

recovered classes in the context of the overall class hierarchy. This example pre-
sents the case where the design patterns Factory Method and Jterator (Gamma et
al.,, 1995) are combined to provide for a flexible traversal mechanism of ET++
containers, such as lists, sets, dictionaries, collections, and arrays. Note that the
SPOOL Design Browser with its structure and full-text retrieval functionality
might have been used to hint at instances of the Iterator pattern (Robitaille et al.,
2000).

The content of the design inspection diagram was automatically generated by
the query for the Factory Method pattern. The diagram provides important in-
formation for program comprehension as it presents in a concise way all the
classes that take on some role in a pattern-based collaboration. Note that in the
physical file structure, these classes may be spread out over many directories and

in conveying all the information a user
: A % I
]
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might wish to obtain about the design fragment at hand. He or she might want to
know, for instance, the classes and methods that invoke Makelterator, or get
information about the semantics of the method GetObserverlter, whose name
alludes to its purpose of creating an Iterator of the Observers of a view element.
A visual design inspection tool can never answer all of these questions.

The SPOOL Design Browser together with the SPOOL mechanism for inte-
grating external tools provides the flexibility to obtain detailed knowledge as
well as context information about the constituents of a recovered, pattern-based
design. For example, the browser of window 3 shows all the methods from which
Makelterator is invoked, including the GetObserveriter method already identi-
fied in window 2. By invoking the SNiFF+ environment (TakeFive, 2000), the
user can then investigate and edit the retrieved elements directly in the SNiFF+
source code editor (window 4). This provides invaluable context information
about how, in our example, a Factory Method is used.

6.3.3 Case Study #3: Bridge

The intent of a Bridge pattern is to “decouple an abstraction from its implemen-
tation so that the two can vary independently.” (Gamma et al., 1995) The Bridge
is a design technique that can avoid combinatorial explosion of class hierarchies
if a domain concept in different variations can be implemented in multiple ways.
If realized using inheritance, each variation would have a subclass for each of the
possible implementations. To avoid this, the Bridge suggests separate class hier-
archies for the abstraction and the implementation (Figure 6.8).

We include the Bridge as one of those patterns that demand human insight to
be recovered from source code. The Bridge is a semantic concept that can have
many forms of physical appearance in the source code. For instance, we have
identified Bridges with Abstractions that are not subclassed, Concretelmple-

imp-> Operationlmp(} ]j

Abstraction | imp Implementor
Operation() Operationimp()
ConcretelmplementorA ConcretelmplementorB

RefinedAbstraction

Operationimp( ) Operationimp()

Figure 6:8: Structure of Bridge (Gamma et al., 1995).
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mentors that do not have a common superclass, or Operationlmps that constitute
Template Methods (see Section 4.1) in which not Operationlmp, but its hook
method, is overridden. Our Bridge query captures these cases, and as an addi-
tional heuristic verifies that Abstraction and Implementor are not in the same
path of the inheritance tree, which otherwise would be counter to the very intent
of the Bridge. The final result was 46 Bridge-based design components in ET++,
which not unsurprisingly included many false positives. It is our contention that
the systematic discovery of the Bridge pattern within source code needs human
insight into the problem domain of the software. However, as Figure 6.9 illus-
trates, a machine can generate appropriate diagrams that are of great value for
the human analyzer to identify instances of the Bridge.

In the upper window of Figure 6.9, we illustrate all recovered Bridges in
ET++. Abstraction serves as the reference class, which is decorated with a
bounding box for each Operation that delegates functionality to a subclass of the
abstract Implementor that is the target of the maximum number of delegations.
More specifically, our default Bridge query looks for classes with an instance
variable (imp) of a type Implementor. It then goes into the operation call tree of
each method (Operation) in Abstraction, and verifies if the receiver of an opera-
tion call (OperationImp) is of type Implementor and is overridden by at least one
subclass of Implementor (ConcreteImplementor). By default, we also allow that
Operationlmp be a Template Method, meaning that not OperationImp itself is
overridden, but one of its polymorphic hook methods (see Case #1). We discov-
ered many Bridge Implementors in industrial code that were based on Template
Methods.

Our query reported 46 Bridge-based design components in ET++, yet most
of the visualized Bridges had only up to three bounding boxes (i.e., operation
calls to Implementor), meaning that most probably these automatically recovered

ET_StaticTextView

R R —————

{
{wPageltem ET_EditFieid | H

'IJ 1 - -ma s B ,’

Figure 6.9. Bridges in ET++: overview diagram (upper window); ET TextView class
(lower left window); ET Window class (Iower right window).
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implementations of Bridge reflect only its structure, but not its intent. Clearly
visible in Figure 6.9 are a few reference classes with tall bounding boxes (right
side of upper window). The lower windows of Figure 6.9 illustrate the three ref-
erence classes that exhibit the most bounding boxes. The lower left window
shows ET TextView with its superclass ET StaticTextView, both delegating
multiple methods to ET_Text (not displayed in Figure 6.9). The documentation
of ET++ (Weinand et al., 1989) describes ET TextView and ET Text as the view
and model of the MVC architectural design pattern, which is in this example
applied to text handling. In other words, subclasses of ET TextView provide
different rendering strategies for instances of ET Text, thus serving as the Ab-
stractions for ET_Text Implementors, which is the very intent of the Bridge de-
sign pattern. The lower right window of Figure 6.9 shows the ET Window class
with 11 bounding boxes. Gamma et al. (1995) describe this case as one of the
known uses of Bridge. In ET++, the ET WindowPort class serves as the abstract
Implementor for different kinds of windows, and ET XWindowPort and
ET SunWindowPort as the Concretelmplementors.

6.3.4 Discussion of Case Studies

The purpose of our work is to provide a technique that can supplement current
reverse-engineering tools with the support to recover the all-important rationale
behind the design decisions. We based this technique on design patterns and
presented three case studies, each illustrating a different pattern on a different
industrial system. Related studies on pattern detection (Antoniol et al., 1998;
Kraemer and Prechelt, 1996) provided tables indicating numbers for the detected
patterns and the true pattern implementations in the investigated systems. We
argue that these numbers are misleading as they neither express quality of the
analyzed software or the detection tool, nor convey the rationale behind the pat-
tern-based design (see Section 6.4 for further discussion).

We believe in the strength of visualization and the integration of the human
into the recovery process. Therefore, we selected a case study approach to con-
vey the practicability of pattern-based reverse engineering. However, for com-
parison purposes, we summarize the results of our default recovery queries in
Table 6.3.

Table 6.3. Implemented pattern-based design components.

System-A System-B ET++
Template method 3,243 1,857 1,022
Factory method 247 168 44
Bridge 108 95 46

As the structures of Template Method (Figure 6.3) and Factory Method (Fig-
urel6:5)unambiguously reflectthelintentlof the respective pattern, and in light of
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our rich software repository, which includes information on both operation calls
and polymorphic methods, we can rely on the recovered design components for
both patterns being correct. The Bridge pattern, on the other hand, requires hu-
man judgment. It is one of those patterns that can be implemented in many dif-
ferent ways. We captured some of these implementations, and, as case study 3
illustrates, used the technique of growing bounding boxes to visually identify
those Abstractions that delegate many operations to an Implementor. In System-
A, for example, the reference classes of 12 out of 108 discovered Bridge design
components exhibited more than 5 bounding boxes; 6 of these were surrounded
by more than 50 bounding boxes, which was clearly visible in the diagram. Four
design components were real Bridge pattern implementations; the two others
delegated many operations to another class, which provided much functionality,
but did not have the semantics of an Implementor for the Abstraction of the con-
sidered component.

6.4 Related Work

Below, we will briefly review a number of studies dealing with the detection and
the identification of design patterns. Also, we will discuss related work address-
ing fine-grained design recovery. Finally, we will reflect on the added value of
our approach in the realm of documentation with patterns.

Several studies reported in the literature aim at detecting design patterns in
object-oriented software based on structural descriptions. Kraemer and Prechelt
(1996) developed a Prolog-based front-end to the Paradigm Plus CASE tool.
They observed a precision ranging from 14 to 50 percent. Similar results are
reported by Antoniol et al. (1998). However, as the number of patterns found in
the analyzed software was close to zero, the precision factor has little signifi-
cance. Moreover, both studies report that only the header files of C++ programs
were analyzed, meaning that their experiments were conducted in the absence of
information on function calls and object instantiations. Moreover, Kraemer and
Prechelt (1996) do not report whether they considered polymorphism in their
tool, and Antoniol et al. (1998) mention that they do not handle polymorphism,
information that we consider indispensable for the identification of pattern like
structures in source code models. Note that we consider the information cur-
rently managed by our repository (Table 6.1) as the minimum for serious recov-
ery of pattern-based design components. Finally, we believe that only by the
direct involvement of the human analyzer in the recovery process interesting
pattern-based design components may be found.

Other studies that have influenced our work report on identifying patterns in
existing software. Brown (1997) reviews the Gamma et al. patterns and provides
an overview of how to identify each pattern in Smalltalk software. He discusses
the difficulties of recovery of patterns in existing software, but also stresses the
feasibility of detecting useful patterns in source code. Martin (1995) summarizes
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his experience when manually looking for patterns in existing software. Despite
the fact that the application that his team investigated had been designed without
any formal knowledge of patterns, they discovered that “in one or other form
every pattern of Gamma et al. was used.” Both studies convey the message that it
is the human analyzer who needs to be in control of the detection process.

The recovery of design components has been subject of active research under
varying terminology. Rich and Waters (1988) coin the term cliché for “com-
monly used combinations of elements with familiar name.” Similarly, Baniassad
and Murphy (1998) define conceptual modules as “a set of lines of source code
that are to be treated as a logical unit.” The difference between these techniques
and pattern-based recovery of design components is in the level of abstraction.
Whereas clichés and conceptual modules represent only small algorithms or data
structures, patterns illustrate the complex relationships among the large pieces of
software and, equally important, embody informal explications of the rationale
behind the suggested designs. It is our contention that reverse engineering of
large-scale software needs to put more emphasize onto discovering these well-
known patterns of thought. Revisiting the statement of Johnson in our introduc-
tion, it is the rationale behind the design decisions (the why) that needs to be
recovered to gain insight into more complex pieces of software. Clichés, con-
ceptual modules, and alike cannot convey the why, but certainly are much
needed building blocks for achieving more elaborate recovery of pattern-based
design components.

Many authors have discussed the advantages of documenting software, and in
particular frameworks, with pattern (Butler et al., 2000; Johnson, 1992; Odenthal
and Quibeldey-Cirkel, 1997). Johnson brings their cause to the point: “Patterns
can describe the purpose of a framework, can let application programmers use a
framework without having to understand in detail how it works, and can teach
many of the design details embodied in the framework™ (Johnson, 1992). We
claim that only the visualization of the implemented patterns in the context of the
application under investigation will make documentation with patterns truly ef-
fective, elucidate the rationale behind the framework’s design and make the ap-
plied patterns more tangible and understandable. In reverse engineering, pattern-
based documentation of existing frameworks and large-scale software needs so-
phisticated tool support allowing the human analyzer to look at the software
from different perspectives, and thus gain a more-encompassing picture of the
complex relationships among the system’s constituents.

6.5 Conclusion

Design patterns capture the subtle design decisions that have proven successful
in many software development projects. They document the rationale behind the
design, which is so important to understand when evolving a software system to
meet_the continuously changing requirements. Our experience when manually
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analyzing parts of two telecommunications software systems of Bell Canada con-
firm the findings of Martin that most of the design patterns of Gamma et al.
(1995) are present in sizeable software systems (Martin, 1995). However, we
also learned that the effort for the manual recovery of a significant number of
design patterns in large-scale systems is infeasible, even with the use of state-of-
the-art software comprehension tools, such as SNiFF+. Our study shows that
effective pattern-based reverse engineering of sizable software systems is indeed
feasible, but that it requires both support from pattern analysis tools and tech-
niques, as well as the cognitive strength of the human analyzer.

In this chapter we have discussed the SPOOL environment for the pattern-
based recovery of design components. We assessed our technology based on
three case studies taken from industrial C++ software systems. The visualization
technique of growing bounding boxes around the reference classes of pattern-
based design components proved very helpful to gain an immediate understand-
ing about the nature of the patterns in the software under investigation. In most
cases, the size of the bounding box indicated if the recovered design component
also carried the intent of the respective pattern. Advanced tool support compris-
ing extraction of the design component into a separate diagram and design navi-
gation helped verify the existence of the pattern.

Beyond extending the SPOOL environment with additional visual aids, we
plan to work in five areas related to this study. First, we will continue conducting
studies about specific design patterns and idioms, covering further patterns from
the catalogue of Gamma et al. (1995) and beyond (Schauer et al., 1999; Keller
and Schauer, 2000). Second, we wish to extend our repository to capture all
major constructs of C++ and to cover additional programming languages. The
schema of the repository will be based on multiple logical layers, each increasing
the level of abstraction of the source code models. Third, we plan to supplement
our current visualization technique, which is based on bounding boxes around
the reference classes of pattern-based design components, with alternative tech-
niques. This includes the UML-style pattern notation (UML, 1997) and compo-
nent-specific rendering techniques. For example, to convey the essence of the
Layers architectural pattern (Buschmann et al., 1996), its classes should be illus-
trated top-down according to their association with a layer, or, once jKit/GO
(Instantiations, 2000) supports three-dimensional graphic objects, within three-
dimensional space, each layer being a two-dimensional structure diagram and the
connections among the layers being represented in the third dimension. Fourth,
we aim to investigate the recovery of pattern-based design components with full-
text, pattern-matching techniques. We believe that analyzing the names of identi-
fiers and comments can retrieve much information about patterns. Fifth, we will
integrate our environment with the suite of software comprehension tools of Bell
Canada, including source code parsers for several programming languages, a
tool for clone detection, and an environment for metric analysis. Such integration
will provide the software quality assessment team of Bell Canada with an indus-
trial-strength environment that can support them in the assessment of supplier
software for maintenance and evolution.
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7
Approaches to Clustering for Program
Comprehension and Remodularization

Timothy C. Lethbridge
Nicolas Anquetil

7.1 Introduction

When presented with a large legacy system which has little design information,
an important approach to understanding and maintaining it is to automatically
divide it into a more understandable set of modules or subsystems-a process
called remodularization.

In this chapter we review several remodularization approaches that employ
clustering technology. These approaches require making decisions that include
which algorithms to use as well as which information to use as input to the algo-
rithms (e.g., words in file names, use of global variables, etc.). Here we discuss
several alternatives and present some experimental evidence to help guide deci-
sion making. We also present various methods to evaluate the effectiveness of
the clustering approaches. These methods include examining the coupling and
cohesion of clusters, as well as the size of the largest cluster created and the
number of unclusterable singleton files that remain. In Chapter 8 of this volume,
Tzerpos and Holt provide a discussion of the clustering problem focusing on
automatic techniques that are also used in other disciplines.

Many legacy software systems are very difficult to understand and change.
An important reason for this can be that they are not effectively divided into
modules and subsystems. It can be useful to automatically rearrange the soft-
ware into a new set of modules and subsystems, either in order to permanently
restructure the system or to temporarily view it from an alternative perspective.
We will refer to both tasks as remodularization.

Remodularization can be accomplished using clustering technology. In this
chapter we hope to guide those who wish to try clustering, by presenting a re-
view of many alternative approaches as well as the results of some experiments.

In Section 7.2, we present an overview of various algorithms for clustering,
with an emphasis on hierarchical algorithms. In Section 7.3 we discuss how
these algorithms can be evaluated. Then in Section 7.4 we discuss some experi-
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ments we have performed to help determine which algorithms are best for re-
modularization.

7.2 Approaches to Clustering

Software engineers arrange software components into modules to reduce com-
plexity, and promote reuse. For example, methods are arranged into classes;
procedures and classes into files; and files into packages, directories and librar-
ies, etc. In this chapter, we will describe how to use clustering algorithms for
remodularization.

7.2.1 Coupling, Cohesion and Hierarchies: Characteristics of
Good Modularization

The main purpose behind creating well-designed modules is to make the soft-
ware easier to understand and therefore to change. In conventional software en-
gineering practice, one recognizes the following as important characteristics of
good modularization:

® Aspects of the software that are logically related are kept closer together
and therefore easier to find and manipulate. This property is known as high
cohesion.

¢ There are fewer linkages between diverse parts of the system; therefore,
changes are more likely to have a more localized impact. This property is
known as low coupling.

¢ Modules are organized into hierarchies of subsystems, with increasing ab-
straction as one moves upward towards the root. Modules that are lower in
the hierarchy (closer to the leaves) have higher cohesion.

®  One should avoid modules or subsystems that are either too large or too
small. In other words, the hierarchy should be reasonably balanced.

Coupling and cohesion tend to be inversely related: A module that has higher
cohesion because it contains components that are closely related tends to have
lower coupling. Low coupling and high cohesion make it easier to achieve in-
formation hiding, whereby the internals of a module need not be known by those
who work only with the interface. Unfortunately, the coupling, cohesion and
hierarchical organization of many software systems is often quite poor. This is
due to reasons such as the lack of a directory hierarchy in older operating sys-
tems, the lack of knowledge about software architecture on the part of the origi-
nal designers, and the undermining of the original modularization as many addi-
tions and alterations were made.

Effective software remodularization therefore involves trying to rearrange
software source code into a new, reasonably balanced, module hierarchy that has
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lower average coupling and higher average cohesion. One might also choose
additional criteria to evaluate a potential remodularization, but we believe these
are among the most important.

7.2.2 Manual and Automatic Approaches to Remodularization

There are two general approaches to remodularization: manual and automatic.
The manual approach relies on the judgement of experts to rearrange the system.
However, automatic approaches will often be superior in large systems because
they may be more cost effective and reliable; in addition, human experts may
not be available. In this chapter we will discuss automatic approaches.

Automatic and manual approaches can be combined: experts could evaluate
several automatic clusterings and select the best, or the automatic approaches
could use limited expert input as one of their decision-making criteria. Auto-
matic clustering of software can be used for permanent remodularization, or to
provide alternative and temporary views for a person who is trying to understand
the software from a certain perspective.

No matter which approach is used, Clayton et al. (1998) points out that it is
important to have a firm objective in mind when designing and evaluating a re-
modularization approach. The objective might be greater flexibility, higher co-
hesion, lower coupling, an object-oriented architecture, or some combination of
these.

7.2.3 Overview of Automatic Clustering

Automatic clustering can be used in many disciplines to organize things into
groups. For example, in biology it has been widely used to group organisms into
species, genera, families, etc. The clustering literature is therefore very exten-
sive. Wiggerts (1997) presents an overview of this literature and its application
to remodularization. Lakhotia (1997) proposes a comparison framework for
various aspects of clustering as applied to software remodularization.

The purpose of the current chapter is to shed additional light on clustering
approaches so that better decisions can be made when applying them to re-
modularization. We do this, in part, by presenting some experimental results
later in the chapter.

To apply automatic clustering, one needs to make several decisions:

What are the elements to be clustered together? In software remodulari-
zation, this is most frequently files, although routines or methods can also be
clustered to create new files or classes. The latter is important in attempts to
make systems more object-oriented (Girard et al., 1997).

What relationships between elements should be considered? There are
many possibilities for software remodularization; this topic is explored in the
next section.
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How do we represent information about the elements and relationships?
We discuss this in Section 7.2.5.

What clustering algorithm should be used? There are several different
classes of algorithms, and many alternatives within each class. These are dis-
cussed in Section 7.2.6. Some of these algorithms are also in common use in
other disciplines. These classical clustering algorithms are also surveyed in
Chapter 8.

7.2.4 Relationships for Clustering

An automatic clustering algorithm relies on evaluating the relationships among
the elements to be clustered—in our case software components. Such an algo-
rithm will try to keep related components in the same cluster, both to increase
cohesion and at the same time to reduce coupling. Also, the clusters that are
most closely related will be kept inside higher-level clusters, hence closer to the
leaves of the hierarchy. Since there are many different kinds of relationships,
and vast numbers of potential intercomponent links based on these relationships,
choosing the best approach for automatic clustering requires considerable ex-
perimentation. The best approach will likely vary from one software system to
another. The following are some of the categories of relationships among soft-
ware components that automatic clustering tools may consider:

1. Direct static uses relationships: Two components are related if one uses
the other in some way. For example, a file includes a file, a routine calls
another, a file contains routines that call routines in another file, etc.

2. Sibling static uses relationships: Two components might be considered
related if they both use some third thing. For example: two files share the
same included file; two routines call the same routine, or access the same
global variable, or use the same type, etc. The more things used in common
by the components, the closer they are related.

3. Dynamic relationships: Two components might be considered related if
execution traces show that they are used together to perform a particular
operation at run time. The more frequently, and the closer in time, the two
components appear together in a trace, the closer they can be considered
related.

4. Similar use of descriptive words: Two components might be considered
related if they contain the same words or phrases embedded in naming con-
ventions and comments. The use of similar words implies they deal with
similar abstract concepts. The more words or phrases shared by the com-
ments or names of the components, the closer they are likely to be related.
See Anquetil and Lethbridge (1999a) for an example of the application of
this approach.

5. History of common modification: Two components might be considered
relatedyif theyshave beenjalteredytogether in the past to effect a particular
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change to the system. The more changes that have required altering both
components, the closer they are likely to be related.

6. Membership in a design pattern: Two components might be considered to
be related if they both participate in an instance of a design pattern, or both
have the same role in several instances of the same design pattern. Well-
understood design patterns for object-oriented code may be found in
Gamma et al. (1994); however one may consider many other types of pat-
terns. Examples of clusters built from patterns are: (1) All adapters might
be considered related; (2) a particular adapter and adaptee might be consid-
ered related; (3) after defining a utility as a routine that has high fan-in, all
utilities might be considered related (and hence put in a utility package).

Many of the most important relationships defined in the above list (catego-
ries 2 and 4, and many cases of 3, 5, and 6) are similarity relationships in the
sense that the related elements share a particular property; we will exploit this
fact later. Some categories (1, 2, 3, and 6) contain formal relationships between
components: We define a formal relationship to be one that represents part of
the implementation of the system. The behavior of the system would normally
be different if such a relationship were different. Conversely, categories 4 and 5
contain informal relationships; however their informality does not mean that
such relationships are less useful. Design intent is captured most strongly in
categories 1 and 6 and also to a significant extent in categories 2, 3, and 4. Con-
versely, emergent! properties of design are captured in categories 5 and 3, and
to a lesser extent in the others.

7.2.5 Combining and Representing Information About
Entities and Relationships

A convenient way to represent information about the entities and relationships
described above is to represent each entity as a vector of attributes. The more
similar two vectors are, the more closely related will be the entities that the
vectors describe. For example, if using the sibling static uses relationship “file
inclusion,” then the attributes set would be “all the files that might possibly be
included.” Vectors for each entity would be of equal length (the number of at-
tributes) and each vector would contain “one” in those positions corresponding
to files that are actually included by the entity, and “zero” otherwise. In this
case, “file inclusion” would often be referred to as the descriptive feature.

Table 7.1 shows how information might be encoded for each of the catego-
ries of relationships listed in Section 7.2.4. Note that in many cases this encod-
ing would result in extremely long vectors; hence, the clustering algorithms are

! Properties that may not have been expected or intended by designers, e.g., two data
structures might be related because users tend to modify one then the other, or because
maintenance requests always require changes to both.
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Table 7.1. Representation of software entities as vectors of attributes that can then be
compared for similarity.

Category of
relationship

Possible attributes
(vector elements)

What each attribute might represent so
that the vectors can be compared for
similarity

1.

Direct static For every interesting

Whether the current entity is a member

uses relationship, every pair  of the pair.
of entities?

2. Sibling static  For every interesting The degree of relatedness between the

uses relationship, every en- current entity and the vector element
tity entity. This can be a Boolean indicat-
ing the existence of a relationship or
can be a count of the number of occur-
rences.

3. Dynamic Every entity Looking at execution traces, how close
in time do the current entity and the
vector element entity appear?

Every time period in a Whether the current entity appears in
trace, at some level of the time period, or the number of times
discretization it appears.

4. Similar use of Every imerestingb word  Whether or not the word is used in the

words current entity, or the number of times it
is used

5. History of Each official change Whether the current entity was

modification submitted to the con- changed, or a numeric value quantify-
figuration management  ing the extent of changes.
system

6. Membership For every interesting Whether the current entity participates

in a pattern pattern, every entity in the pattern

Every role in every
interesting pattern

Whether the current entity plays the
role.

4Since we intend to compare vectors element-by-element for similarity, the attributes must be such

that the two related entities have the same attribute value when they are related. This necessitates

representing direct static uses relationships as pairs of entities, meaning that these vectors would be

prohibitively long. Direct static uses relationships are therefore unsuitable for this clustering ap-
proach, so an alternative approach, e.g., Bunch (Mancoridis et al., 1998), might be used.

blnreresting words can be a set of technical terms extracted automatically or semi-automatically

from the system’s comments; or can be all words except a predetermined set of common English

words (stop words).

typically computationally expensive. Also, many of the vectors will be sparse,
with'most elements “zero” or “false”’"Although in the table completeness, en-
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coding direct static uses relationships are shown as similarity vectors, this is not
practical because the vectors would be prohibitively long—sibling static uses
relationships can be used instead.

When clustering, it is common to just use one type of relationship; however,
at the cost of longer vectors and hence greater computing time, one can combine
information from several relationships. Two issues can then arise: conflicts and
redundancy.

First, it is necessary to handle conflicts among the categories of relation-
ships: For example, what should one do if a static uses relationship (relationship
category 1 or 2, above) says that two components are closely related, while the
history of common modification (category 5) suggests they are not? In this case,
the overall similarity might be merely moderate, which may not be what is
wanted. An approach might be to give absolute priority to some relationships.

Secondly, one has to handle redundancy in the relationships. For example
imagine two files, where one includes another (i.e., a direct static uses relation-
ship). They will likely refer to some of the same symbols (a sibling static uses
relationship), have similar words in their comments (informal knowledge) and
have been modified at the same times in the past.

Performing clustering in the presence of all this redundancy can cause algo-
rithms to take much more computing time than necessary, so it might be a good
idea to discover which relationships have the least mutual redundancy and
choose to use just those. On the other hand, the redundancy could have a rein-
forcing effect on clustering decisions: If several relationships agree that two
components are related, then perhaps it is more certain that they should be in the
same cluster.

7.2.6  Clustering Algorithms

In the previous three subsections, we have discussed the software elements and
their relationships that can be used for clustering, as well as how they can be
represented as attribute vectors. In this section, we survey a few approaches to
clustering that make use of these vectors.

It is important to understand that these algorithms do not discover some hid-
den or unknown structure in a system; instead they impose a structure on the set
of entities they are given. They decide to ignore some links and favor others; a
decision based on such factors as the metrics used to compute similarity between
two vectors or the sub-lgorithms used to group similar entities together. The
structures imposed by the different algorithms have different qualities; only a
few may be useful to software engineers. Several classes of algorithms can be
used to generate clusters; these are discussed in the next three subsections.

Hierarchical Clustering Algorithms

Hierarchical clustering algorithms start by imagining the elements are arranged
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in an n-dimensional space, where n is the number of elements in each vector.
Some hierarchical algorithms are agglomerative; these seek the most similar
elements or existing clusters in this space and place them together in a new,
larger, cluster. The algorithms continually build larger and larger clusters in this
manner until all elements are in one large supercluster with the individual ele-
ments being the leaves of the hierarchy. It is also possible for hierarchical algo-
rithms to work in reverse, starting with all elements in one cluster and finding an
appropriate way to split each cluster into subclusters, based again on distance in
n-space.

Hierarchical algorithms differ depending on their choice of two key subalgo-
rithms: The metric used to compute the similarity of vectors, and the linkage
rule used to join together two clusters whose elements vary in similarity. We
will outline these issues in Sections 7.2.7 and 7.2.8, respectively. The experi-
ments we report in Section 7.4 are primarily based on hierarchical clustering
algorithms.

Partitioning Algorithms

Partitioning algorithms create a set of clusters that form a partition of the ele-
ment set. There are many flavors of them: They may start with a fixed number
of clusters and put each element in one of these; or they may start with no clus-
ter at all and create new ones as new elements are inserted that cannot be joined
to any existing cluster, etc. One tool using such an algorithm is Bunch (Man-
coridis et al., 1998). It is based on a hill-climbing algorithm that tries to maxi-
mise overall cohesion and minimize overall coupling. For comparison, we will
present a few results from using Bunch in Section 7.4.

Concept Analysis Algorithms

Starting with attribute vectors, concept analysis algorithms build a lattice whose
nodes are called concepts, and which can be converted to clusters. A concept
contains a set of elements and is described by a set of attributes. A concept that
is the parent of several concepts has just those attributes that are valid for all the
child elements. The top, or supremum, concept contains all the elements, but
most likely has no attributes since nothing is likely to be true for all elements.
The bottom, or infimum, concept contains the empty set of elements as well as
all attributes.

Concept analysis generates the complete set of concepts that are possible
given the vectors. Unfortunately, this set will normally be vast. To be useful to a
software engineer there has to be some way to pick a subset of intermediate-
sized clusters. One feature of concept analysis is that an element can be in more
than one of the resulting clusters; this may or may not be useful.

Examples of applications of concept analysis to software remodularization
include Kuipers and van Deusen (1999); Lindig and Snelting (1997); and Siff
and Reps (1997).
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7.2.7 Similarity Metrics

Similarity metrics are used in clustering to compute the closeness between two

vectors. Here we present an overview of some alternative such metrics; see An-

quetil and Lethbridge (1999b) or Sneath and Sokal (1973) for more details.
Three important categories of similarity metrics are as follows:

Association Coefficients

Association coefficients consider each attribute as a binary value and compute
similarity based on the number of zeros or nonzeros in each vector. Several dif-
ferent formulas can be used, based on the following four quantities: a=I1XYll,

b=lIx\Yl, c=lINXIl and d=lF\(XUY)H, where X and Y are the two vectors being
compared and F is a vector of all-ones. Popular association coefficients include:

e  Simple-matching: 1 - ((a +d)@+b+c+ d))
o Jaccard: 1 —(a/(a+b+c))
o Sgrensen-Dice: 1 -((a+d)/2a/(2a+b +c))

Distance Coefficients

Distance coefficients consider each attribute to be a scalar value. Popular dis-
tance coefficients include:

IIF1l

Z(‘xi _)’1)2

i=t

e Taxonomic:

I
e Camberra: qui - y,»|/(xi +y, ))
il

where x, and y, are elements of X and Y.

Correlation Coefficients

Correlation coefficients compute a value on a +1 to -1 scale, which is then
mapped to a 0.1 similarity scale. The linear correlation coefficient is widely used
in statistics.

The Zero Problem

Choosing an appropriate metric requires experimentation, and the appropriate
choice depends strongly on the type of vector. An important problem that must
be resolved is dealing with sparcity, i.e., the very large numbers of zeros in the
vectors; some vectors may, in fact, be all zeros. If two vectors have zero for the
same attribute, it does not mean that they should be considered more similar. For
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example, the fact that routine x and routine y do not call routine 7 is of very little
interest; what is important is if they both call routine w.

A good association coefficient such as Sgrensen—Dice and Jaccard will
counter zero problems by only considering the presence of ones. The formulae
for computing correlation are also somewhat immune to the zero problem. On
the other hand, the simple matching and distance coefficients do not work very
well, in the latter case because vectors with zero for many attributes will natu-
rally be closer together in n-space.

7.2.8 Linkage Rules

We have described above how one might compute the similarity (or conversely
the distance) between two individual elements. Agglomerative hierarchical algo-
rithms then use linkage rules to compute distance between successively larger
clusters. Imagine the scenario shown in Figure 7.1, where we want to create a
new cluster by combining the closest two of the three existing clusters. In order
to compute the overall distance, d, between a pair of clusters the following are
several alternative linkage rules we can use, where d, is one of the distances
between a member of one cluster and a member of the other (i and j iterate over
the members the two clusters whose distance is being computed):

¢ Single linkage: d = min(di,j). This is the closest-neighbor rule and favors
noncompact but more isolated clusters, hence it should encourage low cou-
pling. In Figure 7.1, the closest members of C2 and C1 are closer than the
closest members of C3 and C1; hence C1 and C2 would be joined into a
larger cluster.

e Complete linkage: d = max(di,j) This is the furthest-neighbor rule and fa-
vors compact but less-isolated clusters, hence it should encourage high co-
hesion. Referring to Figure 7.1, C1 and C3 would be joined if this rule were
used.

* Weighted average linkage: d = average(di,j). This is a compromise between
single and complete linkage.

¢ Unweighted average linkage: This is similar to the weighted average, but
deals more fairly with the situation where the members of the clusters are

2 C3
o (T\
Cl

Figure 7.1. Three example clusters used to illustrate linkage rules.
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themselves clusters with unequal numbers of elements. It gives each ele-
ment equal weight (the weighted average linkage rule, on the other hand,
results in the elements of smaller clusters being given more weight).

7.3  Approaches to Evaluating Clustering

In the last section we discussed a large number of options that one can use when
performing clustering. In this section, we discuss three criteria for evaluating a
clustering approach:

1. The expert criterion that compares an automatic remodularization to one
created by experts,

2. The design quality criterion that uses both coupling and cohesion metrics,

3. The algorithm behavior criterion that evaluates size and inclusiveness of the
clusters generated by the algorithms.

These evaluation criteria are best used together. An algorithm should give good
results for all three.

The three evaluation criteria work on a partition of the element set, whereas,
our experiments generate a hierarchy. In order to convert hierarchies to parti-
tions, we chose to cut the hierarchy of clusters at various heights and use the
evaluation criteria separately for each cut. The heights vary from zero, where all
clusters contain a single element, to one, where all elements are gathered into
one big cluster. This method proved useful in analyzing the dynamics of the
cluster hierarchy, that is to say, how the evaluation criteria behave as the clusters
get bigger and bigger.

7.3.1 The Expert Criterion

When evaluating a clustering algorithm using the expert criterion, one compares
the clusterings produced by the algorithm to modularizations created by human
designers, who we call experts. If the expert modularizations for several systems
are very similar, or congruent, to those produced by the algorithm being evalu-
ated, then we conclude that the algorithm has good properties. If the expert
modularization is very different from what the algorithm generates, then we can
conclude that either the algorithm is poor, or else has divided the system in a
different (but not necessarily bad) way.

To obtain expert modularizations, we could ask experts to cluster systems
manually. However, this would not be necessary in the case of systems where a
good modularization is captured in a configuration management system or a
directory hierarchy. We can use these existing modularizations to calibrate our
algorithms, which will then be used to cluster those systems that are not well
modularized.
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There are several approaches to determine the similarity, or congruence,
between two different module hierarchies, each containing the same elements.
Here we discuss two such approaches.

Comparison of Pairwise Distance Measures (PDMs)

Lakhotia and Gravley (1995) summarize the method of comparing pairwise dis-
tance measures. For each pair of elements in a cluster hierarchy, one first com-
putes d, the distance between the elements. The distance can be calculated as the
shortest path between the elements in a graph representing the hierarchy of
clusters, although several alternative methods are also available. The distance
would be zero if the elements were in the same cluster, and large if the only en-
closing cluster was the root cluster containing all others. The distance is ex-
pressed as a value from O to 1, where 1 would be used for the maximum possible
path length.

The following equation illustrates how, for each pair of elements z and z;,

one can sum the differences between the pairwise distances in cluster hierarchies
1 and 2. The congruence would be equal to 1 for identical hierarchies.
nl n2

congruence = 1— ‘Zl'zlldl (2,2;) —d2 (2, 25)
=)=

Lakhotia and Gravley outline several alternative equations that can be used,
each more complex than the one shown here; however, the principle of all such
equations is similar.

Comparison of Intra and Inter Pairs

Instead of comparing entire hierarchies, one can compare two sets of clusters
—where a set of clusters is a cut across a hierarchy at some level as described
earlier, or where it is the result of a nonhierarchical clustering approach. A pair
of entities is intra if both are members of the same cluster and inter if they are
members of different clusters.

The information-retrieval metrics precision and recall can then be used to
compare the sets of pairs. Precision is the percentage of intra pairs proposed by
the automatic clustering method, which are also, intra in the expert set of clus-
ters. Recall is the percentage of intra pairs in the expert set, which are also intra
in the automatic set. For more details about this approach, see Anquetil and
Lethbridge (1999b).

7.3.2 The Design Quality Criterion

The design quality criterion for evaluating a clustering algorithm relies on
measuring coupling and cohesion. There are several ways of doing this, but one
of the simplest is based on the same attribute vectors and similarity functions we
described in Section 7.2.
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Cohesion can be computed as the average similarity of all the intra pairs (see
Section 7.3.1 for a definition of these), while coupling is the average similarity
of all the inter pairs. As with the clustering methods themselves, the choice of
entities and relationships for the vectors is important, as is the choice of similar-
ity measure (Patel et al., 1992; Kunz and Black, 1995).

When using a design quality approach it is important to use different attrib-
utes for evaluation than were used for clustering; otherwise one is guaranteed
artificially good results. For example, one could use vectors where the attributes
are “common calls to routines” to compute the coupling and cohesion of a clus-
tering scheme that is based on “common uses of words in file names.”

7.3.3 The Algorithm Behavior Criterion

Clustering algorithms can result in sets of clusters with two key undesirable
properties. These properties express imbalances in the sizes of the clusters, and
can be illustrated using astronomical analogies (Hutchens and Basili, 1985).

®  One excessively large cluster (a black hole): This occurs when an algorithm
decides to keep adding elements to one single cluster without creating any
additional clusters, that is, sucking them all into the black hole. A good met-
ric to capture the tendency for this to happen is the size of the largest cluster
(in a given cut through the cluster hierarchy), as a percentage of the total
number of elements. The ideal value of this metric is near 1/n, where n is
the number of clusters in the cut; at this value, the clusters in the cut have
nearly equal size.

e  Many leftover unclustered elements (a gas cloud): This occurs when some
subset of the elements are clustered into a hierarchy, but many elements are
left out. A suitable metric is the number of unclustered elements, expressed
as a percentage of the total number of elements; the ideal value is zero.

More details of these properties can be found in Anquetil and Lethbridge
(1999b). Examples of the application of the various algorithms are presented in
the following section.

7.4  Results of Experiments

We conducted a series of experiments to determine which of the various algo-
rithms described in Section 7.2 worked best for software remodularization. Due
to space limitations, we present here only a shortened overview of the selected
results. More detailed results and additional information can be found in An-
quetil and Lethbridge (1999b), and interested readers are encouraged to visit the
web site at http://www site.uottawa.ca/~anquetil/Clusters/.

We experimented with four different systems, the Linux kernel (available at
hitp://www.kemnel.org/), Mosaic version 2.6 (at ftp:/ftp.ncsa.uiuc.edu/Mosaic/
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Unix/source), gcc version 2.8.1 (at http://www.gnu.ai.mit.edu/software/gcc/
gcc.html), and a substantially large proprietary telecommunications system. Ba-
sic metrics about these systems has been tabulated in Table 7.2. for the reader’s
convenience.

We used files of source code as our entities to be clustered; these do not
count include files. We used the seven types of attributes for our vectors that are
shown in Table 7.2. Five of the attributes were sibling static uses relationships:
uses of global variables, types, and macros as well as calls to routines and inclu-
sions of files. The remaining two attributes captured informal information—the
words found in identifiers (Anquetil and Lethbridge, 1999a) and the words
found in comments.

Table 7.2. The four systems used in our experiments. The last seven lines are the attrib-
utes we used in our experiments.

Gec  Mosaic Linux Telecom System
Lines of code 460K 140K 600K 2M
Files (entities) 215 225 875 1,817
Global variables 684 152 770 12,982
Types 209 323 906 6,586
Macros 1,710 1,292 8,827 N/A2
Called routines 1,753 1,091 1,904 7,306
Included files 129 262 457 1,655
Words in identifiers 4,739 3,821 11,111 7,105
Comment words 6,072 5,967 14,431 12,446

2 Macros are treated as function calls by the parser that processes this system.

7.4.1 The Zero Problem with Attributes

As discussed in Section 7.2.5, it is best to compose the descriptive vectors from
attributes that are less likely to have values equal to zero. One problem with
such attributes is that some of the similarity metrics do not work well when there
are many zeros. However, an even worse problem occurs when a vector is com-
posed of all zeros. The problem is that two entities with such vectors cannot be
distinguished, no matter what algorithm is used.

Table 7.3 shows that global variables and called routines were most prone to
the above mentioned zero problem. This makes intuitive sense, since it is gener-
ally considered to be quite good practice to avoid the use of global variables,
and many low-level utilities will not call other routines. On the other hand, the
informal features tended to not have the zero problem. This was due to the fact
that it was normally possible to find usable technical terms in the identifiers or
the comments.
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Table 7.3. Percentages of elements (files) that had vectors of all zeros when particular
attributes were used as a basis for clustering.

Attribute Gece Mosaic  Linux  Telecom System Mean
Types 23 24 21 19 22
Global variables 44 65 53 28 48
Called routines 33 29 42 38 36
Included files 18 12 24 21 19
Macros 22 12 27 N/A 20
All of the above formal 8 6 10 12 9
attributes

Words in identifiers 4 0 0 15 5
Comment words 3 1 6 2 3

7.4.2 Overall Evaluation of Attributes

Figure 7.2 shows how the use of different attributes affected the performance of
clustering. The four graphs in this figure contain curves generated from Mosaic
using hierarchical clustering with the Jaccard similarity metric and complete
linkage. For comparison, we also present the results for Bunch in Table 7.4.For
the design criterion graphs, the “words in identifiers” and “all formal” attribute
vectors performed the best for cohesion. Both also performed better than
Bunch.2 “Words in comments” clearly performed worse. The differences for
coupling are not significant.

For the expert criterion graphs, again the “words in identifiers” and “all for-
mal” attribute vectors performed similarly and seem overall the best, while
“words in comments” has good recall. Among the individual formal features,
“file inclusion” is good while “variable use” has good precision.

General conclusions from these results are that it is important to use more
than one type of attribute, and to consider using formal attributes.

7.4.3  Evaluation of Linkage Rules

Figure 7.3 illustrates the effect of applying different linkage rules when
combining clusters into larger clusters (described in Section 7.2.8). The x-axis
shows clusters generated by cutting the cluster hierarchy at various heights. All
four graphs in Figure 7.3 were generated from Linux, using included files as
attributes and the linear correlation coefficient as the similarity metric.

As expected, complete linkage gave the best cohesion, but the least good

2 Due to the need for further experiments, we cannot conclude from this data that Bunch,
or non-hierarcical algorithms in general are poor; instead we can only say that hierarchi-
cal algorithms are comparable.
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Figure 7.2. Evaluation of several different types of attributes using design and expert

criteria.

coupling, single linkage gave the opposite effect, and the other two linkage rules
gave intermediate effects. The choice of linkage rule should therefore depend on
which design quality appears more important.

Table 7.4. Evaluation of several types of attributes using design and expert criteria (Mo-
saic) with the Bunch tool (Mancoridis et al., 1998).

Descriptive feature Cohesion Coupling Precision Recall
All formal 0.235 0.080 0.956 0.233
Variable use 0.252 0.094 0.748 0.021
Macro use 0.242 0.075 0.921 0.281
Routine call 0.267 0.090 0.967 0.078
File inclusion 0.236 0.081 0.890 0.197
Type use 0.263 0.080 0.888 0.190
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Figure 7.3. Comparison of linkage rules using design and expert criteria (Linux)

There was also a similar contrast between complete linkage and single link-
age when using the expert evaluation criteria (inter-intra pairs method). Com-
plete linkage, in general gave significantly better precision (i.e., the files it
grouped together tended also to be grouped together by experts). However it
produced worse recall (i.e., it failed to group together many of the pairs of files
that were grouped together by experts).

Figure 7.4 applies the algorithm behavior criterion to the complete and single
linkage rules. The larger the black area on the graphs, the better the algorithm is
behaving. This is due to the fact that it is generating clusters of intermediate
size.

In the case of Figure 7.4, complete linkage performs significantly better than
that of single linkage. These graphs were generated from gcc, using routines as
the attributes and the Jaccard similarity metric. Note that the x-axis has been
foreshortened.
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7.4.4  Evaluation of Similarity Metrics

Figure 7.5 presents graphs of three of the similarity coefficients, using the algo-
rithm behavior criteria. These graphs were generated from Mosaic using com-
plete linkage and the macro attributes.

The Jaccard and correlation coefficients both perform well, with a large
black area of intermediate clusters. Taxonomic distance, on the other hand, tends
to fall into a black hole pattern: It has a large cluster that at some point captures
all the intermediate clusters.

The results for the Bunch tool are 32 singleton clusters, 159 elements in in-
termediate clusters, and 39 in the largest cluster. This is very similar to the better
cuts in the hierarchical clustering approaches.

7.5 Summary and Conclusions

In this chapter we have reviewed many of the decisions that have to be made
when designing a hierarchical clustering algorithm for remodularization of soft-
ware. We also presented evaluation criteria and experimental data to illustrate
the effect of various decisions. The evaluation criteria included design qualities
(coupling and cohesion), comparison with expert modularizations, and the ten-
dency of the algorithm to produce a balanced set of clusters.

Several general algorithm approaches are available for clustering. We com-
pared hierarchical algorithms to a nonhierarchical tool called Bunch and con-
cluded that the hierarchical algorithms perform at least as well. However, they
might be favored because they produce a hierarchy of clusters instead of just a
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saic).

simple set. When given a hierarchy, it is still necessary to make cuts at one or
more levels to arrive at useful sets of modules or subsystems: Cutting in the up-
per half of the hierarchy gives the best results.

A key choice in designing a clustering algorithm is which sources of infor-
mation will be used to make decisions about the elements to put together. We
conclude from our experiments that one should make use of several sources of
information (e.g., uses of data types, uses of global variables, as well as file in-
clusions), and consider using informal information such as the words found in
comments and the names of identifiers. Hierarchical algorithms require that
these sources of information be composed into vectors—one vector per entity
being clustered.

The hierarchical algorithms make use of similarity metrics to compare vec-
tors. Several such metrics are available, but we found the Jaccard and correlation
coefficients had the best performance.

Finally, the algorithms require one to choose rules for combining clusters
into larger ones. The rules dictate whether the nearest (single linkage) or farthest
(complete linkage) elements in two clusters should be used when determining
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the distance between the clusters. We conclude that complete linkage is the best,
especially if high cohesion is a goal. The intermediate approach called un-
weighted linkage might be better if coupling is important. Single linkage tends
to result in a black hole phenomenon, where the algorithms build one single
large cluster.
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Automatic Architectural
Clustering of Software

Vassilios Tzerpos
Richard C. Holt

8.1 Introduction

The definition of the term large software is constantly changing, as the size of
software systems continues to increase rapidly. What DeRemer and Kron called
a large system in their classic paper on programming-in-the-large (1976), would
probably be classified as a medium-sized, if not small-sized, system today. Ad-
vances in hardware technology concerning the size, speed, and cost of primary
and secondary storage, as well as the advent of modern programming languages
and object-oriented programming, have allowed the size of software systems to
increase significantly in the last decade.

When a system becomes large, it is very hard to ensure that its structure is the
intended one. Moreover, the original documentation, if it exists at all, becomes
outdated as the system evolves, since the developers are usually busy trying to
meet the next deadline. The fact that developers often discontinue their associa-
tion with such large projects intensifies the problem, since they take a lot of the
knowledge about the system with them.

These factors contribute to the transformation of a piece of software into what
is known as legacy code or software, namely a piece of code that one uses but does
not necessarily understand. The drawbacks of having legacy code in a software
system become obvious when the time comes to alter its functionality, to adapt it
to a new hardware platform or operating system, or to improve its performance.
One needs to understand the code once again.

Even systems that are still under development are impacted by these problems.
Parts of the system might become legacy code, if only because they have not been
maintained for some time. Also, large projects often hire new people who must be
brought up to speed, but the seasoned developers are often too busy to help with
this. If the documentation is obsolete, then a newcomer is at a loss as to where to
start, and cannot know the full impact of a potential modification on the rest of
the system.
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Clearly, a solution to all these problems is required. If one could derive a de-
composition of a large software system into meaningful subsystems in an auto-
matic (or semi-automatic) way, then much of the effort required to understand and
to improve a software system would be alleviated. At the same time, this capabil-
ity would enable one to remodularize legacy code, as well as to identify candidate
subsystems for extraction of reusable components.

Automatic clustering techniques described in the literature claim that they can
do exactly this—detect the natural groups (or clusters) in a collection of entities,
such as procedures or source files. However, none of these algorithms has been
shown to be effective on large systems. Further research is required in order to
reveal the best approach to the problem of decomposing a software system.

Since research on clustering began long before the term software was coined,
many techniques are already in use in other disciplines. In this chapter, we will
argue that these techniques (heretofore called classic clustering techniques) can
be used effectively in a software context, once they have been adapted to fit the
peculiarities of this specific problem domain.

The structure of the rest of this chapter is as follows. Section 8.2 is a survey
of current approaches to the software clustering problem by researchers in the
software community. A more detailed discussion of general approaches to clus-
tering can be found in Chapter 7 of this book; here we will focus on automatic
clustering using classical techniques. In this light, Section 8.3 first presents clus-
tering techniques from other disciplines. In Section 8.4, we explain why we think
classic clustering techniques would be appropriate for the software version of the
problem. Section 8.5 outlines research challenges and open problems of interest.
Finally, Section 8.6 presents our conclusions.

8.2 Previous Work on Software Clustering

8.2.1 Knowledge-Based vs. Structure-Based Approaches

A common approach to the problem of understanding a software system and re-
covering its design is the knowledge-based approach. In the bottom-up version of
this approach, one attempts to reverse-engineer and understand small fragments of
the source code, using preexisting domain knowledge. One then combines these
fragments in an effort to understand the system as a whole, thus determining its
design. This approach has been shown to work well with small systems.

When dealing with large systems, however, this approach does not perform as
effectively. One of the reasons is that the size of the knowledge base is becoming
prohibitively large. Other reasons are outlined by Neighbors (1996): “Knowledge-
based understanding of large system semantics [is] currently too difficult for three
reasons: absence of a robust semantic theory, lack of problem domain specific
semantics, and knowledge spreading in the source code.”

For these reasons, the software clustering community mainly adopts structure-
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based approaches. In these approaches, the decomposition of a software system
is determined by looking at syntactic interactions (such as call or fetch) between
entities (such as procedures or variables). In this case, the problem of clustering a
software system can be thought of as the partitioning of the vertex set of a graph,
where the nodes are defined as procedures or variables, and the edges as relations
between these entities.

The rest of this section presents a survey of important publications in the field
of software clustering, as well as some of the recent approaches to the problem.

8.2.2 Early Work

In one of the early works in software clustering, Belady and Evangelisti (1981)
recognized the need to automatically cluster a software system in order to reduce
its complexity. They also presented a first approach to doing this for a specific
system. In addition, they provided a measure for the complexity! of a system
after it has been clustered. Their approach, however, only works with a specific
kind of system, and they did not validate their complexity measure. A point of
interest is that they did not extract information from the source code, but rather
from the system’s documentation.

Subsequent to this work, Hutchens and Basili (1985) performed clustering
based on data bindings. A data binding was defined as an interaction between
two procedures based on the location of variables that are within the static scope
of both procedures. They defined different kinds of data bindings, from simplistic
and easy to compute (e.g., a data binding between two procedures p and q exists,
if there exists a variable that belongs in the static scope of both procedures) to so-
phisticated and hard to compute (e.g., the data binding only exists if control flow
might be given to procedure g after the value of the common variable has been set
by p). On the basis of the data bindings, a hierarchy is constructed from which a
partition could be derived.

An interesting feature of their paper is that they compared their structures with
the developer’s mental model with satisfactory results. They also raised the im-
portant issue of szability; when the system changes slightly, how is the clustering
affected? Finally, they recognized that it might be necessary to disregard certain
information, such as omnipresent nodes, in order to get a clearer view of the struc-
ture of a software system.

One of the most active researchers in the area of software clustering in the early
1990s was Schwanke. His papers (Schwanke et al., 1989; Schwanke and PlatofT,
1989; Schwanke, 1991) and his tool (called ARCH) addressed the problem of au-
tomatic clustering in an innovative way. Although his approaches were not tested
against a large software system, they showed promise.

'Complexity here refers to how difficult it is to understand a system after it has been
clustered in a specific way.
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One of Schwanke’s main contributions was that he added to the classic low-
coupling and high-cohesion? heuristics by introducing the shared-neighbors tech-
nique (Schwanke and Platoff, 1989) in order to capture patterns that appear com-
monly in software systems. This refers to identifying subsystems that are not com-
prised of resources cooperating to implement a specific functionality, but rather
of resources providing similar functionality, such as the routines of a math library.

Furthermore, his maverick analysis (Schwanke, 1991) enabled him to refine a
partition by identifying components that happened to belong to the wrong subsys-
tem, and placing them in the correct one. He also attempted to provide names and
descriptions for automatically generated clusters, but not very convincingly.

Choi and Scacchi (1990) presented an approach to finding subsystem hierar-
chies based on resource exchanges between modules. The complexity of their
algorithm is O(n?), which is better than Schwanke’s O(n?), but still probably
too high for large systems. It appears to perform well on small examples, but its
ability to scale up is questionable.

Miiller has also been involved in the automatic clustering problem (Miiller and
Uhl, 1990; Miiiler et al., 1993). His approaches tend to be semi-automatic, mean-
ing that they are meant to help a designer perform clustering on a software sys-
tem. He introduces the important principles of small interfaces (the number of
elements of a subsystem that interface with other subsystems should be small
compared to the total number of elements in the subsystem) and of few inter-
faces (a given subsystem should interface only with a small number of the other
subsystems).

8.2.3 Recent Work

The last couple of years have seen a renewed interest in the problem of clustering
a software system automatically. The main reason for this is the rapid growth
of Reverse Engineering as a research field, largely due to the Year 2000 and Euro
conversion® problems. Understanding large software has become a very important
issue and clustering can help deal with it.

Lakhotia (1997) introduced a unified framework for expressing software clus-
tering techniques. Realizing that the techniques in the software clustering litera-
ture have been presented using different terminology and symbols, he proposed a
framework consisting of a consistent set of terminology, notation, and symbols,
which can be used to describe the input, output, and processing performed by
these techniques. Several existing techniques have been reformulated to conform
to this framework.

2Low coupling is a software engineering principle that requires that interactions be-
tween subsystems should be as few as possible. High cohesion is a related principle that
requires that interactions should be kept as much as possible within a subsystem.

3Financial software in Europe had to be modified in order to accommodate the common
currency.
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Neighbors (1996) attempted to identify subsystems with the ultimate goal of
hand extraction of reusable components. He looked at compile-time and link-
time interconnections between components and tried different approaches. The
approaches that were successful were based on naming and on reference con-
text. His results were validated by the developers of the system on which
he experimented.

An interesting alternative approach was presented by Anquetil and Lethbridge
(1997). Instead of looking at structural information, such as procedure calls or
data references, they only looked at the names of the resources of the system.
Their experiments produced promising results, but their approach has the obvious
drawback that it relies on the developers’ consistency with the naming of their
resources. In Chapter 7 of the present book, Lethbridge and Anquetil discuss in
more detail both their technique and other clustering techniques not covered here.

Bowman and Holt introduced the term ownership architecture (1999). They
argued that the organization of system developers into teams can help one un-
derstand a software system, and that such a structure is often congruent to the
system’s concrete architecture. An extensive case study involving the Linux oper-
ating system was presented to corroborate their conjecture.

Finally, various researchers have recently started looking at techniques used
in other disciplines in order to come up with a better solution to the automatic
clustering problem.

Wiggerts (1997) presented a survey of techniques used by the cluster analysis
community and attempted to reuse them for system remodularization. His future
plans include clustering a software system in “a more or less” object-oriented
way.

Several researchers attempted to use concept analysis in order to identify sub-
systems (Lindig and Snelting, 1997; van Deursen and Kuipers, 1999). Their ex-
periments demonstrated that concept analysis could be helpful in certain reverse-
engineering scenaria, such as object identification.

Mancoridis et al. (1998) treated clustering as an optimization problem and em-
ployed genetic algorithms in order to overcome the local optima problem of hill-
climbing algorithms, which are commonly used in clustering problems. His ex-
periments demonstrate encouraging results and fast performance.

824 Observations

By examining the literature on software clustering, one can draw interesting ob-
servations. First, most researchers seem to agree on structural-based criteria and
naming conventions as being the most promising approaches. However, there ex-
ists a variety of different interactions between modules that are used as the basis to
decide which resources depend on which modules. Isolating the interactions that
are appropriate for the software clustering problem, and determining the proper-
ties that make them so, are problems that need more study.

Another observation is that none of the approaches has been tested extensively
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against large software systems.” This omission becomes more interesting when
one considers that these approaches were developed with such systems specifi-
cally in mind. It is not clear whether these approaches scale up to large systems.

Also, validation of an approach against more than one system is required. Many
researchers present results that demonstrate that their algorithm performs very
well for a given software system. It would be interesting to see how the algorithm
performs on a number of systems, since an algorithm can be specifically tuned to
perform well on a particular system.

Finally, the issue of performance is very important. Most graph partitioning
problems are shown to be NP-complete (Garey and Johnson, 1979) or NP-hard.
The approaches presented above, however, are heuristic approaches that attempt
to reduce this complexity to polynomial upper bounds. What kind of complexity
is acceptable for large systems remains to be seen.

A more detailed description of open problems and research challenges can
be found in Section 8.5. In the next section, we present popular cluster analy-
sis approaches that have been used to solve clustering problems found in other
disciplines.

8.3 Classic Clustering Techniques

8.3.1 Background

Cluster analysis has been used in a number of different disciplines® in order to
solve a wide spectrum of problems. Its objective is to find algorithms and methods
for grouping or classifying objects. Many diverse techniques have been developed
in order to discover structure within complex bodies of data.

Computer science has also benefited from clustering techniques. For example,
the data base community uses clustering to group related entities together in rela-
tional (Silberschatz et al., 1997), as well as object-oriented data bases (Tsangaris
and Naughton, 1991). Data mining also employs similar techniques in order to
cluster spatial and multidimensional data (Ng and Han, 1994; Zhang et al., 1996).

In this section, we will present the most important cluster analysis techniques
found in the literature. Since these techniques are used in many disciplines, there
is considerable confusion of terminology. For example, the raw material to be
clustered has been called point, item, data unit, subject, object, element, entity
and many other terms. We will use the term object. Also, the aspects of the objects
that we look at in order to decide on the appropriate clustering have been called
variables, attributes, characters, or features. We will use the term feature.

4 A large system refers to an industrial system with a size of order of magnitude close
to a million lines of code.

SExamples include psychology, biology, statistics, social sciences, and various fields of
engineering.
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8.3.2 Similarity Measures

One of the first things that a clustering approach usually does is to decide on what
grounds two objects will be judged to be similar. Moreover, one needs a measure
that will decide which pair of objects are more similar than any other pair. The
answer to this problem is a similarity measure.

Similarity measures can be divided in two groups, depending on the kind of
information that serves as their input. We distinguish the following kinds of
information:

1. Relations between the objects. In this case, the problem can be represented
as a graph, where the nodes are the objects and the edges are the relations.
If we have more than one relation, then the graph will have multiple kinds
of edges.

Common similarity measures that deal with cases like this are based on
the number of edges connecting two objects, the length of the shortest path
between two objects, or the weight that different kinds of edges might have.
Whether the graph is directed or undirected is also a factor.

2. The score of the objects on different features. In this case, similarity is usu-
ally measured by association coefficients. These are expressed in terms of
the number of features that are present for each object. For this reason,
association coefficients assume binary features (i.e., reflecting whether a
feature is either present or not). The following table is used in order to cal-
culate various coefficients between object ¢ and object j:

Object 1 | Object j 0
Object i 1 a b
Object i 0 c d

In the above table, a is the number of features that are present for both ob-
jects, b the number of features present only for object ¢, and so on. Different
coefficients treat 0-0 matches (their number is given by d) differently and
also put different weightings on any of 