
www.manaraa.com

www.manaraa.com

Advances in Software Engineering

www.manaraa.com

Springer Science+Business Media, LLC

www.manaraa.com

Hakan Erdogmus Oryal Tanir
Editors

Advances in Software
Engineering
Comprehension, Evaluation, and Evolution

" Springer

www.manaraa.com

Library of Congress Cataloging-in-Publication Data
Erdogmus, Hakan.

Advances in software engineering: comprehension, evaluation, and evolution / Hakan
Erdogmus, Oryal Tanir.

p. cm.
Includes bibliographical references and index.

\. Software engineering I. Tanir, Oryal. II. Title.
QA76.758.E73 2002
005.I-dc21

Printed on acid-free paper.

© 2002 Springer Science+Business Media New York
Originally published by Springer-Verlag New York, Inc in 2002
Softcover reprint of the hardcover 1 st edition 2002

00-047091

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher Springer Science+Busmess Media., LLC,
except for brief excerpts in connection with reviews or scholarly analysis. Use in con-
nection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by the
Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Steven Pisano; manufacturing supervised by Erica Bresler.
Photocomposed pages prepared from the editors' Microsoft Word and TeX files.

9 8 7 6 5 4 3 2 1

SPIN 10776077

ISBN 978-1-4419-2878-8 ISBN 978-0-387-21599-0 (eBook)
DOI 10.1007/978-0-387-21599-0

www.manaraa.com

Preface

Software engineering is a rapidly growing and changing field. Over the last dec
ade, it has gained significant popularity, and it is now heralded as a discipline of
its own. This edited collection presents recent advances in software engineering
in the areas of evolution, comprehension, and evaluation. The theme of the book
addresses the increasing need to understand and assess software systems in order
to measure their quality, maintain them, adapt them to changing requirements
and technology, and migrate them to new platforms. This need can be satisfied
by studying how software systems are built and maintained, by finding new
paradigms, and by building new tools to support the activities involved in devel
oping contemporary software systems.

The contributions to the book are from major results and findings of leading
researchers, under the mandate of the Consortium for Software Engineering Re
search (CSER). CSER has been in existence since 1996. The five founding in
dustrial and academic partners wanted to create a research environment that
would appeal to the applied nature of the industrial partners, as well as to ad
vance the state of the art and develop fresh expertise. The research projects of
the Consortium are partially funded by the industrial partners, and partially by
the Natural Sciences and Engineering Research Council of Canada. Technical
and administrative management of the Consortium is provided by the National
Research Council of Canada-specifically by members of the Software Engi
neering Group ofthe Institute for Information Technology.

Software engineering research today overlaps with and borrows from many
disciplines in social, pure, and engineering sciences, outside its traditional core
disciplines of computer science and computer engineering. Examples are statis
tics, mathematics, economics, information management systems, systems engi
neering, cognitive science, sociology, and anthropology, to name a few. This
many-faceted nature of the discipline is strongly reflected by the coverage of
this book.

The book is organized into four parts: Empirical Studies, Architectural Re
covery, Maintainability, and Tool Support. The central thl'!mes-evaluation,
comprehension, and evolution-are present simultaneously in each of the parts
and in most of the individual contributions.

The topics in the book will appeal to different groups of readers:
• students wishing to get an understanding of the state of the art,
• managers who want to appreciate issues related to legacy systems,
• software researchers who want better understanding of particular areas,
• practitioners who wish to see real-world examples,

www.manaraa.com

VI Preface

• and software educators who are looking for thesis topics as well as a
framework for industrial and academic collaboration.

For the field of software engineering to grow, it needs a proliferation and ap
plication of good ideas to produce novel solutions. We hope the readers will feel
that this book provides some answers and plants seeds for future ideas to grow
upon.

www.manaraa.com

Acknowledgments

We would like to acknowledge the financial support provided to the Consortium
for Software Engineering Research by the Natural Sciences and Engineering
Council of Canada. We would also like to acknowledge the contributions made
by the National Research Council of Canada and its staff and by the many Ca
nadian Universities whose researchers and students have worked towards the
betterment of the software engineering discipline. The industrial partners de
serve special mention for having the vision to help create CSER, in addition to
their financial, technical, and intellectual contribution.

We thank the reviewers for their excellent feedback, which helped improve
the quality of the chapters. Last, but not least, we thank the authors who pro
vided the content and who have patiently revised their work to satisfy the de
mands ofthis edited collection.

www.manaraa.com

Contents

Preface ••••••••••••••••••••••••••••.•••••••••....•••••••••••••••••••••••••••••..•..••••••••••••••••••••••••••••• v
Acknowledgments ... vii
List of Contributors ••••.•••••••••.•••...••••••••••••••••••• xv
List of Referees •••••••••..••••..••••••••.•••...••.••••••••••••••••••••••••.••...•••••••••.••••••••••• xxvii

1 Introduction ... 1
1.1 Editors' Introduction .. 1

H. Erdogmus and O. Tanir
1.2 Organization of the Book ... 3

H. Erdogmus and 0. Tanir
1.3 Abstracts .. 7

H. Erdogmus and 0. Tanir
1.4 A Synopsis ofCSER: Structure, Objectives, Principles,

Results, and Directions .. 14
A. W. Kark and F. Coallier

Part I Empirical Studies •••••.•••••••....•.••• 21

2 Object-Oriented Metrics: Principles and Practice 23
K. El-Emam

2.1 Introduction .. 23
2.2 The Practical Use of Object-Oriented Metrics 24
2.3 Object-Oriented Metrics .. 28
2.4 Cognitive Theory of Object-Oriented Metrics 28
2.5 Object-Oriented Thresholds ... 36
2.6 Empirical Evidence .. 38
2.7 Conclusions .. 42
2.8 Acknowledgments .. 43
2.9 References .. 43

3 Studies of the Work Practices of Software Engineers Sl
T. C. Lethbridge and J. Singer

3.1 Introduction .. 51
3.2 An Overview of Approaches to Empirical

Studies of Software Engineering Practices 54
3.3 Techniques for Gathering Data in Observation Sessions 56

www.manaraa.com

x Contents

3.4 Modeling Work to Develop Requirements 60
3.5 A Case Study: Empirical Studies at Mitel... 65
3.6 Summary and Conclusions ... 69
3.7 Acknowledgements .. 70
3.8 References .. 70

4 Assessing the Usefulness of the TKSee
Software Exploration Tool •••.•..•••...•••• 73

T.e. Lethbridge and F. Herrera
4.1 Introduction .. 73
4.2 Features ofTkSee: Optimized Search and Hierarchical

Management of Search Results .. 76
4.3 Evaluation of the Usability of TkSee ... 80
4.4 Lessons Learned ... 91
4.5 Acknowledgements .. 92
4.6 References .. 92

5 Clones Occurrence in Java
and Modula-3 Software Systems ••••••••••••••••••••••••••••••••••.••••••••••••••.•••.•. 95

M Dagenais, J.F. Patenaude, E. Merlo, and B. Lague
5.1 Introduction .. 95
5.2 Software Clones ... 95
5.3 Related Work ... 97
5.4 Experimental Context .. 97
5.5 Results .. 100
5.6 Discussion .. 105
5.7 Conclusion ... 107
5.8 Acknowledgements .. 108
5.9 References .. 108

Part II Architectural Recovery ... 111

6 Pattern-Based Recovery of Design Components ••.••••••.•....•••...•••.•.. 113
R.K. Keller, R. Schauer, S. Robitaille, and B. Lague

6.1 Introduction .. 113
6.2 The SPOOL Reverse Engineering Environment.. 119
6.3 Applying Pattern-Based Reverse Engineering 121
6.4 Related Work ... 130
6.5 Conclusion ... 132
6.6 Acknowledgments .. 133
6.7 References .. 133

www.manaraa.com

Contents xi

7 Approaches to Clustering for Program
Comprehension and Remodularization ... 137

T. C. Lethbridge and N. Anquetil
7.1 Introduction .. 137
7.2 Approaches to Clustering ... 138
7.3 Approaches to Evaluating Clustering 147
7.4 Results of Experiments .. 147
7.5 Summary and Conclusions ... 155
7.6 Acknowledgements .. 156
7.7 References .. 156

8 Automatic Architectural Clustering of Software 159
V. Tzerpos and R.C. Holt

8.1 Introduction .. 159
8.2 Previous Work on Software Clustering 159
8.3 Classic Clustering Techniques ... 164
8.4 Classic Techniques for Software Clustering 169
8.5 Research Challenges .. 171
8.6 Conclusion ... 172
8.7 References .. 173

9 Discovering Implicit Inheritance Relations
in N on-Object-Oriented Code .. 177

J. Martin and H.A. Muller
9.1 Introduction .. 177
9.2 Related Work ... 178
9.3 Motivation .. 178
9.4 Migration Example .. 179
9.5 Formalization, Implementation, and Evaluation 182
9.6 Research Challenges .. 190
9.7 Conclusion ... 191
9.8 References .. 191

Part III Maintainability •••••••••••••••••..•••••••.•••••••••••••••••.••.•••••••••••••••••••••••• 195

10 Design Properties and Evolvability of
Object-Oriented Systems ••••••••••••••.•••••••••••••.•••••••••••.••••••••••••••••••••••••• 197

M.A. Chaumun, R.K. Keller, and F. Lustman
1 0.1 Introduction .. 197
10.2 Software Maintenance and Design Properties 198
10.3 Change Impact Model .. 200
10.4 Proof of Concept Implementation .. 208
10.5. Experiment ... 214
10.6 Results .. 218

www.manaraa.com

xii Contents

10.7 Conclusion ... 221
10.8 References .. 222

11 Using Textual Redundancy to Study Source
Code Maintainability•...................•.•...................................... 225

J.H. Johnson
11.1 Introduction .. 225
11.2 Redundancy in Source Code .. 226
11.3 Overview ofMethod .. 228
11.4 A Small Example from GCC ... 233
11.5 A Large Example: Mozilla ... 237
11.6 Conclusions .. 240
11.7 References .. 240

12 Building Parallel Applications Using Design Patterns .•.•........•...... 243
D. Goswami, A. Singh, and B.R. Preiss

12.1 Introduction .. 2 43
12.2 The Architectural Skeleton Model ... 247
12.3 An Object-Oriented Implementation .. 250
12.4 Selected Patterns in Parallel Computing 251
12.5 Examples .. 253
12.6 Software Engineering Issues .. 259
12.7 Proof of Concept: Experiments and Results 262
12.8 Conclusion and Future Directions .. 263
12.9 References .. 263

Part IV Tool Support .••.......•..•...................••••••.•..•................••.•............. 267

13 The SPOOL Design Repository:
Architecture, Schema, and Mechanisms ... 269

R.K. Keller, G. Knapen, B. Lague,
S. Robitaille, G. St.-Denis, and R. Schauer

13.1 Introduction .. 269
13.2 Repository Architecture ... 271
13.3 Repository Schema .. 274
13.4 Repository Mechanisms ... 284
13.5 Conclusion ... 291
13.6 References .. 292

14 The Software Bookshelf ..••.....•.•••.•••.•.••...............•..••.•.........••.........•.• 295
P.J. Finnigan, R. C. Holt, I. Kalas, S. Kerr,
K. Kontogiannis, H.A. Muller, J. Mylopoulos,
S. G. Perelgut, M Stanley, and K. Wong

14.1 Introduction .. 295
14.2 The Software Bookshelf Metaphor .. 298

www.manaraa.com

Contents xiii

14.3 Building the Bookshelf .. 303
14.4 Populating the Bookshelf ... 318
14.5 Using the Bookshelf ... 322
14.6 Related Work ... 329
14.7 Conclusions .. 332
14.8 Acknowledgments .. 333
14.9 References .. 334

15 Dynamic Documents Over the Web •••••••••••••••••••..•••••.•.••••••..••••••..•••• 34 1
P.S. C. Alencar, D.D. Cowan, D.M. German,
L.c. Nova, B. Fraser, J. Roberts, and G. Pianosi

15.1 Introduction .. 341
15.2 Building, Maintaining and Using

Hyperlinked Documents .. 343
15.3 The Underlying Hypermedia Model... 348
15.4 Implementing the Document System 349
15.5 Related Work ... 355
15.6 Conclusion And Future Work .. 357
15.7 Acknowledgments .. 359
15.8 References .. 359

16 Support for Geographically Dispersed Software Teams ••••••••••••••• 361
1. Tomek

16.1 Introduction .. 361
16.2 The Work of a Software Developer ... 362
16.3 Requirements on a Collaborative Virtual Environment 363
16.4 Which Type of CVE? ... 365
16.5 What Is a MUD? .. 366
16.6 Jersey: An Overview .. 367
16.7 Jersey: User Interfaces ... 369
16.8 Jersey Objects, Tools, and Agents ... 370
16.9 Jersey Evaluation ... 372
16.10 MUM: Multi-Universe MOO ... 374
16.11 Current and Future Work ... 378
16.12 Conclusion ... 378
16.13 Acknowledgements .. 381
16.14 References .. 381

17 Parsing C++ Code Despite Missing Declarations .•••••••..•.••••••.•.••••.• 387
G. Knapen, B. Lague, M Dagenais, and E. Merlo

17.1 Introduction .. 387
17.2 Previous Work ... 388
17.3 Problem Description .. 388
17.4 Impact of Missing Header Files on the

Resolution of Ambiguities ... 391

www.manaraa.com

xiv Contents

17.5 Parsing Incomplete Compilation Units 395
17.6 Heuristics ... 397
17.7 Implementation .. 398
17.8 Experimental Work .. 399
17.9 Results and Discussion .. 400
17.10 Conclusions .. 405
17.11 References .. 406

18 Towards Environment-Retargetable Parser Generators •••••..••••••.. 407
K. Kontogiannis, J. My/opou/os, and S. Wu

18.1 Introduction .. 407
18.2 Parsing for Program Analysis .. 409
18.3 Rationale for Using AST Representations411
18.4 The Domain Model Approach .. .412
18.5 Advantages and Limitations ... 423
18.6 Alternative Techniques .. 425
18.7 Experiments ... 428
18.8 Summary .. 434
18.9 Acknowledgements .. 435
18.1 0 References .. 435

Annotated Bibliography ... 439
Glossary •.••••••••.••••••••••••••••••••..•• 449
Index .. 459

www.manaraa.com

List of Contributors

Paula S.C. Alencar is a Research Associate Professor of Computer Science
at the University of Waterloo in Canada. His research, teaching, and consulting
activities have been directed to software engineering and formal methods in
software engineering. Dr. Alencar has been a visiting professor at the University
of Karlsruhe, at the Imperial College of Science and Technology, and at the
University of Waterloo. Prior to his current position, he has held faculty posi
tions at the Universities of Waterloo and Brasilia. He is principal or co-principal
investigator with Donald Cowan on research grants from NSERC, CSER, CITO,
IBM, and Sybase. He has published over 60 technical papers. He is a member of
the IEEE, the IEEE Computer Society, ACM, CIPS, ACF AS, and AAAL Prof.
Alencar can be reached at palencar@csg.uwaterloo.ca.

Nicolas Anquetil received a D.E.A in computer science (artificial intelli
gence) from the University ofCaen, France in 1988. He completed his Ph.D. in
computer science at the University of Montreal in 1996, and worked at the Uni
versity of Ottawa as a research associate and part-time professor. Since August
1999, Nicolas Anquetil has been a visiting professor at the Federal University of
Rio de Janeiro. His research interests include reverse engineering, knowledge
based approaches to software engineering, classification and theoretical funda
tions of the object model. Dr. Anquetil can be reached at
anguetil@centroin.com.bror at nicolas@cos.ufij.br.

M. Ajmal Chaumun earned his B.Sc. degree from Universite du Quebec,
Hull, in 1993 and his M.Sc. degree from Universite de Montreal in 1998. After
his graduation, Chaumun worked as configuration management administrator at
CGI, Inc. He is currently a software engineer at Ericsson Research, Montreal,
Canada. He has published articles on software maintenance and reengineering in
the IEEE Euromicro Conference. Mr. Chaumun can be reached at
lmcajch@lmc.ericsson.se.

Fran~ois Coallier is Chairman of the Consortium for Software Engineering
Research (CSER). He is currently General Manager, Enterprise System Infra
tructure, at Bell Canada, where he is responsible for the management of the
Intranet infrastructure and information systems process engineering. In addition,
Mr. Coallier is the international Chairman of the Joint ISO and IEC subcommit
tee responsible for the elaboration of Software Engineering Standards (ISOIIEC
JTCS/SC7). He is a member of the industrial consultative board of the Electrical

www.manaraa.com

xvi List of Contributors

and Computing Engineering department of Ecole Polytechnique de Montreal.
Mr. Coallier has a B.Sc. in Biology from McGill University, and a B.Eng. in
engineering physics and a M.A.Sc in electrical engineering from Montreal's
Ecole Polytechnique. He is a Certified Quality Analyst (CQA) from the Quality
Assurance Institute and a Fellow of the American Association for the Advance
ment of Science. He is the author of numerous publications on software quality
and metrics. Mr. Coallier can be reached at Francois.Coallier@bell.ca.

Donald D. Cowan is a Distinguished Professor Emeritus of Computer Sci
ence at the University of Waterloo, and Director of the Computer Systems
Group. He is the founding Chairman of the Computer Science Department at the
university, and the author or co-author of over 200 papers and 15 books in com
puter/communications, software engineering, education, environmental informa
tion systems and mathematics. He is a founder and director of the Waterloo
Foundation for the Advancement of Computing and the Waterloo Mathematics
Foundation. He is a co-designer of the Waterloo Information Network (WIN), a
prototype smart communities infrastructure. Prof. Cowan can be reached at
dcowan@csg.uwaterloo.ca.

Michel Dagenais is a professor at Ecole Polytechnique de Montreal, co
founder of the Linux-Quebec user group, and moderator for the Usenet news
group comp.lang.modula3 F AQ and the Polytechnique Montreal Modula-3 pro
gramming environment. He authored or co-authored a large number of scientific
publications in the fields of software engineering, structured documents on the
Web, and object-oriented distributed programming for collaborative applica
tions. In 1995-1996, during a leave of absence, he was the director of software
development at Positron Industries where he was the chief architect for the
Power911 call management system. Prof. Dagenais can be reached at
michel.dagenais@polymtl.ca.

Khaled EI-Emam is currently with the National Research Council in Ot
tawa. He is the editor of the lEEE TCSE Software Process Newsletter, the cur
rent International Trials Coordinator for the SPICE Trials, which is empirically
evaluating the emerging ISO/lEC 15504 International Standard worldwide, co
editor of ISO's project to develop an international standard defining the software
measurement process, and Knowledge Area specialist for the Software Engi
neering Process in the IEEE project to define the Software Engineering Body of
Knowledge. He is also an adjunct professor at the School of Computer Science
at McGill University, and an adjunct professor at the Department of Computer
Science at the University of Quebec in Montreal. Previously, he worked on both
small and large software research and development projects for organizations
such as Toshiba International Company, Yokogawa Electric, and Honeywell
Control Systems. Khaled EI-Emam obtained his Ph.D. from the Department of
Electronic Engineering, King's College, the University of London (UK) in 1994.
He was previously the head of the Quantitative Methods Group at the Fraun-

www.manaraa.com

List of Contributors xvii

hofer Institute for Experimental Software Engineering in Germany, a research
scientist at the Centre de recherche informatique de Montreal (CRIM), and a
research assistant in the Software Engineering Laboratory at McGill University.
Dr. El Emam can be reached at Khaled.El-Emam@nrc.ca.

Hakan Erdogmus is an Associate Research Officer at the Institute of In
formation Technology, National Research Council of Canada. He joined lIT's
Software Engineering Group in 1995. Dr. Erdogmus received a Ph.D. degree in
telecommunications from the Institut national de la recherce scientifique, Uni
versite du Quebec, in 1994, and an M.Sc. degree in computer science from
McGill University, Montreal, in 1989. His research interests include software
engineering economics, software architecture, design reuse, COTS-based sys
tems, and formal methods. Dr. Erdogmus is a member ofthe ACM and the IEEE
Computer Society. You can reach him at Hakan.Erdogmus@nrc.ca.

Patrick J. Finnigan is a staff member at the IBM Toronto Software Solu
tions Laboratory, which he joined in 1978. He received the M.Math. degree in
computer science from the University of Waterloo in 1994, and is a member of
the Professional Engineers of Ontario. He was a principal investigator, at the
IBM Centre for Advanced Studies of the Consortium for Software Engineering
Research (CSER) project. He is also Executive Director of CSER. He can be
reached at finnigan@ca.ibm.com

Bob Fraser is the Information Development Manager for Electronic Com
merce Development at the IBM Toronto Laboratory. After working several
years of video game programming, he joined IBM in 1984 as a technical writer.
He has worked on IBM's VisualAge Java and C++ products and now manages
the Information Development team responsible for WebSphere Commerce
Suite. He is a graduate of the Applied Computer Science program at Ryerson
Polytechnic University. He can be reached at bfraser@ca.ibm.com.

Daniel M. German is a Ph.D. candidate with the Computer Science De
partment at the University of Waterloo. His research interests include documen
tation systems and software engineering with particular emphasis on hypermedia
design approaches and formal methods. He can be reached at
dmg@csg.uwaterloo.ca.

Dhrubajyoti Goswami received a B.Sc. degree in Physics (1987) from the
University of Delhi, India, a B.E. degree in computer science and engineering
(1990) from the Indian Institute of Science, Bangalore, and an M.Sc. degree in
computer science (1995) from McGill University, Montreal, Canada. Currently,
he is a Ph.D. candidate and a member of the Parallel and Distributed Systems
(PADS) Group at the Department of Electrical and Computer Engineering, Uni
versity of Waterloo, Canada. From 1990 to 1992, he worked with the Operating
Systems Groups at DCM Data Products, New Delhi, and Altos India Ltd., the

www.manaraa.com

xviii List of Contributors

R&D division of Pertech Computers Ltd., India. His research interests include
parallel algorithms, algorithmic complexity theory, parallel and distributed com
puting systems, and theoretical computer science. Mr. Goswami can be reached
at goswami@etude.uwaterloo.ca.

Francisco Herrera is an independent consultant specializing in User Cen
tered Design and Usability. He has ample experience working with users in sys
tem integration and software development projects in Canada, the United States,
and Mexico. He holds a Bachelor's degree in Mathematics and Computer Sci
ence from the National University of Mexico and a Master's degree in Computer
Science from the University of Ottawa, Canada.

Richard C. Holt is a professor at the University of Waterloo. He was a pro
fessor at the University of Toronto from 1970 to 1997. His Ph.D. work on dead
lock appears in many books on operating systems. Dr. Holt worked on a number
of compilers such as Cornell's PL/C (PLII) compiler, the SUE compiler, the SP!k
compiler, and the Euclid and Concurrent Euclid compilers. He co-developed the
S/SL parsing method, which is used in a number of software products. He is co
inventor of the Turing programming language, which is used in 50 percent of
Ontario high schools and universities. He was awarded the CIPS 1988 national
award for software innovation, the 1994-95 IT AC national award for software
research, and shared the 1995 ITRC award for technology transfer. He is the
author of a dozen books on languages and operating systems. He has served as
Director of ConGESE, the cross-Ontario Consortium for Graduate Education in
Software Engineering. His current area of research is in software architectures
and visualization. Prof. Holt can be reached at holt@uwaterloo.ca.

J.Howard Johnson has been a research officer at the Institute for Informa
tion Technology, the National Research Council of Canada, in Ottawa since
1992. Before that he was a professor at the University of Waterloo and a meth
odologist and a manager of a systems development group at Statistics Canada.
While a professor at the University of Waterloo, he became interested in study
ing algorithms for processing text. When he joined the Software Engineering
Group in lIT, he applied these techniques to the process of software reverse en
gineering as part of a collaboration with teams from IBM, McGill University,
University of Toronto, and University of Victoria sponsored by IBM and
NSERC through several CRD grants. This project evolved into one of the found
ing projects of CSER and grew with the addition of more researchers from the
University of Waterloo. Dr. Johnson can be reached at Howard.Johnson@nrc.ca.

Hind Kabaili is a Ph,D. student in software engineering at the Department
of Computer Science and Operations Research at University of Montreal. She
received an M.Sc. degree in computer science from Laval University, and an
engineering diploma from Monastir National School of Engineering, Tunisia.
She pursured her M.Sc. research at Centre de recherce informatique de Mon-

www.manaraa.com

List of Contributors xix

treal. Currently, she is a research assistant with the SPOOL project, funded by
Bell Canada and the Consortium for Software Engineering Research (CSER).
During 1993, she was a member of the research staff at the Moroccan Royal
Center for Space Detection, working on the Geographic Information Systems
project. Mr. Kabaili can be be reached at kabaili@iro.umontreal.ca.

Ivan Kalas is a research staff member at the Centre for Advanced Studies,
IBM Canada Laboratory. His research interests are in the area of object-oriented
design, object-oriented concurrent systems, programming environments, and
programming languages. He holds degrees in mathematics and physics, and a
Master's degree in mathematical physics from the University of Toronto. He
joined IBM in May of 1989.

Anatol W. Kark is the leader of the Software Engineering Group at the In
stitute for Information Technology, National Research Council of Canada. Prior
to joining NRC in 1991 he was director of R&D at Philips Information System
in Montreal. At Philips, Mr. Kark was responsible for the development of office
automation applications, system software for enterprise PCs, and applications
for Philips-Micom word processors. His interests include problem reports data
bases and their integration into software development and management envi
ronments. He is participating in the ISO/JTCl/SC7 work on software and system
life cycle processes and supporting standards on configuration management and
software project management. Anatol has served as Operations Manager for the
Consortium for Software Engineering Research since its inception. As of May
2000, he assumed the position of Research Director of CSER. Mr. Kark can be
reached at AnatoI.Kark@nrc.ca.

Rudolf "Reudi" K. Keller is an associate professor in the Software Engi
neering Group (GELO) at the Department of Computer Science and Operations
Research at University of Montreal (UdeM). Before joining the faculty at
UdeM, he was for several years a researcher at Montreal's CRIM research insti
tute. Dr. Keller has taught at the School of Computer Science at McGill Univer
sity and at University of California at Irvine, where he was a postdoctoral fellow
from 1989 to 1991. He received an M.Sc. degree in mathematics from the Swiss
Federal Institute of Technology (ETH) at ZUrich in 1983, and a Ph.D. degree in
computer science from University of ZUrich in 1989. His current research inter
ests are object-oriented analysis and design, reverse engineering, design compo
nents and patterns, software quality, user interface engineering, business process
modeling, and technologies for electronic marketplaces. Prof. Keller can be
reached at keller@iro.umontreal.ca.

Scott Kerr is a research associate and Master's student at the Department of
Computer Science, University of Toronto. He received his B.Sc. from the Uni
versity of Toronto in 1996. He is presently working at the Centre for Advanced
Studies at the IBM Toronto Laboratory as well as at the University of Toronto in

www.manaraa.com

xx List of Contributors

the areas of conceptual modeling and software engineering. Scott can be reached
at skerr23@hotmail.com.

Gregory Koapen obtained his Bachelor's degree from McGill University
and his Master's degree from Ecole Polytechnique de Montreal. He is currently
working as a software developer at Actional (formerly Visual Edge, Inc). Greg
ory can be reached at gregory@visualedge.com.

Kostas Kontogiannis is an assistant professor at the University of Waterloo,
Department of Electrical and Computer Engineering. He received a B.Sc. in
mathematics from the University of Patras, Greece, an M.Sc. in computer sci
ence and artificial intelligence from Katholieke Universiteit Leuven, Belgium,
and a Ph.D. in computer science from McGill University, Canada. His main area
of research is software engineering. He is actively involved in several Canadian
Centres of Excellence: the Consortium for Software Engineering Research
(CSER), the Information Technology Research Centre (ITRC) of Ontario, and
the Institute for Robotics and Intelligent systems (IRIS). Prof. Kontogiannis can
be reached at kostas@swen.uwaterloo.ca.

Bruno Lague is an Executive Consultant in the Quality Engineering and Re
search group at Bell Canada. This group is responsible for managing the techno
logical risks inherent in the acquisition of high-tech products for Bell's tele
communications network. Bruno joined Bell in 1994, after three years of work at
Bell-Northern Research (now Nortel Networks) as a software designer on the
DMSI00 telecom switch. Bruno obtained the "best thesis award" for his
M.A.Sc. degree in Telecommunications in 1991 from Ecole Polytechnique de
Montreal. He obtained his Bachelor degree in computer/software engineering in
1989, also from EPM. Mr. Lague can be reached at Bruno.Lague@bell.ca.

Timothy C. Lethbridge teaches software engineering at the University of
Ottawa. His research interests include human-computer interaction, software
design, software engineering tools, software engineering education and knowl
edge representation. He has been instrumental in the development of the under
graduate software engineering program at the University of Ottawa, one of the
first in Canada. Lethbridge received his Ph.D. in computer science from the
University of Ottawa in 1994; his thesis was on the topic of tools for knowledge
management. Prior to that, Lethbridge worked at Bell-Northern Research (now
Nortel Networks) and the Government of New Brunswick. You can visit his
web page at http://www.site.uottawa.ca/-tclorreachhimattcl@site.uottawa.ca.

Fran~ois Lustman received a B.Sc. degree in electrical engineering and a
Ph.D. in applied mathematics from University of Grenoble, France. He is cur
rently professor at the Departement d'inforrnatique et de recherche operation
nelle, Universite de Montreal, Canada. Before joigning UdeM, he spent fifteen
years working in private and public organizations. He joined the university in

www.manaraa.com

List of Contributors xxi

1981 and chaired the department from 1985 to 1989. He is a member of the GE
LO software engineering group. His present research interests are in software
quality, evolvability, and in the use of formal methods for the specification and
design of information systems. Fran~ois Lustman has published one book on
software project management, and several papers in compiler construction, me
dical databases, project management, information systems, software quality, and
formal methods. Prof. Lustman can be reached at lustman@iro.umontrea1.ca.

Johannes Martin is a Ph.D. candidate in the Department of Computer Sci
ence at the University of Victoria, British Columbia, Canada. He received a
Master of Science degree from the Northern Illinois University in DeKalb, Illi
nois, USA. He received research fellowships from the Centre for Advanced
Studies at the IBM Toronto Laboratory (CAS), where he has worked on research
projects of the Canadian Consortium for Software Engineering Research
(CSER). Johannes Martin's research interests include software engineering, mi
gration, program understanding and visualization. He can be reached at
jmartin@csr.csc.uvic.ca.

Ettore Merlo received his Ph.D. in computer science from McGill Univer
sity (Montreal) in 1989 and his Laurea degree-summa cum laude-from the
University of Turin (Italy) in 1983. He has been the lead researcher of the soft
ware engineering group at the Computer Research Institute of Montreal until
1993 when he joined Ecole Polytechnique de Montreal, where he is currently an
associate professor. His research interests are in software analysis, software
reengineering, user interfaces, software maintenance and artificial intelligence.
He has collaborated with several industries and research centers, in particular on
software reengineering, clone detection, software quality assessment and archi
tectural reverse engineering. Prof. Merlo can be reached at
Ettore.Merlo@Polymtl.ca.

Hausi A. MilDer is a Professor in the Department of Computer Science at
the University of Victoria, British Columbia, Canada. He is a Visiting Scientist
with the Centre for Advanced Studies at the IBM Toronto Laboratory and the
Camegie Mellon Software Engineering Institute. He is a principal investigator
of CSER, a Canadian Consortium for Software Engineering Research and the
IRIS (Institute for Robotics and intelligent Systems) Network of Centres for
Excellence. Together with his research group he investigates technologies to
migrate legacy software to object-oriented and network-centric platforms. Dr.
Muller's research interests include software engineering, software evolution,
reverse engineering, software reengineering, program understanding, and soft
ware architecture. He is the General Chair oflCSE-2001, the IEEE/ACM Inter
national Conference on Software Engineering to be held in Toronto. He was a
Program Co-Chair for ICSM-94, the IEEE International Conference on Software

www.manaraa.com

xxii List of Contributors

Maintenance in Victoria, CASE-95, the IEEE International Workshop on Com
puter-Aided Software Engineering in Toronto, and IWPC-96, the IEEE Interna
tional Workshop on Program Comprehension in Berlin. Dr. Muller is on the
Editorial Board of IEEE Transactions on Software Engineering. You can reach
him at hausi@csr.uvic.ca.

John Mylopoulos is a professor of computer science at the University of To
ronto. His research interests include knowledge representation and conceptual
modeling, covering languages, implementation techniques, and applications. Dr.
Mylopoulos has worked on the development of requirements and design lan
guages for information systems, the adoption of database implementation tech
niques for large knowledge bases, and the application of knowledge base tech
niques to software repositories. He is currently leading a number of research
projects and is principal investigator of both national and provincial Centres of
Excellence for Information Technology. Dr. Mylopoulos received his Ph.D. de
gree from Princeton University in 1970. His publication list includes more than
130 refereed journal and conference proceedings papers and four edited books.
He is the recipient of the fIrst-ever Outstanding Services Award given out by the
Canadian AI Society (CSCSI), a co-recipient of the most influential paper award
of the 1994 International Conference on Software Engineering, a Fellow of the
American Association for AI (AAAI), and an elected member of the VLDB En
dowment Board. He has served on the editorial board of several international
journals, including the ACM Transactions on Software Engineering and Meth
odology (TOSEM), the ACM Transactions on Information Systems (TOIS), and
the VLDB Journal and Computational Intelligence. Dr. Mylopoulos can be
reached at jm@cs.toronto.edu.

Luis C.M. Nova is a postdoctoral fellow with the Computer Science De
partment at the University of Waterloo. His research interests include software
engineering with emphasis on documentation systems, software design, object
oriented techniques, and formal methods. He can be reached at
luisnova@csg.uwaterloo.ca.

Jean-Francois Patenaude received his computer engineering degree from
Ecole Polytechnique, Montreal, in 1997. He is currently pursuing his Master's
degree in software reengineering, also at Ecole Polytechnique. His research
interests are related to software quality analysis. He now works at Bell Canada's
Network Monitoring Center. You can reach Mr. Patenaude at
patch@casi.polymtl.ca.

Stephen G. Perelgut received his M.Sc. degree in computer science from
the University of Toronto in 1984. His research interests include compiler de
sign and development, software engineering, software reuse, and electronic
communications as they affect virtual communities. He is currently a full-time
member of the IBM Centre for Advanced Studies and acting as both a principal

www.manaraa.com

List of Contributors xxiii

investigator on the software bookshelf project as well as program manager for
CAS CON '97. Mr. Perelgut can be reached at perelgut@ca.ibm.com.

Gary Pianosi is the Vice-President of Product Development at the Waterloo
Lab, Janna Systems, Inc., where he is responsible for product research and de
velopment. Gary is a 12-year veteran of the software industry, including over a
decade of experience in the design and implementation of text database and
document authoring systems. Previously, Gary was a co-founder of LivePage
Corporation and was engaged in software research and development at the Wa
terloo Foundation for the Advancement of Computing. He began his career at
the University of Waterloo's Computer Systems Group where he focussed on
document authoring tools including an advanced SGML editing system. Gary
earned a Bachelor of Mathematics degree in computer science from the Univer
sity of Waterloo. Mr. Pianosi can be reached at garyp@janna.com.

Bruno R. Preiss received his B.A.Sc degree in engineering science (electri
cal engineering option) in 1982, his M.A.Sc degree in electrical engineering in
1984, and his Ph.D. degree in electrical engineering from the University of To
ronto, Toronto, Canada. He is an associate professor in the Department ofElec
trical and Computer Engineering at the University of Waterloo, Ontario, Can
ada. He is a member of the Computer Communications Networks Group, the
VLSI Research Group, and the Parallel and Distributed Systems (PADS) Group.
His current research interests include parallel discrete-event simulation and mul
tiprocessor and parallel processor computer architectures. Bruno R. Preiss is
licensed as a Professional Engineer in the Province of Ontario, Canada. He is a
member of the Canadian Society for Electrical and Computer Engineering, the
Institute of Electrical and Electronics Engineers, and the Association for Com
puting Machinery.

Jamie Roberts is a member of the IBM Toronto Laboratory. He has been
working on the research and development of many documentation products.
Recently, he has been involved with the documentation for the IBM's Visual
Age product suite. Jatnie is currently working at the IBM Corporate level exam
ining documentation issues. He has a B.A. and M.A. in English from the Uni
versity of Waterloo. He is completing a Ph.D. in English at the University of
Waterloo. He can be reached at robertsj@ca.ibm.com.

Sebastien Robitaille obtained his Bachelor's degree in physics and his Mas
ter's degree in computer science, both from the Universite de Montreal. He is
has been working as a software developer at Actional Corp. since May 2000.
His Master's thesis was pursued as part of the SPOOL project on the topic of
tool development to support object-oriented software comprehension. His major
contribution to the SPOOL project was the development of a navigation-based
technology, the Design Browser, whose purpose is to helps bridge the gap be
tween software abstractions and implementations.

www.manaraa.com

xxiv List of Contributors

Guy Saint-Denis is currently pursuing a Master's degree at the Software En
gineering Laboratory at the Universite de Montreal, where he completed his
Bachelor's degree in computer science in 1999. Prior to his studies in informa
tion technology, Guy freelanced as a camera-assistant in the film and television
industry subsequent to completing a Bachelor of Fine Arts degree in still pho
tographyat Concordia University in 1989. His lifelong goal is to explore, dis
cover, share, and, of course, have lots of fun along the way.

Reinhard Schauer is a software designer of Alcatel Carrier Internetworking
Division, Canada. Previously, he was a research assistant at the Department of
Computer Science and Operations Research of the University of Montreal, Can
ada, working on the architectural design of the SPOOL reverse engineering en
vironment. Prior to this position, he was a Fulbright Scholar at Hawaii Pacific
University, USA, from which he earned a Master's degree in information sys
tems. He served as a research and project assistant in several industry collabora
tions of the University of Linz, Austria, from which he graduated with a Mas
ter's degree in Computer Science. Reinhard's interests in software engineering
focus on object-oriented programming, reverse engineering, application frame
works, and database technologies. Reinhard Schauer can be reached at
rschauer@newbridge.com.

Janice Singer conducts research in the field of empirical studies of software
engineering. She is a member of the Software Engineering Group at the National
Research Council of Canada. Her current projects are focused on the empirical
study of patterns and studying the work practices of software engineers. She is
also interested in qualitative research and ethical approaches to research. Dr.
Singer received a Ph.D. in Cognitive Psychology from the University of Pitts
burgh and a B.A. in Cognitive Science from the University of California, San
Diego. She has held positions at Tektronix, Xerox, and IBM. Dr. Singer can be
reached at Janice.Singer@nrc.ca.

Ajit Singh completed his B.Sc. degree in electronics and communication
engineering (1979) at BIT, India, and his M.Sc. (1986) and Ph.D. (1991) degrees
in computing science at University of Alberta, Canada. From 1980 to 1983, he
worked at the R&D department of Operations Research Group, the representa
tive company for Sperry Univac Computers in India. From 1990 to 1992, he was
involved with the design of telecommunication systems at Bell-Northern Re
search (now Nortel Networks), Ottawa. Since 1993, he is a faculty member at
Department of Electrical and Computer Engineering, University of Waterloo.
Prof. Singh has published several research papers in the areas of software engi
neering, parallel computing, database systems, and artificial intelligence. He
can be reached at asingh@etude.uwaterloo.ca.

www.manaraa.com

List of Contributors xxv

Martin Stanley is President and CEO of Techne Knowledge Systems, Inc.,
a startup company fonned by a group of researchers from the universities of
Toronto and Waterloo specializing in the development of tools for software re
engineering. Mr. Stanley received his M.Sc. degree in computer science from
the University of Toronto in 1987. His research interests include knowledge
representation and conceptual modeling, with particular application to the build
ing of software repositories. He is currently a part-time research associate in the
Computer Science Department at the University of Toronto.

Oryal Tanir is Director of Business Engineering and Simulation at Bell
Canada in Montreal and an adjunct professor at McGill University. He joined
Bell Canada in 1986. As a researcher in Bell Canada, he has been exposed to
many large systems such as telephony switches, data communication nodes,
client server networks and real-time network surveillance systems. He has also
managed and participated in several software research programs with various
universities and government agencies. His research interests include software
(systems) engineering, design-level reuse, computer architecture, discrete-event
simulation, and concurrency models. He has published a book and numerous
articles in the area of discrete-event simulation. He was the past chainnan of the
IEEE P1173 Working Group on standardization of simulation. He is a senior
member of the Society for Computer Simulation and Society for Design Process
Sciences. He is also a member of the Association for Computer Machines, and
IEEE Computer and Communications Societies. Oryal is a registered Profes
sional Engineer in Canada. He holds a Ph.D. and a Master's degree in electrical
engineering from McGill University, Montreal. You can reach him at
Oryal. Tanir@bell.ca.

Ivan Tomek is a professor of Computer Science in the Jodrey School of
Computer Science, Acadia University, Canada. His main research interests in
clude support for geographically dispersed work teams, in particular software
development teams, interactive development environments, object-oriented pro
gramming and development methodologies, collaborative learning, collaborative
virtual environments. Prof. Tomek can be reached at Ivan.Tomek@acadiau.ca.

Vassilios Tzerpos is a Ph.D. candidate at the University of Toronto. His re
search interests include software architecture, reverse engineering, and software
clustering. His work has been published in various conference proceedings, such
as the International Conference on Software Maintenance, the Working Confer
ence on Reverse Engineering, and the International Workshop on Program
Comprehension. He received his B.Sc. degree in electrical and computer engi
neering from the National Technical University of Athens, Greece in 1992, and
his M.Sc. in computer science from the University of Toronto in 1995. Mr.
Tzerpos can be reached at vtzer@cs.toronto.edu.

www.manaraa.com

xxvi List of Contributors

Kenny Wong is an assistant professor in the Department of Computing Sci
ence at the University of Alberta. His research interests include reengineering,
program understanding, software architecture, software integration, and user
interfaces. He is a member of the ACM, USENIX, and the IEEE Computer So
ciety. Prof. Wong can be reached at kenw@cs.ualberta.ca.

www.manaraa.com

List of Referees

Paulo S.C. Alencar
University of Waterloo

Daniel Amyot
University of Ottawa

Saida Benlarbi
Cistel Technology

Marsha Chechik,
University of Toronto

Lou Copertari
McMaster School of Business

Michel Dagenais
Ecole Poly technique de Montreal

Khaled El-Emam
National Research Council of
Canada

Hakan Erdogmus
National Research Council of
Canada

Nick Graham
Queen's University

Pedro Henriques
Universidade do Minho

Ric Holt
University of Waterloo

Howard J. Johnson
National Research Council of
Canada

Anatol W. Kark
National Research Council of
Canada

Rudolf K. Keller
Universite de Montreal

Barbara Kitchenham
Keele University

Gregory Knapen
Universite de Montreal

Kostas Kontogiannis
University of Waterloo

Bruno Lague
Bell Canada

Timothy C. Lethbridge
University of Ottawa

Steven D. Litvintchouk
The MITRE Corporation

Francois Lustman
Universite de Montreal

Stephen A. MacKay
National Research Council of
Canada

www.manaraa.com

xxviii List of Referees

Serge Mankovski
Metamail, Inc.

Johannes Martin
University of Victoria

Alberto Mendelzon
University of Toronto

Ettore Merlo
Ecole Poly technique de Montreal

Hausi Muller
University of Victoria

Gail Murphy
University of British Columbia

Kumbasaray Ponnambalam
University of Waterloo

Jarrett Rosenberg
Sun Microsystems, Inc.

Janice Singer
National Research Council of
Canada

Ajit Singh
University of Waterloo

Patrick Steyaert
Media GeniX

Vassilios Tzerpos
University of Toronto

Susan Sim
University of Toronto

Mark Vigder
National Research Council oj
Canada

Michael Weiss
Carleton University

Hongwei Xi
University of Cincinnati

www.manaraa.com

1
Introduction

Hakan Erdogmus
Oryal Tanir
Anatol W. Kark
Fran~ois Coallier

1.1 Introduction

This edited collection reports on the projects, results, and directions of a collabo
rative Canadian software engineering research initiative. It is mandated by the
organizational body of this initiative, the Consortium for Software Engineering
Research (CSER). Section 1.4 provides more details about the Consortium.

Software engineering is still a maturing field. Its many facets and highly
multidisciplinary nature make it both difficult and risque to give a universally
accepted definition. Thus, instead of attempting a definition, we provide an ex
cerpt from the mission statement of the Software Engineering Group at the Na
tional Research Council of Canada. According to SEG, the goal of software en
gineering research is to "advance the state of software development to an engi
neering level by evaluating and improving the processes and technologies with
which software is created, and demonstrating these processes and technologies
through pilot projects and using both the engineering and the scientific ap
proaches "

This goal is sufficiently inclusive to cover the wide spectrum of issues ad
dressed by the contributors of this collection. At the same time, we believe that
it brings out the focal points. First, it implies that both process and technology
are parts of the discipline. Second, it emphasizes the synergy between the engi
neering and the scientific approaches-between theory and empiricism-to tackle
the underlying complex issues. As such, it hints at the increasingly multidisci
plinary nature of the research.

Software engineering research today overlaps with and borrows from many
disciplines in social, pure, and engineering sciences, outside its traditional core
disciplines of computer science and computer engineering. Examples are statis
tics, mathematics, economics, information management systems, systems engi
neering, cognitive science, sociology, and anthropology, to name a few. This

www.manaraa.com

2 Erdogmus et al.

multifaceted nature of our discipline is strongly reflected by the coverage of this
book.

The book is centered on three interrelated topics: comprehension, evaluation,
and evolution. The choice of these topics is not incidental. Together they have
constituted the core of CSER's research activities since its inception in 1996.
Underlying the three topics is first and foremost the compelling need to under
stand software systems-both new and old-and how they are built and main
tained. The topics consequently also address the need to assess these systems, to
measure their quality, to maintain them, to adapt them to changing requirements
and technology, to migrate them to new platforms, to discover new paradigms,
and to build new tools to support all of these activities.

All contributions in this book have a CSER connection. However, the book
is by no means a comprehensive account of all CSER research activities. The
majority of the chapters originated directly from the different research groups
and individual researchers within CSER. These contributions are officially con
nected to one or more CSER projects, and most are active as of this writing.
Two have completed their term and are being pursued outside the structure of
the Consortium. Two other contributions are peripheral to CSER, in that they are
either partially funded or pursued outside while maintaining close ties with the
Consortium.

Many overlaps and dependencies exist among the contributions, both in
terms of the issues they tackle and their authorship. This situation is representa
tive of the high level of synergy among the different research projects.

All contributions have undergone a stringent peer review process to maintain
a high quality. The only exception is Chapter 18, which is an invited contribu
tion. This work was included for historical reasons: it had a significant impact
on the central themes and projects of the Consortium. The majority of its authors
are still actively involved in many CSER projects, and continue to influence the
evolution of the Consortium.

This book is targeted at both software practitioners and researchers. It con
tains information valuable to project managers and tool developers. Its organiza
tion around a central theme makes the individual parts suitable for use as refer
ence material in a graduate seminar. Contributions range from survey articles to
experience reports, from experimental studies to original research results. Their
collective intent is to give the reader a snapshot of the state of the art in the
comprehension, evaluation, and evolution of software systems.

1.2 Organization of the Book

The book is organized into four parts: Empirical Studies, Architectural Recov
ery, Maintainability, and Tool Support. The central themes--comprehension,
evaluation, and evolution-are present simultaneously in each of the parts and in
most of the individual contributions. Additionally, significant overlap exists
among the different parts. The part titles indicate the focus of the contributions.

www.manaraa.com

1. Introduction 3

1.2.1 Part One: Empirical Studies

Part One, Empirical Studies, contains four chapters. It addresses an often
neglected aspect of software engineering research: empiricism. How do we
know that the tools and methods being developed work? What can we learn
from practicing software engineers? Chapters 2 and 5 attempt to answer the first
question with a focus on quantitative techniques, while Chapters 3 and 4 attempt
to answer the second question with a qualitative focus.

El Emam contributes a survey of object-oriented metrics in Chapter 2. This
informative and comprehensive review dispels some common myths with an
intelligent interpretation of the key results that the object-oriented metrics re
search has so far yielded. With more than 100 bibliographic references, it also
doubles as a valuable account of the underlying literature.

Chapter 3 by Lethbridge and Singer describes the techniques that the authors
have developed and used in their field studies of the work practices of software
engineers. They identify and represent work patterns to help software engineers
maintain large and complex systems. One of the conclusions they draw from
their studies is that the efficiency and effectiveness of search tools is critical for
dealing with large bodies of source code.

In Chapter 4, Lethbridge and Herrera report on their experience evaluating
the usefulness of a particular software exploration tool in an industrial context.
Again, their ultimate goal with this empirical study was to find ways to improve
the efficiency of software maintenance for large systems by investigating how
existing development tools are being used by practicing software engineers. This
chapter highlights the factors that make the evaluation process difficult, and
provides pointers for assessing the usefulness of complex development tools.

Chapter 5 deals with a common and controversial software development
practice: cloning. Cloning, or producing new code by copying and modifying
old code, is often cited as a significant driver of maintenance costs. In this chap
ter, Dagenais, Patenaude, Merlo, and Lague first describe a metrics-based ap
proach to clone detection, and then report on the application of their approach to
experiments performed on a number of large object-oriented systems. Their re
sults confirm that modern software systems are also prone to cloning. They hy
pothesize that the extent of this practice depends on several factors unrelated to
the programming language used.

1.2.2 Part Two: Architectural Recovery

Part Two, Architectural Recovery, attacks the problems associated with under
standing and modernizing large software systems. It contains four chapters, or
dered according to the level of abstraction with which they address program
comprehension. The first chapter of this part describes an environment for re
verse engineering based on the concept of design patterns. The second and third
chapters discuss approaches to automatic program clustering as a way of re-

www.manaraa.com

4 Erdogmus et aI.

modularizing systems whose explicit architecture has been lost. The last chapter
tackles a critical problem associated with the migration of non-object-oriented
code to object-oriented code.

In Chapter 6, Keller et ai. introduce the SPOOL reverse engineering envi
ronment. Their main hypothesis is that important design decisions and the
thought processes of the designers often manifest themselves as recurring pat
terns of organization among design-level components, and that by extracting
these patterns much can be gleamed about the system and its design rationale.
The SPOOL environment is built upon this hypothesis.

In Chapter 7, Lethbridge and Anquetil provide a taxonomy for automatic
clustering techniques, describe their main features, and discuss the criteria for
their evaluation. Chapter 8, by Tzerpos and Holt, is a survey of automatic clus
tering techniques borrowed from other disciplines. While Chapter 8 overlaps
with Chapter 7, Tzerpos and Holt focus exclusively on generic approaches and
argue for their suitability in the software context.

The final chapter of Part Two, Chapter 9, presents an algorithm to convert
non-object-oriented C programs with pointers to object-oriented Java programs
with inheritance. In this chapter, Martin and Muller point out that the use of
pointers in legacy systems written in such languages as C is a major problem.
They argue that pointers often implicitly express inheritance relationships be
tween structured data types. By detecting such usage of pointers in C programs,
their algorithm is able to construct a Java-class hierarchy.

1.2.3 Part Three: Maintainability

Part Three, Maintainability, contains three chapters. Chapter 10, by Chaumun et
aI., addresses maintainability from the perspective of the potential repercussions
that different kinds of changes may have on a system. The authors define a
change model for the SPOOL environment of Chapter 6, and a technique to ana
lyze the impact of the modeled changes for object-oriented systems. They also
discuss the results of their experiments with large-scale systems to identify some
design metrics (see Chapter 2) that affect changeability, and hence, maintain
ability.

In Chapter 11, Johnson links maintainability to the level of cloning in the
code, as hypothesized in Chapter 5. However, his focus is on an alternative ap
proach to clone detection, rather than on empirical validation of clone occur
rences in existing systems. Johnson's approach to clone detection is based on the
raw textual processing of the source code. This approach contrasts with the met
rics-based approach of Chapter 5, which requires a set ofmetrics to be computed
from an abstract representation of the code. As a result of its generality, text
based clone detection is in particular suitable for legacy software where parsers
are not necessarily readily available to obtain the abstract representation other
wise required.

www.manaraa.com

1. Introduction 5

Unlike the previous two chapters, which address maintainability as a reverse
engineering problem, Chapter 12 treats maintainability as a forward engineering
problem. In this chapter, Goswami et ai. describe an automated environment for
generating parallel applications. They propose to alleviate the high level of
complexity inherent in parallel programming by automatically generating part of
the infrastructure code using packaged solutions. These packaged solutions are
captured and encoded as design patterns. Thus the concept of pattern emerges
once again in this chapter - albeit unlike in Chapter 6, it appears in its traditional
forward engineering context.

1.2.4 Part Four: Tool Support

Part Four focuses on Tool Support for the comprehension, evaluation, and evo
lution of software systems. It contains six chapters. Chapters 13 and 14 describe
the architecture of two successful reverse engineering environments. The two
environments target systems that have been developed in different programming
paradigms. Chapters 15 and 16, respectively, discuss the mechanisms to deliver
software documentation to distributed software teams and collaborative work
paradigms to support such teams. Chapters 16 and 17 address tool support for
processing source code.

In Chapter 13, Schauer et ai. expound on the design and implementation of
the SPOOL environment (the goals and the underlying model of this environ
ment are discussed in Chapters 6 and 10).

In Chapter 14, Finnigan et ai. describe the Software Bookshelf, a software
information management paradigm of historical importance that was developed
at the IBM Toronto Labs. While SPOOL is designed for understanding object
oriented systems, the Software Bookshelf targets legacy systems typically writ
ten in non-object-oriented languages, with the aim of migrating such systems to
more modern architectures.

The Software Bookshelf was one of the earliest development environments
to suggest the delivery of information to software teams using a web-based in
terface. Chapter 15, by Alencar et aI., builds upon this now widely popular in
formation delivery mechanism. In this chapter, the authors tackle the usability
and maintenance issues associated with publishing hyperlink documentation on
the web, and then describe some approaches that are being employed to alleviate
the underlying problems.

Web-based delivery of software documentation is one way in which geo
graphically separated software teams can share information. However, delivery
of information in a widely accessible form alone is not sufficient to allow dis
tributed software teams to work on large software projects. Tomek investigates
this question in Chapter 16. He introduces the concept of the collaborative vir
tual environment (CVE) and discusses the characteristics of such environments.
After a survey of different types of CVEs, the chapter focuses on a particular

www.manaraa.com

6 Erdogmus et al.

CVE --one that is text-based, high-performance, and easily deliverable on the
web.

Most source code analysis and reverse engineering techniques rely on the
availability of an abstract representation of the source code that captures the
code's surface semantics. Examples are the clustering techniques discussed in
Chapters 7 and 8, the change impact analysis model of Chapter 10, the metrics
based clone detection approach of Chapter 5, the code migration algorithm of
Chapter 9, the SPOOL environment of Chapters 6 and 13, and the Software
Bookshelf environment of Chapter 14. Therefore, parsing, the process of obtain
ing this abstract representation, is of paramount importance. The last two chap
ters attack central problems associated with parsing.

In Chapter 17, Knapen et al. address a problem often encountered in the in
dustry: parsing under incomplete information. The question addressed is what to
do when the source code is missing pieces required for successful compilation,
but not necessarily for high level analysis of the source code? Their solution is a
special parser that uses additional rules and type inference mechanisms to re
solve the ambiguities resulting from the missing pieces.

In Chapter 18, Kontogiannis et al. attack another parsing problem: how to
obtain abstract representations of the source code that are customized with re
spect to a user-defined model and that can easily be ported to various analysis
tools. Their solution is a systematic methodology that allows the user to generate
the desired representations. All this accomplished with the use of public-domain
parser generators.

1.3 Abstracts

Chapter 2 Object-Oriented Metrics: Principles and Practice

Existing evidence suggests that the majority of faults in software systems occur
in a small proportion of the system's components. Reliability can be increased,
and rework costs reduced, if these components can be identified early. Subse
quently, mitigating actions can be taken, such as a redesign or focused inspec
tions and testing. For object-oriented systems, object-oriented metrics can serve
as leading indicators of faulty classes. This chapter will provide an overview of
object-oriented metrics, their rationale, and their utility in the identification of
faulty classes. It presents empirical evidence as to which metrics have been
found to be good leading indicators, and discusses metrics thresholds. Metrics
thresholds, once identified, provide practical criteria for quality management.

www.manaraa.com

Chapter 3

1. Introduction 7

Experiences Conducting Studies of the Work
Practices of Software Engineers

The chapter describes various techniques for studying and representing the work
of software engineers. The ultimate objective of the research addressed is to
develop requirements for software engineering tools that will enable software
engineers to more productively make changes to large legacy systems. However,
to develop those requirements, the work practices of software engineers must be
understood. The chapter discusses various techniques employed to observe work
practices, analyze the resulting data, and produce graphical models of work pat
terns. In particular, it describes techniques that have been developed by the au
thors, such as synchronized shadowing and the use of Use Case Maps to repre
sent work patterns. Finally, the chapter highlights some of the results of using
these techniques in a real project. An important observation is that efficiently
performing a search within source code is of paramount importance to software
engineers when they work with large bodies of source code.

Chapter 4 Toward Assessing the Usefulness of the TkSee
Software Exploration Tool: A Case Study

One of the outputs of the CSER initiative has been the development of a soft
ware tool called TkSee. The TkSee tool allows software engineers to explore
and understand source code. It has been serving as the infrastructure for various
studies of program comprehension. It has also been used intensively by several
practitioners inside Mitel Corporation. This chapter fIrst provides a description
of TkSee's capabilities and then discusses insights about its usability obtained
during the fIeld studies of the tool. This qualitative empirical study is intended to
provide pointers to those who wish to assess the usability and usefulness of
complex software products.

Chapter 5 Comparison of Clones Occurrence in Java and
Modula-3 Software Systems

Software engineers often build new subprograms by copying, or cloning, an
existing piece of code with similar requirements, and then slightly modifying it.
While this technique may be easier than extracting the common, reusable part
and making it available in a library, it increases the system size and often leads
to higher maintenance costs. The occurrence of clones is highly dependent on
the system architecture, development model, language peculiarities, and soft
ware management practices. This chapter studies the occurrence of clones in
large sets of object-oriented software libraries and programs, totaling over 1.1
million lines of code, in two different languages, Java and Modula-3. The fac
tors that affect the clone detection accuracy and their frequency of occurrence

www.manaraa.com

8 Erdogmus et at.

are discussed. Comparisons are also made between systems written in the two
languages.

Chapter 6 The SPOOL Approach to Pattern-Based Recovery
of Design Components

Many reverse-engineering tools have been developed to derive abstract repre
sentations from source code. Yet most of these tools completely ignore recovery
of the all-important rationale behind the design decisions that have led to its
physical shape. Design patterns capture the rationale behind proven design solu
tions and discuss the trades-off among their alternatives. The authors argue that
it is these patterns of thought that are at the root of many of the key elements of
large-scale software systems, and that in order to comprehend these systems, we
need to recover and understand the patterns on which they were built. The chap
ter presents the SPOOL environment for the reverse engineering of design com
ponents based on the structural descriptions of design patterns. It fIrst gives an
overview of the environment, then introduces a number of case studies, and fI
nally discusses how pattern-based reverse engineering helped gain insight into
the design rationale of some large-scale C++ software systems.

Chapter 7 Evaluation of Approaches to Clustering for
Program Comprehension and Remodularization

When presented with a large legacy system which has little design information,
an important approach to understanding and maintaining it is to automatically
divide it into a more understandable set of modules or subsystems - a process
called remodularization. This chapter reviews several remodularization ap
proaches, which employ clustering technology. These approaches require mak
ing decisions that include which algorithms to use as well as which information
to use as input to the algorithms. The chapter surveys several alternatives and
presents some experimental evidence to help guide decision making. It also pre
sents various approaches to evaluating the effectiveness of the existing ap
proaches, including examining the coupling and cohesion of clusters, as well as
the size of the largest cluster and the number of outstanding fIles.

Chapter 8 Automatic Architectural Clustering of Software

Early in the history of software engineering as a research fIeld, it was recognized
that the decomposition of a large software system into subsystems was essential
for both the development and maintenance phases of a software project. In real
ity, however, software projects often fail to follow the principles of software
engineering. This has given rise to architectural recovery that attempts to auto
matically remodularize, or cluster, a software system into meaningful subsys-

www.manaraa.com

1. Introduction 9

tems. This chapter surveys current approaches to the clustering problem from
researchers in the software engineering community. It focuses on the clustering
techniques used in other disciplines, and argues that their utilization in a soft
ware context could lead to better solutions. The chapter concludes with research
challenges and open problems of interest.

Chapter 9 Discovering Implicit Inheritance Relations
in Non-Object-Oriented Code

In order to stay competitive in today's marketplace, businesses have to move
some of their mission-critical legacy applications to web-based and network
centric platforms. Because of its wide acceptance as an available programming
language on these kinds of platforms, Java is often cited as the language of
choice for new systems. The size and complexity of legacy applications usually
make it infeasible to rewrite the applications from the ground up, but require
selected parts of the application to be migrated incrementally. A major obstacle
in the migration of legacy systems written in C to Java is the extensive use of
pointers in their source code. This chapter examines common usage patterns of
pointers in C programs, shows how they implicitly express inheritance relation
ships between structured data types, and presents a formal approach to migrate
such usage patterns to Java by creating an explicit class hierarchy.

Chapter 10 Design Properties and Evolvability of
Object-Oriented Systems

One of the objectives ofCSER's SPOOL project is to explore which properties
of a design have the most impact on its evolvability. Evolvability of software is
strongly related to the effort needed to identify and assess the impact of a change
request. A systematic model to identify the impact boundaries at both the design
and implementation level would reduce this effort and ease the difficult task of
planning future releases. The authors have defined such a change impact model
at the design level, and have carried it over to the implementation level using
C++ as the target language. This chapter presents the change impact model of
SPOOL. The authors show how this model has been used in experiments with
large-scale object-oriented systems to identify some design properties that affect
evolvability.

Chapter 11 Using Textual Redundancy to Study the
Maintainability of Source Code

Large bodies of source code, documentation, and data have internal structure
that results partly from the syntactic conventions of the representations and

www.manaraa.com

10 Erdogmus et al.

partly from the semantics of the application and its maintenance history. In par
ticular, software systems will have multiple similar variants and versions corre
sponding to different platforms, sites, and points in time. Moreover, a single
version will often have fragments of text copied from one place to another and
modified to serve a new purpose. Although often shunned as a bad practice, this
code cloning is to a certain extent inevitable, either because of the pragmatics of
software maintenance or inadequate abstraction mechanisms in the representa
tion language. This chapter discusses a purely text-based approach to clone de
tection. Since the approach does not rely on the extraction of a syntax tree to
capture the surface semantics of the code, it is in particular suitable for legacy
systems where parsers may not be readily available. It both contrasts and com
plements the approach used in the empirical study of Chapter 5.

Chapter 12 Building Parallel Applications
Using Design Patterns

Parallel application design and development is a major area of interest in the
domain of high-performance scientific and industrial computing. In fact, parallel
computing is becoming an integral part of several major application domains -
space, medicine, cancer and genetic research, graphics and animation, image
processing, to name a few. With the advent of fast interconnected networks of
workstations and PCs, it is now becoming increasingly possible to develop high
performance parallel applications using the combined computing powers of
these networked resources, often at little or no extra cost. Consequently, high
speed networks and fast, general-purpose computers are contributing towards
the mainstream adoption of parallel computing as an affordable alternative.
However, parallel programs have inherent complexity over sequential code due
to many low-level communication and synchronization details. To address this
complexity, the authors propose a generic model for the design and development
of parallel applications based on design patterns. These reusable components,
called parallel architectural skeletons, hide most of the low-level details, thus
enabling a developer to focus on application-level issues. The generic model
enhances usability. The chapter describes an object-oriented, library-based im
plementation of the model in C++. The implementation is lightweight in that it
does not necessitate any language extension. The skeleton library can be used as
a building block for systematic, hierarchical development of parallel applica
tions that are easier to maintain.

Chapter 13 The SPOOL Design Repository:
Architecture, Schema, and Mechanisms

An essential part of reverse engineering is to represent the analyzed systems at a
high level of abstraction, at the analysis or design level. End-user tools need

www.manaraa.com

1. Introduction 11

access to this information, and thus a design repository is required for storing the
analyzed systems. The SPOOL design repository was designed such that its
schema would be resilient to change, adaptation, and extension, in order to eas
ily address and accommodate new research projects. To this end, the authors
have adopted the metamodel of the Unified Modeling Language (UML) as the
basis of the SPOOL repository schema. In this chapter, they show how UML
was used in reverse engineering by discussing the architecture and schema, as
well as some of the key mechanisms, of the SPOOL design repository. The ar
chitecture is characterized by a suite of end-user tools, by the repository schema
defining both the structure and the behavior of the repository, and by an object
oriented database as the persistent data store. The SPOOL repository mecha
nisms provide advanced functionality to end-user tools, supporting the traversal
of complex object structures, the observation of models by views, and the accu
mulation of dependencies among high-level elements such as directories and
files. The SPOOL repository constitutes a proof-of-concept of the implementa
tion of the UML metamodel for reverse engineering purposes.

Chapter 14 The Software Bookshelf

Legacy software systems are typically complex, geriatric, and difficult to
change, having evolved over decades and having passed through many develop
ers. Nevertheless, these systems are mature, heavily used, and constitute massive
corporate assets. Migrating such systems to modem platforms is a significant
challenge due to the loss of information over time. This chapter reports on a
landmark research project to design and implement an environment to support
software migration. The project focused on migrating legacy PL/I source code to
C++, with an initial phase of looking at redocumentation strategies. Recent
technologies such as reverse engineering tools and World Wide Web standards
now make it possible to build tools that greatly simplifY the process of redocu
menting legacy software systems.

The authors introduce the concept of a software bookshelf as a means to cap
ture, organize, and manage information about a legacy software system. They
distinguish three roles directly involved in the construction, population, and use
of such a bookshelf: the builder, the librarian, and the patron. From these per
spectives, they describe requirements for the bookshelf, as well as a generic ar
chitecture and a prototype implementation. The authors also discuss various
parsing and analysis tools that were developed and integrated to assist in the
recovery of useful information about a legacy system. Finally, they illustrate
how a software bookshelf is populated with the information of a given software
project and how the bookshelf can be used in a program understanding scenario.
Reported results are based on a pilot project that developed a prototype book
shelf for a software system consisting of approximately 300K lines of code writ
ten in a PL/I dialect.

www.manaraa.com

12 Erdogmus et aI.

Chapter 15 Dynamic Documents Over the Web

Software and product infonnation is more frequently being delivered as hyper
text webs or documents because of the availability of the World-Wide Web and
the associated communications infrastructure. However, this type of document,
with its large number of files and hyperlinks, can become very complex and
present significant usability problems for the creator, the maintainer, and the
user. Because of this complexity, it becomes extremely difficult to implement
and maintain dynamic aspects, such as views, of a document-a supposed ad
vantage of a hyperlinked structure. In this chapter, the authors analyze the
causes for these usability issues, and then describe some approaches that are
being employed to address the underlying problems. They focus on how to make
it easier to build, evolve, and use technical software documentation that is deliv
ered via the web. In essence, their approach supports the separation of concerns
for web-based documents into four orthogonal components: content, structure or
organization, navigation, and presentation. They accomplish this separation by
storing the information in databases and providing methods and tools to recreate
the necessary views upon demand.

Chapter 16 Support for Geographically Dispersed
Software Teams

Globalization has the universal effect of distributing members of work teams,
such as software development teams, geographically. This makes collaboration
more difficult. Much recent research has been devoted to the exploration of
means of alleviating the resulting problems. One of the approaches that seem
most promising is based on the concept of a collaborative virtual environment.
This contribution surveys the main concepts of collaborative virtual environ
ments and describes work on a text-based virtual environment.

Chapter 17 Parsing C++ Code Despite Missing Declarations

This chapter addresses the problem of parsing a C++ software system that is
known to compile correctly, but for which some header files are unavailable. A
C++ program file typically depends on numerous included header files from the
same system, a third party library, or the operating system standard libraries. It
is not possible with a conventional parser to analyze C++ source code without
obtaining the complete environment where the program is to be compiled. The
authors study parsing ambiguities that result from missing header files. They
propose a special parser that uses additional rules and type inference in order to
determine the missing declarations. This new parser has reportedly achieved
100% accuracy on a large system with numerous missing header files.

www.manaraa.com

Chapter 18 Toward Environment-Retargetable
Parser Generators

1. Introduction 13

One of the most fundamental issues in software re-engineering is the representa
tion of the source code at a higher level of abstraction than source text. Even
though many researchers have investigated a variety of program representation
schemes, one particular scheme, the Abstract Syntax Tree (AST), is of particular
interest for its simplicity, generality, and completeness of the information it con
tains. This paper presents a methodology to generate Abstract Syntax Trees that
conform to user-defined domain models that can be easily ported to different
CASE tools, and that can be generated using public domain parser generators.
The work reports on a prototypical tool that uses PCCTS and flex as a parser
generator and a lexical analyzer, respectively. The resulting AST can be repre
sented in terms of the conceptual modeling language Telos and can be used by
various reverse engineering tools such as Rigi and Refine.

1.4 A Synopsis of CSER: Structure, Objectives,
Principles, Results, and Directions

1.4.1 Background

Building and maintaining software products is an intellectual work performed by
highly skilled professionals. The raw material for a successful and thriving
software industry is thus principally the supply of highly qualified personnel.

The shortage of highly qualified personnel in the software industry is not a
new phenomenon. In fact, statistics from around the world indicate that the
problems facing the industry will become even worse in the coming years due to
the explosive growth facing the software industry. Educational institutions can
not produce graduates fast enough.

Equally critical is the gap between the skills possessed by future software
professionals and researchers produced by university graduate programs and the
skills sought in these graduates by the software industry as well as by academic
and research organizations. David L. Parnas emphasized this gap in a 1999 arti
cle, ··Software Engineering Programs Are Not Computer Science Programs"
(IEEE Software, November-December 1999).

The nature of academic computer science and software engineering research
has shifted substantially over the past twenty years. In the past, the research was
largely individualistic and long term, leading to scientific papers dubbed "re
search nuggets" by John Mylolpoulos of University of Toronto. The emphasis
has since moved from research that is based on networking and large-scale col
laboration, such as the Japanese Fifth Generation project or the European Union
ESPRIT initiative, to research that is more team- and mission-oriented, and syn
ergistic on a smaller, yet on a more effective scale.

www.manaraa.com

14 Erdogmus et al.

These observations and a conviction that there is more to software produc
tion than the knowledge of data structures, programming languages, formal lan
guages and computational complexity led to a series of meetings and brain
storming sessions among a number of groups from Canadian software and tele
communication industries, universities, and government laboratories. The result
was the creation in June of 1996 of the Consortium for Software Engineering
Research, or CSER.l The five founding industrial partners were Bell Canada,
IBM Canada, Mitel Corporation, Nortel Networks and Object Technology Inter
national, Inc. Those partners have recently been joined by Sun Microsystems
Canada. The founding academic partners were Acadia University, Universite de
Montreal, the University of Ottawa, the University of Toronto, the University of
Waterloo, the University of Victoria, and the University of British Columbia.
Recent university partners are Carleton University, the University of Alberta,
and the Ecole Polytechnique de Montreal.

The research projects of the Consortium are partially funded by the industrial
partners and partially by the Natural Sciences and Engineering Research Council
of Canada (NSERC}--a Canadian research funding agency. Technical and ad
ministrative management of the Consortium is provided by the National Re
search Council of Canada (NRC}--specifically by the members of the Software
Engineering Group of the Institute for Information Technology.

Total funding for Phase 1 (1996-1999) ofCSER was about 7.5 million Ca
nadian dollars (about 4.7 million U.S. dollars) including in-kind industrial con
tributions. Phase 2 (1999-2002) funding presently stands at about 8 million Ca
nadian dollars, with additional funding earmarked for projects under review.

1.4.2 Structure

CSER is an industry-directed organization. The industrial involvement is central
to the concept, but it means much more than just providing funds for the re
searchers. Each of the industrial members takes the lead in defining the research
projects and opens its development environment and proprietary software to the
academic researchers. The industrial partners directly participate in the research
activities by committing own employees.

This direct participation is the main difference between CSER style of col
laborative research and more traditional research consortiums. It also makes the
recruitment of new industrial partners in CSER more challenging than usual
since the time of key employees is perceived by companies as being more pre
cious than an equivalent cash contribution.

Another important CSER principle is the sharing of research results among
industrial partners. Each research partner has access to the research results of all

IThe creation of CSER was championed by Dr. W. Morven Gentleman, then with the
National Research Council of Canada, Ottawa, and by Dr. Jacob Slomin, then with the
the IBM Centre for Advanced Studies, Toronto.

www.manaraa.com

1. Introduction 15

CSER projects. This practice is facilitated by the fact that CSER research is pre
competitive in nature: industrial partners can significantly leverage their invest
ment in CSER.

The industry orientation of CSER is also reflected in the governance of the
Consortium. The Board of Directors manages the Consortium. It consists of the
representatives of three industrial partners and two senior, non-funded academic
appointees who represent university interests. A representative of NRC acts as
Research Director, and a representative from NSERC's Partnership Program
acts as Program Officer. These two positions have non-voting, observer status.
An Executive Director handles legal and financial matters, and is assisted by an
Operations Manager who deals with day-to-day issues.

The research projects of the Consortium are organized into two coherent
themes. At the time ofthis writing, two themes were active:

1. Empirical Evolution from Legacy Software to Modern Architectures and
2. Software Quality: Verification and Validation.

Projects under each of the themes are directed by a Steering Committee,
which consists of three members selected from the active projects. The Steering
Committee reviews the progress and the direction of the research projects. It
also reviews new proposals and applications. The Steering Committee then
makes recommendations to the Board, which makes the final decisions.

Currently, the total CSER research effort, covering all contributions from all
of the partners, stands at approximately 18 million Canadian dollars for five
research projects from 1996 to 1999 and six research projects from 1999 to
2002.

1.4.3 Objectives and Principles

The objectives ofCSER as stated in its charter are:

1. to focus university research and education on software engineering
problems relevant to the industry,

2. to contribute through these research projects to the body of knowledge
of the software engineering field,

3. to provide to its industrial and academic members an environment con
ducive to research, in which each research project will benefit from syn
ergies with other projects, and

4. to improve the competence in the field of software engineering among
university graduates through relevant educational programs and among
current software professionals through dissemination of research results.

The research projects achieve these objectives by conforming to the strict re
quirements imposed on them. Each research project must:

www.manaraa.com

16 Erdogmus et al.

1. be conducted at least partly in an industrial setting;
2. address industrial-scale problems using industrial-scale data; and
3. include empirical studies.

These requirements provide reciprocal benefits to the contributing research
ers: They give the researchers, both faculty and supported students, the oppor
tunity to spend time in the industrial laboratories, work with industrial-size and
industrial-quality code that is hard to obtain otherwise, pursue real problems,
and validate their results, thus increasing the quality and credibility of the re
search.

CSER is cognizant of the issues facing faculty members at the universities.
Projects reconcile short-term goal-oriented research with longer-term higher-risk
research. This approach creates an environment that nurtures innovation while
addressing current problems.

A strong emphasis on continuity ensures the quality of the research and real
izes the desired impact on education and training. Continuity is present in the
research programs, in the commitment of the industrial partners, and in the over
all project objectives.

Regular meetings are a key feature of the Consortium. All of the partici
pants-industry, university, and government researchers, as well as students
attend the general meetings held twice a year and usually hosted by an industrial
member. The meetings provide a forum for the exchange of ideas, problems, and
their solutions. CSER participants credit these meetings with maintaining both
the quality and the progress of the research projects.

Each research project clearly identifies the benefits to the industrial partners,
academic partners, CSER, and the software engineering community at large.
The Consortium supports and encourages the incorporation of the generated
knowledge into the academic curriculum. It is this feature that defines CSER's
emphasis on education and training.

1.4.4 Results

Despite the very short time during which CSER has been in existence, it can
claim many successes. Those successes and benefits are directly attributed to the
stated objectives and principles.

First-as evidenced by this book - CSER has witnessed significant research
results. It generated well over 100 pUblications and presentations directly attrib
utable to the individual projects. Many of those publications are co-authored
with the industry partners. At least three academic partners - namely the Univer
sity of Ottawa, the University of Victoria, and the University of Waterloo - have
been developing new software engineering curricula. At least 15 new courses
throughout the participating universities originated from the CSER experience.

www.manaraa.com

1. Introduction 17

Dr. Timothy Lethbridge states that "CSER research directly influenced the
design of the Software Engineering program in the School ofInformation Tech
nology and Engineering at the University of Ottawa." He adds that CSER has
provided him, as one of the principal designers of the program, "with direct ac
cess to top software companies and academics No other Canadian organiza
tion brings together the same kind of software engineering brainpower."

Second, some of the results of CSER research have found their way into the
processes and methodologies by which industrial partners develop and maintain
their software products. The industrial partners claim significant cost and time
savings. Peter J. Perry, Head of the Strategic Technology Group at Mitel Corpo
ration, comments on a tool developed by a CSER research team and field-tested
at his organization:

In the first of phase of CSER, we halved the time taken to get new staff pro
ductive from 12 to 18 months to 6 to 9 months. Commercial tools of similar
function cost much more than the cost of the research to Mitel.

In addition to having specific problems solved, industry partners benefit
from improved access to university researchers and their graduate students.
Many industrial partners have hired the students who have worked on their
CSER projects.

Third, CSER-sponsored students have been major beneficiaries. The consor
tium environment is an excellent setting for applied graduate work. CSER has
provided funding for over 80 students. Students benefit from the exposure to
many leading researchers and industry practitioners well beyond the capabilities
of a single academic institution. CSER provides two opportunities for such ex
posure. On the one hand, students carry out some of their research at the com
pany site, working alongside industry researchers. On the other hand, they par
ticipate in the semi-annual CSER meetings where they interact with the other
CSER participants.

A great majority of these students have or will graduate with masters and
doctoral degrees. CSER is proud of the fact that some of the Ph.D. graduates and
post doctoral fellows progressed into lead researcher positions within the Con
sortium. Additionally, many more graduate and undergraduate students have
been affected by the new and modified courses designed by CSER researchers.

Fourth, and possibly the most significant benefit of the Consortium, is a
change in the attitudes both within the research community and among the in
dustrial partners.

Initial meetings of CSER were characterized by rather narrow and inward
looking research reports. Since the problems encountered and the tools needed
by the researchers to address these problems were very similar among the vari
ous projects, the discussions slowly converged toward the commonalties. The
most recent semi-annual meeting took the form of a series of mini-workshops
devoted to these common topics. The synergy was also demonstrated at the In
ternational Conference on Software Engineering held in June 2000. CSER re-

www.manaraa.com

18 Erdogmus et al.

searchers organized two of the collocated workshops, based on the issues that
have directly originated from previous CSER meetings.

CSER has established a framework for collaboration that engenders trust and
reciprocity. Not only are the university researchers exchanging ideas, but CSER
industrial partners share proprietary software with the other CSER members. For
example, IBM has agreed to make its VisualAge C++ Professional APIs avail
able to all CSER participants. Similarly, Bell Canada licensed the use of its
Datrix analysis suite for research purposes to all CSER participants. Moreover,
some of the tools developed within an IBM-led project are being deployed at
Mitel Corporation.

1.4.5 Directions

The ftrst research theme-Empirical Evolution from Legacy Software to Mod
em Architectures-was selected after lengthy discussions. That selection was in
part precipitated by the then impending Year 2000 problems. But the partici
pants felt that the migration of software-whether due to changing user re
quirements, changing platforms, or other reasons-will dominate software in
dustry for years to come.

Clearly, they have been proven right. The meteoritic rise of the World Wide
Web and related technologies have caused a new wave of migration issues. We
need to concern ourselves with new computing paradigms, new system architec
tures, and new applications enabled by an enormous increase in computing
power. We now need to migrate not only code but also the whole wealth of en
terprise assets encapsulated in the underlying data. Isn't the maintenance of very
large websites merely an instance of the migration problem?

If we can be so bold, the recently created second theme of CSER research -
Software Quality: Veriftcation and Validation-will also endure. It is clear that
software is ubiquitous. Software is written in massive amounts all over the
world. User expectations of the functionality to be provided are growing at a
much faster rate than our ability to provide that functionality. The user demands
reliable, usable, and high-performance software. The research community is
being challenged to develop tools and methodologies that would enable the
software industry to fulftll these needs.

1.4.6 Conclusions

It is evident that the Consortium for Software Engineering Research has em
braced the challenges that it originally set out. It has increased the number of
university graduates with the right skills in order to meet software engineering
industry needs. It has increased the capability of software professionals to ad
dress complex problems in software engineering and to keep abreast of changes
in software technology. It has created strong linkages between industry person-

www.manaraa.com

1. Introduction 19

nel and university-based researchers, permitting the exchange of ideas and the
fostering of solutions to industry driven problems. And finally, it has increased
the number of academic resources and expertise in the software engineering
practice.

www.manaraa.com

Part I

Empirical Studies

www.manaraa.com

2
Object-Oriented Metrics:
A Review of Theory and Practice

Khaled EI-Emam

2.1 Introduction

In today's business environment, competitive pressures demand the production
of reliable software with shorter and shorter release intervals. This is especially
so in commercial high-reliability domains such as telecommunications and the
aerospace industry. One recipe for success is to increase process capability.
There is recent compelling evidence that process capability is positively associ
ated with productivity and quality. (Clark, 1997; EI-Emam and Birk, 2000a,
2000b; Flowe and Thordahl, 1994; Goldenson and Herbsleb, 1995; Jones, 1999;
Krishnan and Kellner, 1999). Quantitative management of software quality is a
hallmark of high-process capability (EI-Emam et aI., 1998; Software Engineer
ing Institute, 1995).

Quantitative management of software quality is a broad area. In this chapter
we focus on only one aspect: the use of software product metrics for quality
management. Product metrics are objective! measures of the structure of soft
ware artifacts. The artifacts may be, for example, source code or analysis and
design models.

The true value of product metrics comes from their association with meas
ures of important external attributes (ISOIIEC, 1996). An external attribute is
measured with respect to how the product relates to its environment (Fenton,
1991). Examples of external attributes are testability, reliability and maintain
ability. Practitioners, whether they are developers, managers, or quality assur
ance personnel, are really concerned with the external attributes. However, they
cannot measure many of the external attributes directly until quite late in a pro
ject's or even a product's lifecycle. Therefore, they can use product metrics as

I Objective means that if you repeatedly measure the same software artifact (and the arti
fact does not change), then you will get the same values. This is because in most cases

the metrics are automated. The alternative is to have subjective metrics. Subjective met
rics are not covered in this chapter.

www.manaraa.com

24 EI-Emam

leading indicators of the external attributes that are important to them. For in
stance, if we know that a certain coupling metric is a good leading indicator of
quality as measured in terms of the number of faults, then we can minimize cou
pling during design because we know that in doing so we are also reducing re
work costs.

Specifically, product metrics can be used in at least three ways:

• Making system-level predictions.
• Early identification of high-risk software components.
• The construction of preventative design and programming guidelines.

These uses allow an organization, for instance, to get an early estimate of qual
ity, and to take early action to reduce the number of faulty software components.

Considerable effort has been spent by the software engineering research
community in developing product metrics for both procedural and object
oriented systems, and empirically establishing their relationship to measures of
important external attributes. The latter is known as the empirical validation of
the metric. Once the research community has demonstrated that a metric or set
of metrics is empirically valid in a number of different contexts and systems,
organizations can take these metrics and use them to build appropriate predic
tion models and guidelines customized to their own context.

The objective of this chapter is to provide a review of contemporary object
oriented metrics. We start by describing how object-oriented metrics can be used
in practice by software organizations. This is followed by an overview of some
of the most popular object-oriented metrics, and those that have been studied
most extensively. The subsequent section describes current cognitive theories
used in software engineering that justify the development of object-oriented
metrics. This is followed by a further elaboration of the cognitive theory to ex
plain the cognitive mechanisms for metric thresholds. The empirical evidence
supporting the above theories is then reviewed. The chapter is concluded with
recommendations for the practical usage of object-oriented metrics, a discussion
of the match between the empirical results and the theory, and directions for
future research.

2.2 The Practical Use of Object-Oriented Metrics

In this section we describe how product metrics can be used by organizations for
quality control and management.

2.2.1 Making System-Level Predictions

Typically, software product metrics are collected on individual components for a
single system. Predictions on individual components can then be aggregated to

www.manaraa.com

2. Object-Oriented Metrics: A Review of Theory and Practice 25

give overall system level predictions. For example, in two recent studies using
object-oriented metrics, the authors predicted the proportion of faulty classes in
a whole system (EI-Emam et aI., 2001). This is an example of using predictions
of fault-proneness for each class to draw conclusions about the overall quality of
a system. One can also build prediction models of the total number of faults and
fault density (Evanco, 1997). Similarly, another study used object-oriented met
rics to predict the effort to develop each class, and these were then aggregated to
produce an overall estimate of the whole system's development cost (Briand and
Wuest, 1999).

2.2.2 Identifying High-Risk Components

The definition of a high-risk component varies depending on the context. For
example, a high-risk component may be one that contains any faults found dur
ing testing (Briand et aI., 1993; Lanubile and Visaggio, 1997), one that contains
any faults found during operation (Khoshgoftaar et aI., 1999), or one that is
costly to correct after an error has been found (Almeida et aI., 1998; Basili et aI.,
1997; Briand et aI., 1993). Recent evidence suggests that most faults are found
in only a few of a system's components (Fenton and Ohlsson, 2000; Kaaniche
and Kanoun, 1996; Moller and Paulish, 1993; Ohlsson and Alberg, 1996). If
these few components can be identified early, then an organization can take
mitigating actions. Examples of mitigating actions include focusing defect
detection activities on high-risk components by optimally allocating testing re
sources (W. Harrison, 1988), or redesigning components that are likely to cause
field failures or be costly to maintain.

Early prediction is commonly cast as a binary classification problem.2 This
is achieved through a quality model that classifies components into either a bigh
or low-risk category. An overview of a quality model is shown in Figure 2.1. A
quality model is developed using a statistical modeling or machine learning
technique, or a combination of techniques. This is done using historical data.
Once constructed, such a model takes as input the values on a set of metrics
(MJ ••• M0 for a particular component, and produces a prediction of the risk
category (say either high or low risk) for that component.

A number of organizations have integrated quality models and modeling
techniques into their overall decision making process. For example, Lyu et aI.
(1995) report on a prototype system to support developers with software quality
models, and the EMERALD system is reportedly routinely used for risk assess
ment at Nortel (Hudepohl et aI., 1996a, 1996b). Ebert and Liedtke describe the

2 It is not, however, always the case that binary classifiers are used. For example, there
have been studies that predict the number of faults in individual components (Khoshgoftaar
et al., 1996) and that produce point estimates of maintenance effort (Jorgensen, 1995; Li and
Henry, 1993).

www.manaraa.com

26 EI-Emam

Ml

Quality
Model

Predicted
Risk

Category

Figure 2.1. Definition of a quality model.

application of quality models to control the quality of switching software at AI
catel (Ebert and Liedtke, 1995).

In the case of object-oriented metrics, an example of a quality model was
presented in a recent study using design metrics On a Java application (EI-Emam
et aI., 2001). This model was developed using logistic regression (Hosmer and
Lemeshow, 1989):

1 7r=----;--::--::--...,.....,.-:--_____ -:-::-:--:-::----: ___ -:::-.-
1 + e -(-3.97+0.464NAI+1.47OCMEC+1.06DIT) (2.1)

In the above equation:
• The variable 7r is the predicted probability that a class will have a fault.
• NAI is the total number of attributes defined in the class.
• OCMEC is the number of other classes that have methods with parameter

types of this class (this is a form of export coupling).
• DIT is the depth of the inheritance tree that measures how far down an in

heritance hierarchy a class is.
NAI, OCMEC, and DIT are examples of object-oriented metrics. In fact, in

this case, all of these metrics can be collected easily from high-level designs,
and therefore one can in principle use this model to predict the probability that a
class will have a fault at an early stage of development. A calibration of this
model, described in EI-Emam et aI., (2001), indicated that if the predicted prob
ability of a fault was greater than 0.33, then the class should be flagged for spe
cial managerial action (Le., it would be considered to be high risk).

The metrics in the above example are class-level static metrics. Object
oriented metrics can also be defined at the method level or at the system level.
Our focus here is only on class level metrics. Furthermore, metrics may be col
lected statically or dynamically.

Static metrics can be collected by an analysis of the software artifact. Dy
namic metrics require execution of the software application in order to collect
the metric values, which makes them difficult to collect at early stages of the
design. The focus in this chapter is on static metrics.

www.manaraa.com

2. Object-Oriented Metrics: A Review of Theory and Practice 27

2.2.3 Design and Programming Guidelines

An appealing operational approach for constructing design and programming
guidelines using software product metrics is to make an analogy with conven
tional statistical quality control: identify the range of values that are acceptable
or unacceptable, and take action for the components with unacceptable values
(Kitchenham and Linkman, 1990). This means identifying thresholds on the
software product metrics that delineate between acceptable and unacceptable.
In summarizing their experiences using software product measures, Szentes and
Gras (1986) state ''the complexity measures of modules may serve as a useful
early warning system against poorly written programs and program designs ...
Software complexity metrics can be used to pinpoint badly written program
code or program designs when the values exceed predefined maxima or min
ima." They argue that such thresholds can be defined subjectively based on ex
perience. In addition to being useful during development, Coallier et al. (1999)
present a number of thresholds for procedural measures that Bell Canada uses
for risk assessment during the acquisition of software products. The authors note
that the thresholds result in 2 to 3 percent of the procedures and classes that are
flagged for manual examination. Instead of thresholds based on experience,
some authors suggest the use of percentiles for this purpose. For example,
Lewis and Henry (1989) describe a system that uses percentiles on procedural
measures to identify potentially problematic procedures. Kitchenham and Link
man (1990) suggest using the 75th percentile as a cut-off value. More sophisti
cated approaches include identifying multiple thresholds simultaneously, such as
in Almeida et al. (1998) and Basili et al. (1997).

In an object-oriented context, thresholds have been similarly defined by Lo
renz and Kidd (1994) as "heuristic values used to set ranges of desirable and
undesirable metric values for measured software." Henderson-Sellers (1996)
emphasize the practical utility of object-oriented metric thresholds by stating
that "an alarm would occur whenever the value of a specific internal metric ex
ceeded some predetermined threshold." Lorenz and Kidd (1994) present a num
ber of thresholds for object-oriented metrics based on their experiences with
Smalltalk and C++ projects.

Similarly, Rosenberg et al. (1999) have developed thresholds for a number
of popular object-oriented metrics that are used for quality management at
NASA GSFC. French (1999) describes a technique for deriving thresholds, and
applies it to metrics collected from Ada95 and C++ programs. Chidamber et al.
(1998) state that the premise behind managerial use of object-oriented metrics is
that extreme (outlying) values signal the presence of high complexity that may
require management action. They then define a lower bound for thresholds at the
80th percentile (i.e., at most 20% of the observations are considered to be above
the threshold). The authors note that this is consistent with the common Pareto
(80/20) heuristic.

www.manaraa.com

28 EI-Emam

2.3 Object-Oriented Metrics

Structural properties that capture interconnections among classes are believed to
be important to measure (for example different types of coupling and cohesion).
This is because they are considered to affect cognitive complexity (see next sec
tion). Object-oriented metrics measure these structural properties. Coupling met
rics characterize the static usage dependencies among the classes in an object
oriented system (Briand et aI., 1999). Cohesion metrics characterize the extent to
which the methods and attributes of a class belong together (Briand et aI., 1998).
In addition, inheritance is also believed to play an important role in the under
standability of object-oriented applications.

A considerable number of such interconnected object-oriented metrics have
been developed by the research community. For example, see (F. Brite e Abreu
and Carapuca, 1994; Benlarbi and Melo, 1999; Briand et aI., 1997; Cartwright
and Shepperd, 2000; Chidamber and Kemerer, 1994; Henderson-Sellers, 1996;
Li and Henry, 1993; Lorenz and Kidd, 1994; Tang et aI., 1999). By far, the most
popular of these is the metrics suite developed by Chidamber and Kemerer
(1994) (known as the CK metrics). For historical reasons the CK metrics are the
most referenced (Briand et aI., 1999), and most commercial metrics collection
tools collect these metrics. Another comprehensive set of metrics that capture
important structural characteristics, namely different types of coupling, have
been defined by Briand et aI. (1997). These two sets ofmetrics have received a
considerable amount of empirical study. A summary of the metrics can found in
Table 2.1. Many of the metrics can be collected at the design stage of the life
cycle. The table indicates which of the metrics can be collected accurately at the
design phase. If the entry in the "Des" column is "Y," then the metric is typi
cally available during design. Even though some of the metrics can be collected
at design time, in practice, they are frequently collected from the source code
during validation studies. Of the set shown, only the CK metrics suite currently
is known to have a number of commercial and public domain analyzers (for
Java, see CodeWork, 2000, Metameta, 2000, Power-Software, 2000b; and for
C++, see Devanbu, 2000, ObjectSoft, 2000, Power-Software, 2000a)3. In addi
tion there is at least one tool that can be used to collect the CK metrics directly
from design documents (Number-Six-Software, 2000).

2.4 Cognitive Theory of Object-Oriented Metrics

A theoretical basis for developing quantitative models relating product metrics
and external quality metrics has been provided in (Briand, Wuest, Ikonomovski,

3 Note that this is not a comprehensive list of tools available on the market today. Also,
please note that not all of the analyzers will collect all of the CK metrics; some only col
lect a subset.

www.manaraa.com

2. Object-Oriented Metrics: A Review of Theory and Practice 29

and Lounis, 1998), and is summarized in Figure 2.2. This theory hypothesizes
that the structural properties of a software component (such as its coupling) have
an impact on its cognitive complexity. Cognitive complexity is defined as the
mental burden of the individuals who have to deal with the component.

Metric
Acronym

CBO

RFC

Des

N

N

Table 2.1. Summary of object-oriented metrics.

Definition

This is the coupling between object classes coupling metric
(Chidamber and Kemerer, 1994). A class is coupled with another if
the methods of one class use the methods or attributes of the other.
In this definition, uses can mean as a member type, parameter type,
method local variable type or cast. CBO is the number of other
classes with which a class is coupled. It includes inheritance-based
coupling (i.e., coupling between classes related via inheritance). A
variant of CBO, known as CBO', excludes in)leritance-based cou
pling (Chidamber and Kemerer, 1991).

This is the response for a class coupling metric (Chidamber and
Kemerer, 1994). The response set of a class consists of the set M of
methods of the class, and the set of methods invoked directly by the
methods in M (i.e., the set of methods that can potentially be exe
cuted in response to a message received by that class). RFC is the
number of methods in the response set of the class. A variant of
RFC excludes methods indirectly invoked by a method in M
(Chidamber and Kemerer, 1991).

DIT Y The depth of inheritance tree (Chidamber and Kemerer, 1994)
metric is defined as the length of the longest path from the
class to the root in the inheritance hierarchy.

NOC Y This is the number of children inheritance metric (Chidamber and
Kemerer, 1994). This metric counts the number of classes that in
herit from a particular class (i.e., the number of classes in the inheri
tance tree down from a class).

LCOM N This is a cohesion metric that was defined in Chidamber and Ke
merer, (1994). It measures the number of pairs of methods in the
class that have no attributes in common, minus the number of pairs
of methods that do. If the difference is negative, the metric value is
set to zero.

www.manaraa.com

30 EI-Emam

WMC

IFCAIC
ACAIC
OCAIC
FCAEC
DCAEC

OCAEC
IFCMIC
ACMIC
OCMIC
FCMEC
DCMEC
OCMEC
OMMIC
IFMMIC
AMMIC
OMMEC

Table 2.1. (continued).

y4 This is the weighted methods per class metric (Chidamber and
Kemerer 1994), and can be classified as a traditional complexity
metric. It is a count of the methods in a class. It has been suggested
that neither methods from ancestor classes nor friends in C++ be
counted (Basi Ii et al. 1996; Chidamber and Kemerer, 1995). The
developers of this metric leave the weighting scheme as an imple
mentation decision (Chidamber and Kemerer, 1994). Some authors
weight it using cyclomatic complexity (Li and Henry, 1993). How
ever, others do not adopt a weighting scheme (Basili et aI., 1996;
Tang et aI., 1999). In general, if cyclomatic complexity is used for
weighting, then WMC cannot be collected at early design stages.
Alternatively, if no weighting scheme is used, then WMC becomes
simply a size measure (the number of methods implemented in a
class), also known as NM.

y

y
y
y
y

y
y
y

y
y
y

Y
N

N
N

N

These coupling metrics are counts of interactions among classes.
The metrics distinguish among the class relationships (friendship,
inheritance, none), different types of interactions, and the locus of
impact of the interaction (Briand et aI., 1997).

The acronyms for the metrics indicate what types of interactions
are counted:

• The first or first two letters indicate the relationship:
• A: coupling to ancestor classes;

• D: coupling to descendents;
• F: coupling to friend classes;
• IF: inverse friend coupling; and

• 0: other (i.e., none of the above).
• The next two letters indicate the type of interaction be

tween classes c and d:

• CA: there is a class-attribute interaction between
classes c and d if c has an attribute of type d.

Individuals that may be prone to cognitive complexity are the developers,
testers, inspectors, and maintainers. High cognitive complexity leads to a com
ponent exhibiting undesirable external qualities, such as increased fault-

4 Only the unweighted version of WMC is available during design. If weights are used,
then this would depend on the characteristics of the weighting scheme. For example,
cyclomatic complexity weights would certainly not be available during design.

www.manaraa.com

2. Object-Oriented Metrics: A Review of Theory and Practice 31

Structural Class Iffect External Attributes
Properties

Iffect .1 Cognitive I (e.g., fault-proneness,
(e.g., coupling) I Complexity J maintainability)

IndlClte

Figure 2.2. Theoretical basis for the development of object-oriented product metrics

proneness and reduced maintainability. Accordingly, object-oriented product
metrics that affects cognitive complexity will be related with fault-proneness.

It should be noted that if a cognitive theory is substantiated, this could have
important implications. It would provide us with a clear mechanism that would
explain the introduction of faults into object-oriented applications.

2.4.1 Distribution of Functionality

In applications developed using functional decomposition, functionality is local
ized in specific procedures, the contents of data structures are accessed directly,
and data central to an application is often globally accessible (Wilde et al.,
1993). Functional decomposition is believed to make procedural programs easier
to understand because such programs are built upon a hierarchy in which a top
level function calls lower-level functions to carry out smaller chunks of the
overall task (Wiedenbeck et al., 1999). Hence tracing through a program to un
derstand its global functionality is facilitated. This is not necessarily the case
with object-oriented applications.

The object-oriented strategies of limiting the responsibility of a class and re
using it in multiple contexts results in a profusion of small classes in object
oriented systems (Wilde et al., 1993). For instance, Chidamber and Kemerer
(Chidamber and Kemerer, 1994) found in two systems studied5 that most classes
tended to have a small number of methods (0-10), suggesting that most classes
are relatively simple in their construction, providing specific abstraction and
functionality. Another study of three systems performed at Bellcore6 found that
half or more of the methods are fewer than four Smalltalk lines or two c++
statements, suggesting that the classes consist of small methods (Wilde et al.,
1993). Many small classes imply many interactions among the classes and a
distribution of functionality across them.

In one experimental study with students and professional programmers,
Boehm-Davis et al. (1992) compared maintenance time for three pairs of func-

5 One system was developed in G++ and the other in Small talk.
6 The study consisted of analyzing C++ and Smalltalk systems and interviewing the de
velopers for two of them. For a C++ system, method size was measured as the number of
executable statements, and for Smalltalk size was measured by uncommented nonblank
lines of code.

www.manaraa.com

32 EI-Emam

tionally equivalent programs (implementing three different applications,
amounting to a total of nine programs). Three programs were implemented in a
straight serial structure (i.e., one main function, or monolithic program), three
were implemented following the principles of functional decomposition, and
three were implemented in the object-oriented style, but without inheritance. In
general, it took the students more time to change the object-oriented programs,
and the professionals exhibited the same effect, although not as strongly. Fur
thermore, both the students and professionals noted that they found that it was
most difficult to recognize program units in the object-oriented programs, and
the students felt that it was also most difficult to find information in the object
oriented programs.

Widenbeck et al. (1999) make a distinction between program functionality at
the local level and at the global (application) level. At the local level they argue
that the object-oriented paradigm's concept of encapsulation ensures that meth
ods are bundled together with the data on which they operate, making it easier to
construct appropriate mental models and specifically to understand the individ
ual functionality of a class. At the global level, functionality is dispersed among
many interacting classes, making it harder to understand what the program is
doing. They supported this in an experiment with equivalent small C++ (with no
inheritance) and Pascal programs where the subjects answered questions about
the functionality of the C++ program more easily. They then performed an ex
periment with larger programs. The number of correct answers for the subjects
with the C++ program (with inheritance) on questions about its functionality
was not much better than guessing. While this study was done with novices, it
supports the general notions that high cohesion makes object-oriented programs
easier to understand and high coupling makes them more difficult to understand.

2.4.2 A Cognitive Model

Cant et al. (1995) have proposed a general cognitive theory of software com
plexity that elaborates on the impact of structure on understandability. At the
core of the cognitive theory proposed is a human memory model that consists
mainly of short-term and long-term memory.7 In the same light, Tracz (1979)
has claimed that "the organization and limitations of the human memory are
perhaps the most significant aspects of the human thought process which affect
the computer programmer." Hence, there is a view within the software engineer
ing community that the human memory model is a reasonable point of departure
for understanding structural properties on understandability.

7 Tracz (1979) also discusses very-short-term memory, which plays a role in attention and
perception. However, this does not playa big role in cognitive theories that are used to
associate software product metrlcs to understandability. Neither does the concept of ex
tended memory presented by Newell and Simon (1972). Therefore, they will not be dis
cussed further.

www.manaraa.com

2. Object-Oriented Metrics: A Review of Theory and Practice 33

Cant et al. argue that comprehension consists of both chunking and tracing.
Chunking involves recognizing groups of statements and extracting from them
information that is remembered as a single mental abstraction. These chunks are
further grouped together into larger chunks forming a hierarchical structure.
Tracing involves scanning through a program, either forwards or backwards, in
order to identify relevant chunks. Subsequently, they formulate a model of cog
nitive complexity for a particular chunk, say D, which is the sum of three com
ponents: (1) the difficulty of understanding the chunk itself; (2) the difficulty of
understanding all the other chunks upon which D depends; and (3) the difficulty
of tracing the dependencies on the chunks upon which D depends. Davis (1984)
presents a similar argument where he states that "any model of program com
plexity based on chunking should account for the complexity of the chunks
themselves and also the complexity of their relationship."

In order to operationalize this model, it is necessary to define a chunk. Tracz
(1979) considers a module to be a chunk. However, it is not clear what exactly a
module is. Cant et al. (1995) make a distinction between elementary and com
pound chunks. Elementary chunks consist only of sequentially self-contained
statements. Compound chunks are those that contain within them other chunks.
Procedures containing a number of procedure calls are considered as compound
chunks. At the same time, procedures containing no procedure calls may also be
compound chunks. If a procedure contains more than one recognizable subunit,
it is equivalent to a module containing many procedure calls in the sense that
both contain within them multiple subchunks. Subsequent work by Cant et al.
(1994) operationally defined a chunk within object-oriented software as a
method. However, Henderson-Sellers (1996) notes that a class is also an impor
tant type of (compound) chunk.

One factor contended to have an impact on complexity is chunk familiarity
(Henderson-Sellers, 1996). It is argued that chunks that are referenced more
often (i.e., high export coupling) will be more familiar since they are used more
often. Davis (1984) makes a similar argument for procedural programs. There
fore, when tracing other chunks more traces will lead to those with the highest
export coupling. Furthermore, Henderson-Sellers (1996) applies the concept of
cohesion to chunking by stating that a chunk with low cohesion will be more
difficult to recognize since functions performed by the chunk will be unrelated,
and hence more difficult to understand.

Henderson-Sellers (1996) notes that tracing disrupts the process of chunking.
This occurs when it becomes necessary to understand another chunk, as when a
method calls another method in a different class (method-method interaction), or
when an inherited property needs to be understood. Such disruptions may cause
knowledge of the original chunk to be lost. This then is contended to have a
direct effect on complexity. In fact, tracing dependencies is a common task
when understanding object-oriented software.

Cant et al. (1994) also performed an empirical study whereby they compared
subjective ratings by two expert programmers of the complexity of understand
ing classes with objective measures of dependencies in an object-oriented sys-

www.manaraa.com

34 El-Emam

tern. Their results demonstrate a concordance between the objective measures of
dependency and sUbjective ratings of understandability.

Wilde et al. 's (1993) findings are also concordant with this conclusion, in
that programmers have to understand a method's context of use by tracing back
through the chain of calls that reach it, and tracing the chain of methods it uses.
Their findings were from an interview study of two c++ object-oriented systems
at Bellcore and a PC Smalltalk environment. The three systems investigated
span different application domains.

Related work on mental representation of object-oriented software provides
further insights into the structural properties that are most difficult to under
stand. These works build on theories of text comprehension. Modem theories of
text comprehension propose three levels of mental representation (Dijk and
Kintsch, 1983; Kintsch, 1986). The first level, the verbatim representation con
sists of the literal form of the text. The second level, the propositional textbase,
consists of the propositions of the text and their relationships. The third level,
the situation model represents the situation in the world that the text describes.
Pennington (1987a, 1987b) subsequently applied this model to the comprehen
sion of procedural programs, where she proposed two levels of mental represen
tation, the program model and the domain model, which correspond to the latter
two levels of the text comprehension model above. The program model consists
of elementary operations and control flow information. The domain model con
sists of data flow and program function information.

Burkhardt et al. (1997) applied this three level model to object-oriented
software. For the situation model they make a distinction between a static part
and a dynamic part. The static part consists of (a) the problem objects which
directly model objects of the problem domain; (b) the inheritance/composition
relationships between objects; (c) reified objects; and (d) the main goals of the
problem. The dynamic part represents the communication between objects and
variables. The static part corresponds to client-server relationships, and the dy
namic part corresponds to data flow relationships. Based on this model, Burk
hardt et al. performed an experiment. They asked their subjects to study an ob
ject-oriented application and then answer questions about it. Subsequently the
subjects were asked to perform either documentation or a reuse task. The au
thors of the study found that the static part of the situation model is better devel
oped than the dynamic, even for experts. Furthermore, there was no difference
between experts and novices in their understanding of the dynamic part. Their
findings suggest that inheritance and class-attribute coupling may have less of
an impact on understandability than both cohesion and coupling.

Even though the above studies suggest that inheritance has little impact on
understandability, within the software engineering community inheritance is
strongly believed to make the understandability of object-oriented software dif
ficult. According to a survey of object-oriented practitioners 55% of respondents
agree that inheritance depth is a factor in understanding object-oriented pro
grams (Daly et aI., 1995). "Inheritance gives rise to distributed class descrip
tions. That is, the complete description for a class D can only be assembled by

www.manaraa.com

2. Object-Oriented Metrics: A Review of Theory and Practice 35

examining D as well as each of D's superclasses. Because different classes are
described at different places in the source code of a program (often spread
across several different files), there is no single place a programmer can turn to
get a complete description of a class" (Leijter et aI., 1992). While this argument
is stated in terms of source code, it is not difficult to generalize it to design
documents. The study by Wilde et ai. (1993) indicated that, to understand the
behavior of a method, one has to trace inheritance dependencies, which may be
considerably complicated due to dynamic binding. A similar point was made by
Leijter et ai. (1992) about the understandability of programs in such languages
as C++ that support dynamic binding.

In a set of interviews with 13 experienced users of object-oriented program
ming, Daly et ai. (1995) noted that if the inheritance hierarchy is designed prop
erly, then the effect of distributing functionality over the inheritance hierarchy
will not be detrimental to understanding. However, it has been argued that there
exists increasing conceptual inconsistency as one travels down an inheritance
hierarchy (i.e., deeper levels in the hierarchy are characterized by inconsistent
extensions or specializations of super classes) (Dvorak, 1994). Therefore inheri
tance hierarchies are likely to be improperly designed in practice. The study by
Dvorak supports this argument. He found that subjects were more inconsistent in
placing classes deeper in the inheritance hierarchy than they were in placing
them lower levels in the inheritance hierarchy.

2.4.3 Summary

This section provided a theoretical framework to explain the mechanism by
which object-oriented metrics could be associated with fault-proneness. If this
hypothesized mechanism matches reality, then we would expect object-oriented
metrics to be good predictors of external quality attributes, in particular, fault
proneness. In the subsequent sections, we will review the empirical studies that
test these associations.

It must be recognized that the above cognitive theory suggests only one pos
sible mechanism of what could impact external metrics. Other mechanisms can
play an important role as well. For example, some studies have showed that
software engineers experiencing high levels of mental and physical stress tend to
produce more faults (Furuyama et aI., 1994, 1997). Reducing schedules and
many changes in requirements may induce mental stress. Physical stress may be
a temporary illness, such as a cold. Therefore, cognitive complexity due to struc
tural properties, as measured by object-oriented metrics, can never be the reason
for all faults. For instance, the developers of a particular set of core functionality
in a system may be placed under schedule pressure since there are many de
pendencies on their output. These developers may introduce more faults into the
core classes due to stress.

It is not known whether the influence of object-oriented metrics dominates
other effects. The only thing that can be stated reasonably is that the empirical

www.manaraa.com

36 EI-Emam

relationships between object-oriented metrics and external metrics are not very
likely to be strong. This is due to effects that are not accounted for, but as has
been demonstrated in a number of studies, they can still be useful in practice.

2.5 Object-Oriented Thresholds

As noted in above, the practical utility of object-oriented metrics would be en
hanced if meaningful thresholds could be identified. The cognitive theory de
scribed above can be expanded to include threshold effects. Hatton (1997) has
proposed a cognitive explanation as to why a threshold effect would exist be
tween complexity metrics and faults. 8

Hatton argues that Miller (1957) shows that humans can cope with around 7
+/- 2 pieces of information (or chunks) at a time in short-term memory, inde
pendent of information content. He then refers to the text of Hilgard et a1.
(1971), where they note that the contents of long-term memory are in a coded
form and the recovery codes may get scrambled under some conditions. Short
term memory incorporates a rehearsal buffer that continuously refreshes itself.
Hatton suggests that anything that can fit into short-term memory is easier to
understand and less fault-prone. Pieces that are too large or too complex over
flow, involving use of the more error-prone recovery code mechanism used for
long-term storage. In a subsequent article, Hatton (1998) extended this model to
object-oriented development. Ifwe take a class as a definition ofa chunk, then if
the class dependencies exceed the short-term memory limit, one can expect de
signers and programmers to make more errors.

2.5.1 Size Thresholds

A reading of the early software engineering literature suggests that when soft
ware components exceed a certain size, fault-proneness increases rapidly. This
is in essence a threshold effect. For instance, Card and Glass (1990) note that
many programming texts suggest limiting component size to 50 or 60 SLOC. A
study by O'Leary (1996) of the relationship between size and faults in knowl
edge-based systems found no relationship between size and faults for small
components, but a positive relationship for large components; again suggesting a
threshold effect. A number of standards and organizations had defined upper
limits on components size (Bowen, 1984), for example, an upper limit of 200
source statements in MIL-STD-1679, 200 HOL executable statements in MIL
STD-1644A, 100 statements excluding annotation in RADC CP 0787796100E,

8 Hatton also suggests that components that are of low complexity do not use short-term
memory efficiently, and that failure to do so also leads to increased fault-proneness.
However, this aspect of his model has been criticised recently (EI-Emam et aI., 2000) and
therefore will not be considered further.

www.manaraa.com

2. Object-Oriented Metrics: A Review of Theory and Practice 37

100 executable source lines in MILSTARIESD Spec, 200 source statements in
MIL-STD-SDS, 200 source statements in'MIL-STD-1679(A), and 200 HOL
executable statements in FAA ER-130-00SD. Bowen (1984) proposed compo
nent size thresholds between 23-76 source statements based on his own analysis.
After a lengthy critique of size thresholds, Dunn and Ullman (1979) suggest two
pages of source code listing as an indicator of an overly large component.
Woodfield et al. (1981) suggest a maximum threshold of70 LOC.

Hatton (1998) argues that the concept of encapsulation, central to object
oriented development, lets us think about an object in isolation. If the size of
this object is small enough to fit into short-term memory, then it will be easier to
understand and reason about. Objects that are too large and overflow the short
term memory will tend to be more fault-prone.

2.5.2 Inheritance Thresholds

According to the above threshold theory, objects that are manipulated in short
term memory possessing inherited properties require referencing the ancestor
objects. If the ancestor objects are in short-term memory then this tracing does
not increase cognitive burden. However, if the ancestor objects are already en
coded in long-term storage, access to long-term memory breaks the train of
thought and is inherently less accurate. Accordingly, it is likely that classes will
be more fault-prone if they reference inherited chunks that cannot be kept in
short-term storage, and this fault-proneness increases as the extent of inheritance
increases. An implication is that a certain amount of inheritance does not affect
cognitive burden, it is only when inheritance increases beyond the limitations of
short-term memory that understandability deteriorates. For example, Lorenz and
Kidd (1994), based on their experiences with Smalltalk and C++ projects, rec
ommended an inheritance nesting level threshold of 6, indicating that inheri
tance up to a certain point is not detrimental.

2.5.3 Coupling Thresholds

When there is a diffusion of functionality, then an object in short-term memory
may be referencing or be referenced by many other objects. If each of these
other objects is treated as a chunk and they are within short-term memory, then
tracing does not increase cognitive burden. However, if more objects need to be
traced than can be held in short-term memory, this requires retrieval (and pat
tern-matching in the case of polymorphism) of many other objects in long-term
memory. Hence, the ensuing disruption leads to comprehension difficulties, and
therefore greater fault-proneness. Therefore, one can argue that when the inter
acting objects overflow short-term memory, this will lead to an increase in fault
proneness. The implication of this is that a certain amount of coupling does not
affect cognitive burden, until a non zero coupling threshold is exceeded.

www.manaraa.com

38 EI-Emam

2.6 Empirical Evidence

A considerable number of empirical studies have been performed to validate the
relationship between object-oriented metrics and class fault-proneness. Some
studies have covered the metrics that were described earlier in this chapter,
(Basili et al., 1996; Briand et aI., 1997; Briand et al., 2000; Briand et al., 1998;
Tang et al., 1999). Other studies validated a set of polymorphism metrics
(Benlarbi and Melo, 1999), a coupling dependency metric (Binkley and Schach,
1998), a set of metrics defined on Shlaer-Mellor designs (Cartwright and Shep
perd, 2000), another metrics suite (F. Brito e Abreu and Melo, 1996), and a set
of coupling metrics (R. Harrison, Counsell, and Nithi, 1998). Other external
measures of interest that have been studied are productivity (Chidamber et al.,
1998), maintenance effort (Li and Henry, 1993), and development effort
(Chidamber et al., 1998; Misic and Tesic, 1998; Nesi and Querci, 1998). How
ever, here we will focus on the fault-proneness external measure.

It would seem that with such a body of work we would also have a large
body of knowledge about which metrics are related to fault-proneness. Unfortu
nately, this is not the case. A recent study (El-Emam et al., 2001) has demon
strated a confounding effect of class size on the validity of object-oriented met
rics. This means that if one does not control the effect of class size when vali
dating metrics, then the results would be quite optimistic. The reason for this
argument is illustrated in Figure 2.3. Class size is correlated with most product
metrics, and it is also a good predictor of fault-proneness: Bigger classes are
simply more likely to have a fault.

Empirical evidence supports an association between object-oriented product
metrics and size. For example, in Briand et al., (2000) the Spearman rho correla
tion coefficients go as high as 0.43 for associations between some coupling and
cohesion metrics with size, and 0.397 for inheritance metrics. Both results are
statistically significant (at an alpha level of say 0.1).

Similar patterns emerge in other studies. One study by Briand et al. (1998)
reports relatively large correlations between size and object-oriented metrics. In
another study (Cartwright and Shepperd, 2000) the authors display the correla-

Product
Metric

(c)

Size

Fault-Proneness

Legend

~ Cauaal Relatlonahlp

........ Association

Figure 2.3. Illustration of confounding effect of class size.

www.manaraa.com

2. Object-Oriented Metrics: A Review of Theory and Practice 39

tion matrix showing the Spearman correlation between a set of object-oriented
metrics that can be collected from Shlaer-Mellor designs and c++ LaC. The
correlations range from 0.563 to 0.968, all statistically significant at an alpha
level 0.05. This result also indicates very strong correlations with size. In fur
ther support of this hypothesis, the relationship between size and defects is
clearly visible in the study by Cartwright and Shepperd (2000), where the
Spearman correlation was found to be 0.759 and statistically significant. An
other study of image analysis programs written in C++ (R. Harrison et aI., 1996)
found a Spearman correlation of 0.53 between size in LaC and the number of
errors found during testing, also statistically significant at an alpha level of 0.05.
Finally, Briand et ai. (2000) find statistically significant associations between six
different size metrics and fault-proneness for C++ programs, with a change in
odds ratio going as high as 4.952 for one of the size metrics.

A number of validation studies did not control for size (Binkley and Schach,
1998; Briand et aI., 2000; Briand et aI., 1998; R. Harrison et aI., 1998; Tang et
aI., 1999). This means that if an association is found between a particular metric
and fault-proneness, this may be due to the fact that higher values on that metric
also mean higher size values. In the following sections, we therefore only draw
conclusions from studies that did control for size, either statistically or experi
mentally.

2.6.1 Inheritance Metrics

As noted in Deligiannis and Shepperd (1999), the software engineering commu
nity has been preoccupied with inheritance and its effect on quality. Many stud
ies have investigated that particular feature of the object-oriented paradigm.

An experimental investigation found that making changes to a C++ program
with inheritance consumed more effort than a program without inheritance, and
the author attributed this to the subjects finding the inheritance program more
difficult to understand based on responses to a questionnaire (Cartwright, 1998).
Another study by Cartwright and Shepperd (2000) found that classes with in
heritance tend to be more fault prone. This suggests that, holding everything
else equal, understandability of classes is stable when there is no inheritance, but
falls if there is any inheritance.

In two further experiments (Unger and Prechelt, 1998), subjects were given
three equivalent Java programs to modify, and the maintenance time was meas
ured. One of the Java programs was flat, in that it did not take advantage of
inheritance; one had an inheritance depth of 3; and one had an inheritance depth
of5. In an initial experiment, the programs with an inheritance depth of3 on the
average took longer to maintain than the flat program, but the program with an
inheritance depth of 5 took as much time as the flat program. The authors at
tribute this to the fact that the amount of changes required to complete the main
tenance task for the deepest inheritance program was smaller. The results for a
second task in the first experiment and the results of the second experiment indi-

www.manaraa.com

40 El-Emam

cate that it took longer to maintain the programs with inheritance. This was at
tributed to the need to trace call sequences up the inheritance hierarchy in order
to understand what a class is doing.

However, another study (Daly et aI., 1996) contradicts these findings. The
authors conducted a series of classroom experiments comparing the time to per
form maintenance tasks on a flat C++ program and a C++ program with three
levels of inheritance. The result was a significant reduction in maintenance ef
fort for the inheritance program. An internal replication by the same authors
found the results to be in the same direction, albeit the p-value was larger. This
suggests an inverse effect for inheritance depth to the one described above.

More recent studies also reported similar contradictory results. Two studies
found that there is a relationship between the depth of inheritance tree and fault
proneness in Java programs (El-Emam et aI., 2001; Glasberg et aI., 2000).
However, two other studies found no such effect with C++ programs (EI-Emam
et aI., 1999,2000).

Overall, then, it seems that the evidence as to the impact of inheritance depth
on fault-proneness is rather equivocal. This is usually an indication that there is
another effect that is confounded with inheritance depth. Further research is
necessary to identify this confounding effect and disentangle it from inheritance
depth in order to assess the effect of inheritance depth by itself.

2.6.2 Coupling Metrics

The most promising results with object-oriented metrics were obtained using
coupling metrics. A summary of three recent results is given Table 2.2. The "*,,
indicates that for this particular study ACMIC was not evaluated because it had
too few observations that were non-zero, and hence lacked variation. It can be
seen that both import and export coupling metrics tend to be associated with
fault-proneness. The type of coupling depends on the system, likely a reflection
of the overall design approach.

Table 2.2. Summary of validation results for coupling metrics.

(EI-Emam et al., 1999) (EI-Emam et al., 2001) (Glasberg et al., 2000)
{C++ s;rstem} (Java s;rstem) (Java s;rstem}

CBO X Not evaluated Not evaluated
OCAEC X X No association found
ACMIC X Not evaluated· X
OCMEC X X No association found
OMMEC X Not evaluated Not evaluated
OCMIC No association found X X
OCAIC No association found No association found X

www.manaraa.com

2. Object-Oriented Metrics: A Review of Theory and Practice 41

2.6.3 Cohesion Metrics

Three studies that evaluated the effect of cohesion, in the fonn of the LCOM
metric, found no effect of cohesion on fault-proneness (Benlarbi et aI., 2000; EI
Emam et aI., 1999; EI-Emam et aI., 2000). This is not surprising given that the
concept of cohesion is not well understood.

2.6.4 Thresholds

A recent series of studies led by the author investigated thresholds for object
oriented metrics (Benlarbi et aI., 2000; EI-Emam et aI., 2000; Glasberg et aI.,
2000). The fIrst study demonstrated that an absence of size thresholds for object
oriented classes (EI-Emam et aI., 2000). The remaining two studies demon
strated that an absence of threshold effects for a subset of the metrics described
earlier (Benlarbi et aI., 2000; Glasberg et aI., 2000). The results are consistent
across all of the three studies: there are no thresholds for contemporary object
oriented metrics, including class size.

Absence of thresholds does not mean that the claims of limits on short-tenn
memory are not applicable to software engineering. However, the applicability
of this cognitive model to object-oriented applications needs to be refIned fur
ther. It is plausible that a chunk in the object-oriented paradigm is a method
rather than a class. It is also plausible that dependencies between chunks need to
be weighted according to the complexity of the dependency. These hypotheses
require further investigation. The main result remains, however, that the exis
tence of thresholds for contemporary object-oriented metrics lacks evidence.

The existing object-oriented thresholds that have been derived from experi
ential knowledge, such as those of Lorenz and Kidd (1994) and Rosenberg et ai.
(1999) may, however, still be of some practical utility despite these fIndings.
Even ifthere is a continuous (i.e., no threshold) relationship between these met
rics and fault-proneness as we have found, if you draw a line at a high value of a
measure and call this a threshold, classes that are above the threshold will still
be the most/ault-prone. The situation is illustrated in the left panel of Figure 2.4

Ih .. shold 00 Measure Ih ... hold 00 Measure

Figure 2.4. Different types of thresholds. An arbitrarily chosen threshold is illustrated
on the left. A genuine threshold effect is illustrated on the right.

www.manaraa.com

42 EI-Emam

(where Jl' is the probability of a fault). Therefore, for the purpose of identifying
the most fault-prone classes, such thresholds will likely work. Classes with val
ues below the threshold can still mean high fault-proneness, just not the highest.

Had a genuine threshold effect been identified, then classes with values be
low the threshold represent a safe region whereby designers deliberately restrict
ing their classes within this region can have some assurance that the classes will
have, everything else being equal, minimal fault-proneness. This genuine
threshold effect is illustrated in the right panel of Figure 2.4.

2.7 Conclusions

This chapter reviewed contemporary object-oriented metrics, the theory behind
them, and the empirical evidence that supports their use. The results obtained
thus far can provide the basis for concrete guidelines for quality management in
object-oriented applications. These can be summarized as follows:

• The most important metrics to collect seem to be those measuring the dif
ferent types of export and import coupling. Most of these metrics have the
advantage that they can be collected at the early design stages, allowing for
early quality management. Assign your best people to work on classes with
high values on the coupling metrics.

• If historical data is available, it would be even better to rank your classes by
their predicted fault-proneness. This involves constructing a logistic regres
sion model using the above coupling metrics (and a measure of size). This
model would predict the probability of a fault in each class. Assign your
best people to work on classes with the largest predicted fault-proneness.

• Other managerial actions that can be taken are larger and more experienced
inspection teams for classes with high fault-proneness and development of
more test cases for these classes. Given that these classes are expected to be
the most fault-prone, such defect detection activities will help identify and
remove these faults before the software is released.

It is clear from the above studies that we are not yet at the stage where pre
cise prescriptive or proscriptive design guidelines can be developed. However,
the findings so far are a useful starting point. The results do not, in general, con
tradict the cognitive complexity theory presented earlier. We did not find com
pelling evidence that the depth of inheritance tree is a major contributor to fault
proneness. However, this may be due to other ancestor-based coupling metrics
being the main effect predicted by the theory rather than inheritance depth itself.

From a research perspective, the following conclusions can be drawn:

• Contemporary cohesion metrics tends not to be good predictors of fault
proneness. Further work needs to be performed at defining cohesion better,
and developing metrics to measure it.

www.manaraa.com

2. Object-Oriented Metrics: A Review of Theory and Practice 43

• The evidence as to the impact of inheritance depth itself on fault-proneness
is equivocal. This is an issue that requires further investigation.

• No threshold effects were identified. This most likely means that the man
ner in which theories about short-and long-term human memory have been
adapted to object-oriented applications needs further refinement.

In closing, it is important to note that the studies from which these
recommendations were derived looked at commercial systems (i.e., not student
applications). This makes the case that the results are applicable to actual
projects more convincing. Furthermore, the studies focused only on fault
proneness. It is plausible that studies that focus on maintenance effort or
development effort might give rise to different recommendations.

2.8 Acknowledgments

Discussions with Janice Singer and Norm Vinson have contributed towards im
proving the cognitive theory elements of this chapter. I also wish to thank them
for providing directions through the cognitive psychology literature. Review
comments from Hakan Erdogmus and Barbara Kitchenham have been very use
ful for making improvements to the chapter.

2.9 References

Abreu, F. B. e., and Carapuca, R. (1994). Object-oriented software engineering:
measuring and controlling the development process. In Proceedings of the
4th International Conference on Software Quality.

Abreu, F. B. e., and Melo, W. (1996). Evaluating the impact of object-oriented
design on software quality. In Proceedings of the 3rd International Soft
ware Metrics Symposium, pp. 90-99.

Almeida, M., Lounis, H., and Melo, W. (1998). An investigation on the use of
machine learned models for estimating correction costs. In Proceedings of
the 20th International Conference on Software Engineering, pp. 473-476.

Basili, V., Briand, L., and Melo, W. (1996). A validation of object-oriented de
sign metrics as quality indicators. IEEE Transactions on Software Engineer
ing, 22(10}, 751-761.

Basili, V., Condon, S., EI-Emam, K., Hendrick, R., and Melo, W. (1997). Char
acterizing and modeling the cost of rework in a library of reusable software
components. In Proceedings of the 19th International Conference on Soft
ware Engineering, pp. 282-291.

www.manaraa.com

44 EI-Emam

Benlarbi, S., El-Emam, K., Goel, N., and Rai, S. (2000). Thresholds for object
oriented measures. NRCIERB 1073. (National Research Council of Can
ada).

Benlarbi, S., and Melo, W. (1999). Polymorphism measures for early risk pre
diction. In Proceedings of the 21st International Conference on Software
Engineering, pp. 334-344.

Binkley, A., and Schach, S. (1998). Validation of the coupling dependency met
ric as a predictor of run-time failures and maintenance measures. In Pro
ceedings of the 20th International Conference on Software Engineering, pp.
452-455.

Boehm-Davis, D., Holt, R., and Schultz, A. (1992). The role of program struc
ture in software maintenance. International Journal of Man-Machine Stud
ies, 36, 21-63.

Bowen, J. (1984). Module Size: A standard or heuristic? Journal of Systems and
Software, 4, 327-332.

Briand, L., and Wuest, J. (1999). The impact of design properties on develop
ment cost in object-orientedsSystems. ISERN-99-16. (International Soft
ware Engineering Research Network).

Briand, L., Basili, V., and Hetmanski, C. (1993). Developing interpretable mod
els with optimized set reduction for identifying high-risk software compo
nents. IEEE Transactions on Software Engineering, 19(11), 1028-1044.

Briand, L., Daly, J., and Wuest, J. (1998). A unified framework for cohesion
measurement in object-oriented systems. Empirical Software Engineering:
An International Journal, 3, 65-117.

Briand, L., Daly, J., and Wuest, J. (1999). A unified framework for coupling
measurement in object-oriented systems. IEEE Transactions on Software
Engineering, 25(1), 91-121.

Briand, L., Devanbu, P., and Melo, W. (1997). An investigation into coupling
measures for C++. In Proceedings of the 19th International Conference on
Software Engineering.

Briand, L., Thomas, W., and Hetmanski, C. (1993). Modeling and managing risk
early in software development. In Proceedings of the International Confer
ence on Software Engineering. pp. 55-65.

Briand, L., Wuest, J., Daly, J., and Porter, V. (2000). Exploring the relationships
Between design measures and software quality in object oriented systems.
Journal of Systems and Software 51, 245-273.

Briand, L., Wuest, J., Ikonomovski, S., and Lounis, H. (1998). A comprehensive
investigation of quality factors in object-oriented designs: An Industrial
case study. ISERN-98-29. (International Software Engineering Research
Network).

www.manaraa.com

2. Object-Oriented Metrics: A Review of Theory and Practice 45

Briand, L., Arisholm, E., Counsell, S., Houdek, F., and Thevenod-Fosse, P.
(1999). Empirical studies of object-oriented artifacts, methods, and proc
esses: State of the art and future direction. Empirical Software Engineering:
An International Journal, 4(4), 387-404.

Burkhardt, J.M., Detienne, F., and Wiedenbeck, S. (1997). Mental representa
tions constructed by experts and novices in object-oriented program com
prehension In Human-Computer Interaction: INTERACT'97, pp. 339-346.

Cant, S., Henderson-Sellers, B., and Jeffery, R (1994). Application of cognitive
complexity metrics to object-oriented programs. Journal of Object-Oriented
Programming, 7(4), 52-63.

Cant, S., Jeffery, R, and Henderson-Sellers, B. (1995). A conceptual model of
cognitive complexity of elements of the programming process. Information
and Software Technology, 7,351-362.

Card, D., and Glass, R (1990). Measuring software design quality. (Prentice
Hall, Englewood Cliffs, NJ).

Cartwright, M. (1998). An empirical view of inheritance. Information and Soft
ware Technology, 40, 795-799.

Cartwright, M., and Shepperd, M. (2000). An empirical investigation of an ob
ject-oriented software system. IEEE Transactions on Software Engineering,
26(2), 786-796.

Chidamber, S., Darcy, D., and Kemerer, C. (1998). Managerial use of metrics
for object-oriented software: An exploratory analysis. IEEE Transactions on
Software Engineering, 24(8), 629-639.

Chidamber, S., and Kemerer, C. (1991). Towards a metrics suite for object
oriented design. In Proceedings of the Conference on Object-Oriented Pro
gramming Systems, Languages and Applications (OOPSLA'91), pp. 197-
211.

Chidamber, S., and Kemerer, C. (1994). A metrics suite for object-oriented de
sign. IEEE Transactions on Software Engineering, 20(6),476-493.

,
Chidamber, S., and Kemerer, C. (1995). Authors' reply. IEEE Transactions on

Software Engineering, 21(3), 265.

Clark, B. (1997). The effects of software process maturity on software develop
ment effort. Unpublished PhD Thesis, University of Southern California.

Coallier, F., Mayrand, J., and Lague, B. (1999). Risk management in software
product procurement. In K. EI-Emam and N. H. Madhavji (Eds.), Elements
of Software Process Assessment and Improvement. (IEEE CS Press).

CodeWork. (2000). JStyle. Available: http://www.codework.comi. 20th April
2000.

www.manaraa.com

46 El-Emam

Daly, 1., Brooks, A., Miller, 1., Roper, M., and Wood, M. (1996). Evaluating
inheritance depth on the maintainability of object-oriented software. Em
pirical Software Engineering: An International Journal, 1(2), 109-132.

Daly, 1., Miller, 1., Brooks, A., Roper, M., and Wood, M. (1995). Issues on the
object-oriented paradigm: A questionnaire survey. EFoCS-8-95, Depart
ment of Computer Science - University ofStrathclyde.

Daly, J., Wood, M., Brooks, A., Miller, J., and Roper, M. (1995). Structured
interviews on the object-oriented paradigm. EFoCS-7-95, Department of
Computer Science - University of Strathclyde.

Davis, 1. (1984). Chunks: A basis for complexity measurement. Information
Processing and Management, 20(1), 119-127.

Deligiannis, I., and Shepperd, M. (1999). A review of experimental investiga
tions into object-oriented technology. In Proceedings of the Fifth IEEE
Workshop on Empirical Studies of Software Maintenance, pp. 6-10.

Devanbu,P.(2000).Gen+ +.available:
http://seclab.cs.ucdavis.edu/-devanbu/genp/, April 20th 2000.

Dijk, T. v., and Kintsch, W. (1983). Strategies of discourse comprehension.
(Academic Press).

Dunn, R., and Ullman, R. (1979). Modularity is not a matter of size. In Proceed
ings of the 1979 Annual Reliability and Maintainability Symposium, pp.
342-345.

Dvorak, J. (1994). Conceptual entropy and its effect on class hierarchies. IEEE
Computer, 59-63.

Ebert, C., and Liedtke, T. (1995). An integrated approach for criticality predic
tion. In Proceedings of the 6th International Symposium on Software Reli
ability Engineering, pp. 14-23.

EI-Emam, K., Benlarbi, S., Goel, N., Melo, W., Lounis, H., and Rai, S. (2000).
The optimal class size for object-oriented software: A replicated study
NRCIERB 1074. (National Research Council of Canada).

EI-Emam, K., Benlarbi, S., Goel, N., and Rai, S. (1999). A validation of object
oriented metrics. NRCIERB 1063. (National Research Council of Canada).

EI-Emam, K., Benlarbi, S., Goel, N., and Rai, S. (2001). The confounding effect
of class size on the validity of object-oriented metrics. IEEE Transactions
on Software Engineering (to appear).

El-Emam, K., and Birk, A. (2000a). Validating the ISOIlEC 15504 measures of
software development process capability. Journal of Systems and Software,
51(2),119-149.

www.manaraa.com

2. Object-Oriented Metrics: A Review of Theory and Practice 47

EI-Emam, K., and Birk, A. (2000b). Validating the ISO/IEC 15504 measures of
software requirements analysis process capability. IEEE Transactions on
Software Engineering, 26(8), 541-566.

El-Emam, K., Drouin, J-N., and Melo, W. (1998). SPICE: The theory and prac
tice of software process improvement and capability determination. (IEEE
CS Press).

El-Emam, K., Melo, W., and Machado, J. (2001). The prediction of faulty
classes using object-oriented design metrics. Journal of Systems and Soft
ware, 56(1), 63-75.

Evanco, W. (1997). Poisson analyses of defects for small software components.
Journal of Systems and Software, 38, 27-35.

Fenton, N. (1991). Software Metrics: A rigorous approach. (Chapman and
Hall).

Fenton, N., and Ohlsson, N. (2000). Quantitative analysis of faults and failures
in a complex software system. IEEE Transactions on Software Engineering,
26(8), 797-814.

Flowe, R., and Thordahl, J. (1994). A correlational study of the SEI's Capability
Maturity Model and software development performance in DoD contracts.
Unpublished MSc Thesis, The Air Force Institute of Technology.

French, V. (1999). Establishing software metrics thresholds. In Proceedings of
the 9th International Workshop on Software Measurement.

Furuyama, T., Arai, Y., and Iio, K. (1994). Fault generation model and mental
stress effect analysis. Journal of Systems and Software, 26, 31-42.

Furuyama, T., Arai, Y., and Iio, K. (1997). Analysis of fault generation caused
by stress during software development. Journal of Systems and Software,
38,13-25.

Glasberg, D., EI-Emam, K., Melo, and Madhavji, N. (2000). Validating Object
Oriented Design Metrics on a Commercial Java Application, Technical Re
port, NRCIERB-1080 (National Research Council of Canada).

Goldenson, D. R., and Herbsleb, J. (1995). After the appraisal: A systematic
survey of process improvement, its benefits, and factors that influence suc
cess. CMU/SEI-95-TR-009, Software Engineering Institute.

Harrison, R., Counsell, S., and Nithi, R. (1998). Coupling metrics for object
oriented design. In Proceedings of the 5th International Symposium on
Software Metrics, pp. 150-157.

Harrison, R., Samaraweera, L., Dobie, M., and Lewis, P. (1996). An evaluation
of code metrics for object-oriented programs. Information and Software
Technology, 38, 443-450.

www.manaraa.com

48 E1-Emam

Harrison, W. (1988). Using Software Metrics to Allocate Testing Resources.
Journal of Management Infonnation Systems, 4(4), 93-105.

Hatton, L. (1997). Re-examining the Fault Density - Component Size Connec
tion. IEEE Software, 89-97.

Hatton, L. (1998). Does 00 Sync with How We Think? IEEE Software, 46-54.

Henderson-Sellers, B. (1996). Object-Oriented Metrics: Measures of Complex
ity. (Prentice-Hall).

Hilgard, E., Atkinson, R., and Atkinson, R. (1971). Introduction to Psychology.
(Harcourt Brace Jovanovich).

Hosmer, D., and Lemeshow, S. (1989). Applied Logistic Regression. (John
Wiley and Sons).

Hudepohl, J., Aud, S., Khoshgoftaar, T., Allen, E., and Mayrand, 1. (1996a).
EMERALD: Software metrics and models on the desktop. IEEE Software,
13(5), 56-60.

Hudepohl, J., Aud, S., Khoshgoftaar, T., Allen, E., and Mayrand, J. (1996b).
Integrating metrics and models for software risk assessment. In Proceedings
of the 7th International Symposium on Software Reliability Engineering, pp.
93-98.

ISO/IEC. (1996). Information Technology - Software Product Evaluation; Part
1: Overview. ISOIIEC DIS 14598-1. (International Organization for Stan
dardization and the International Electrotechnical Commission).

Jones, C. (1999). The economics of software process improvements. In K. EI
Emam and N. H. Madhavji (Eds.), Elements of Software Process Assess
ment and Improvement. (IEEE CS Press).

Jorgensen, M. (1995). Experience with the accuracy of software maintenance
task effort prediction models. IEEE Transactions on Software Engineering,
21(8),674-681.

Kaaniche, M., and Kanoun, K. (1996). Reliability of a commercial telecommu
nications system. In Proceedings of the International Symposium on Soft
ware Reliability Engineering, pp. 207-212.

Khoshgoftaar, T., Allen, E., Jones, W., and Hudepohl, J. (1999). Classification
tree models of software quality over multiple releases. In Proceedings of the
International Symposium on Software Reliability Engineering, pp. 116-125.

Khoshgoftaar, T., Allen, E., Kalaichelvan, K., and Goel, N. (1996). The impact
of software evolution and reuse on software quality. Empirical Software
Engineering: An International Journal, 1,31-44.

Kintsch, W. (1986). Learning from text. Cognition and Instruction, 3, 87-108.

Kitchenham, B., and Linkman, S. (1990). Design metrics in practice. Informa
tion and Software Technology, 32(4), 304-310.

www.manaraa.com

2. Object-Oriented Metrics: A Review of Theory and Practice 49

Krishnan, M. S., and Kellner, M. (1999). Measuring process consistency: Impli
cations for reducing software defects. IEEE Transactions on Software Engi
neering, 25(6), 800-815.

Lanubile, F., and Visaggio, G. (1997). Evaluating predictive quality models de
rived from software measures: Lessons learned. Journal of Systems and
Software, 38, 225-234.

Leijter, M., Meyers, S., and Reiss, S. (1992). Support for maintaining object
oriented programs. IEEE Transactions on Software Engineering, 18(12),
1045-1052.

Lewis, J., and Henry, S. (1989). A methodology for integrating maintainability
using software metrics. In Proceedings of the International Conference on
Software Maintenance, pp. 32-39.

Li, W., and Henry, S. (1993). Object-oriented metrics that predict maintainabil
ity. Journal of Systems and Software, 23, 111-122.

Lorenz, M., and Kidd, J. (1994). Object-Oriented Software Metrics. (Prentice
Hall).

Lyu, M., Yu, J., Keramides, E., and Dalal, S. (1995). ARMOR: Analyzer for
reducing module operational risk. In Proceedings of the 25th International
Symposium on Fault-Tolerant Computing, pp. 137-142.

Metameta. (2000). Metameta Metrics. Available: http://www.metamata.com.
20th April.

Miller, G. (1957). The magical number 7 plus or minus two: Some limits on our
capacity for processing information. Psychological Review, 63, 81-97.

Misic, V., and Tesic, D. (1998). Estimation of effort and complexity: An object
oriented case study. Journal of Systems and Software, 41,133-143.

Moller, K.-H., and Paulish, D. (1993). An empirical investigation of software
fault distribution. In Proceedings of the First International Software Met
rics Symposium, pp. 82-90.

Nesi, P., and Querci, T. (1998). Effort estimation and prediction of object
oriented systems. Journal of Systems and Software, 42,89-102.

Newell, A., and Simon, H. (1972). Human Problem Solving. (Prentice-Hall).

Number-Six-Software. (2000). Metrics one. available:
http://www.numbersix.com/metricsone/index.htm. April 20th 2000.

ObjectSofi. (2000). ObjectDetail. available: http://www.obsofi.com. 20th April
2000.

Ohlsson, N., and Alberg, H. (1996). Predicting fault-prone software modules in
telephone switches. IEEE Transactions on Software Engineering, 22(12),
886-894.

www.manaraa.com

50 EI-Emam

O'Leary, D. (1996). The relationship between errors and size in knowledge
based systems. International Journal of Human-Computer Studies, 44, 171-
185.

Pennington, N. (1987a).Comprehension strategies in programming. In Empiri
cal Studies of Programmers, 2nd Workshop, pp. 100-113.

Pennington, N. (1987b). Stimulus structures and mental representations in expert
comprehension of computer programs. Cognitive Psychology, 19,295-341.

Power-Software. (2000a). Krakataufor C/C++. Available online at:
http://www.power-soft.co.ukI.

Power-Software. (2000b). Krakatau Java. Available online at:
http://www.power-soft.co.ukI.

Rosenberg, L., Stapko, R., and Gallo, A. (1999). Object-oriented metrics for
reliability. Presented at the IEEE International Symposium on Software
Metrics.

Software Engineering Institute. (1995). The capability maturity model: Guide
lines for improving the software process. (Addison Wesley).

Szentes, J., and Gras, J. (1986). Some practical views of software complexity
metrics and a universal measurement tool. In Proceedings of the First Aus
tralian Software Engineering Conference, pp. 83-88.

Tang, M.-H., Kao, M.-H., and Chen, M.-H. (1999). An empirical study on object
oriented metrics. In Proceedings of the Sixth International Software Metrics
Symposium, pp. 242-249.

Tracz, W. (1979). Computer programming and the human thought process.
Software - Practice and Experience, 9, 127-137.

Unger, B., and Prechelt, L. (1998). The impact of inheritance depth on mainte
nance tasks - detailed description and evaluation of two experiment replica
tions 19/1998. (Fakultat fur Informatik - Universitaet Karlsruhe).

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., and Corritore, C. (1999). A
comparison of the comprehension of object-oriented and procedural pro
grams by novice programmers. Interacting with Computers, 11(3),255-282.

Wilde, N., Matthews, P., and Huitt, R. (1993). Maintaining object-oriented
software. IEEE Software, 75-80.

Woodfield, S., Shen, V., and Dunsmore, H. (1981). A study of several metrics
for programming effort. Journal of Systems and Software, 2, 97-103.

www.manaraa.com

3
Studies of the Work Practices of
Software Engineers

Timothy Lethbridge
Janice Singer

3.1 Introduction

In this chapter we describe various techniques for studying and representing the
work of software engineers i (SEs) and using the results to develop requirements
for software engineering tools.

The ultimate objective of our research is to discover techniques that will en
able software engineers to more productively make changes to large legacy real
time software systems. However, to achieve this objective we must understand
software engineers' work practices. We describe various techniques we em
ployed to observe work practices, analyze the resulting data, and produce
graphical models of work patterns. In particular, we describe techniques that we
have developed such as synchronized shadowing and the use of Use Case Maps
to represent work patterns. Finally, we highlight some of the results of using
these techniques in a real project: An important observation is that efficiently
performing searches within source code is of paramount importance to the SEs
when they work with large bodies of source code.

Our work began with collaboration between a computer scientist building
tools for software maintainers (T. Lethbridge) and a psychologist (J. Singer) just
hired in a software engineering research group. Although our research goal was
to improve software maintainers' productivity, improving productivity was a
very open-ended problem. It was not at all clear, when we began our work, what
aspects of software maintenance could be most improved;. it was even less clear
what tools would be appropriate. However, since we both had a background in
human/computer interaction, we were certain that we wanted to build usable
tools for software maintainers.

i By software engineers, we are referring to people who perform software engineering
work, but who may not be Professional Engineers in the legal sense.

www.manaraa.com

52 Lethbridge and Singer

Our first task involved a literature review. From the Empirical Studies of
Programmers workshops, there were a few papers on software maintainers (e.g.,
Litman et ai., 1996; Boehm-Davis et aI., 1992). This research, primarily con
ducted from an information processing perspective, helped us understand indi
vidual processes in software maintenance. However, it was not clear how to take
these results and build systems that could be used in real industrial practice with
real software engineers. As Curtis (1986) appropriately asked about these types
of studies, "By the way, did anyone study any real programmers?" meaning that
the results might not apply in industrial practice.

There have been field studies in software design (Walz et aI., 1993; Curtis et
aI., 1988; Kraut and Streeter, 1995), but again, it is not clear how design relates
to maintenance. Also, these studies tended to look at larger issues that were not
necessarily pertinent to building tools for individual software engineers.

Bendifallah and Scacchi (1987) did look at software maintenance as a form
of articulation work. However, again, their work examines academic researchers
and their maintenance of a relatively small tool. While Bendifallah and Scac
chi's work assured us that the study of work practices was feasible in this field,
it was not clear how their results would generalize to our target group of indus
trial maintainers.

This lack of relevant literature led us to broaden our emphasis from usability
to usefulness. The questions of what do software maintainers do on a daily basis,
in what activities are they involved, with what frequency, and using which tools,
were all unanswered in the literature. Without this knowledge, we could not be
sure about what would be useful tools for this domain. Thus, we went back to
the literature. A review of the work of researchers in participatory design (e.g.,
Kyng and Mathiassen, 1997), distributed cognition (e.g., Hutchins, 1994), situ
ated cognition (e.g., Suchman, 1987), and activity theory (e.g., Bannon and
B0dker, (1991)2 led us to believe that we could not ignore the context within
which the work took place. Because of this, we decided to implement a field
study in software maintenance (Singer and Lethbridge, 1998a; Lethbridge et aI.,
1997). This study used several ethnographic methods for data collection, in
cluding questionnaires, interviews, and observations. Following Glaser and
Strauss' (1967) grounded theory approach, we were able to determine that soft
ware maintainers typically follow a just-in-time comprehension approach to
program comprehension. That is, at any given time, they understood only the
specific portion of the source code that would help them solve their current
problem.

While we were closer to an answer about the usefulness of different software
maintenance tools, we were unhappy with our methods of data collection and
analysis. The difficulty of moving from field work to design requirements has
been highlighted by other researchers (e.g., Button and Dourish, 1996; Blom-

2 A comprehensive review of this literature will not be undertaken in this paper. Please
refer to the individual papers and/or books for further information.

www.manaraa.com

3. Studies of the Work Practices of Software Engineers 53

berg et ai., 1996; Simonsen and Kensing, 1997)3. In fact, tools are now being
created to help researchers record and represent their understanding of work
(Pycock et ai., 1998; Jordan et ai., 1995).

Our dissatisfaction, however, focused not on adequate representations of the
field, but rather on the fact that we felt we were collecting the wrong data. The
field data was incomplete because software engineers were so quick that it was
impossible to get all the actions recorded in observation sessions. Technical and
practical issues did not allow us to videotape sessions. Additionally, our obser
vations did not allow us to answer certain fundamental questions such as what is
an individual's goal in doing a task, or how much time is spent on a task. Finally,
the work required to represent the data was extreme. We spent over six months
making transcripts and poring over them. While this might be appropriate in a
research environment, it is entirely unfeasible in industry. These two concerns
led us to develop both a new method for collecting data, Synchronized Shadow
ing, and a new method for representing it, using Use Case Maps (UCMs).

This chapter will discuss both of these innovations in the context of another
field study that we subsequently implemented. We begin with a discussion of a
general model of empirical studies in software engineering and situate our own
observational field studies within this. Then we give more details about Syn
chronized Shadowing and our use of UCMs. We conclude with a case study
showing how we applied these techniques to meet our objectives of building
effective tools.

The methodology we developed as a result of our work is outlined in Figure
3.1. It combines synchronized shadowing with the use of Use Case Maps. We
call it Work Analysis with Synchronized Shadowing (WASS).

Figure 3.1. The Work Analysis with Synchronized Shadowing (WASS) methodology.

3 Again, these references are in no way meant to be a comprehensive view, but rather an
overview of current thinking.

www.manaraa.com

54 Lethbridge and Singer

3.2 An Overview of Approaches to Empirical Studies
of Software Engineering Practices

Broadly defined, one calls a study empirical if it involves observing or measur
ing something. In analytical studies, in contrast, one deduces conclusions by
applying logical and other mathematical reasoning to physical laws and other
established facts. Since there are few unchallengable facts in the domain of
software engineering processes, research in this domain will normally be em
pirical in nature.

Figure 3.2 shows a way of categorizing empirical studies of software proc
esses using three dimensions: The environment, the degree of human contact,
and the level of control. Most of the research discussed in this chapter falls close
to the origin; it involves interactively gathering information about what people
do in their natural work environments: We refer to all this as work practices
studies.

3.2.1 Natural vs. Artificial Environments

The first dimension in Figure 3.2 distinguishes between field studies in natural
work environments and studies performed in laboratory environments.

Field studies are conducted with practicing software engineers in the indus
try, whereas laboratory studies often involve groups of students in classroom or
lab settings. Field studies often take more effort than laboratory studies. Rela
tionships must be established with industrial companies, suitable software proj-

CONTROL

DISTANCE FROM HUMAN CONTACT

third-degree (study work artifacts left by people,
e.g., looking at reports they have
written)

second·degree (indirect involvement of participants
in study, e.g., logging tool usage)

first-degree (direct involvement of participants
in study, e.g., answering questions)

natural work
environment
(field studies -
in vivo)

artificial DISTANCE FROM
environment NATURAL WORK
(lab studies - ENVIRONMENT
in vilro)

Figure 3.2. An approach to categorization of empirical studies of software processes.

www.manaraa.com

3. Studies of the Work Practices of Software Engineers 55

ects and individual participants must be found, and the uncertain nature of the
day-to-day activities of the company and its employees mean that the direction
of the research is somewhat out of the researchers' hands (Lethbridge et aI.,
2000).

For the most part, studies of students performing software engineering tasks
in laboratories are easier to conduct since there is a ready supply of students in
university classes, and a faculty member can dictate their goals. While the con
clusions of laboratory studies are useful, they are not as likely to be relevant to
industrial practice since students lack experience and goals, and since their
methods will not normally be the same as those of industrial practitioners.

One counter example is that Porter and Votta (1998) found no difference in
results for professional vs. graduate student programmers. However their ex
periment was artificial in the sense that the exercises used were designed strictly
for the experiment. It might be that people work differently with known materi
als than experimental ones. It is probably also true that graduate students are
closer to professionals than undergraduates are in terms of their programming
ability. Nonetheless, since we wanted to absolutely ensure our work was indus
trially relevant, the work discussed in this chapter falls in the field study cate
gory: We studied real programmers in real industrial environments.

3.2.2 Degree of Human Contact

The second way of categorizing empirical studies shown in Figure 3.2 relates to
the degree of human contact that the technique involves.

We define first-degree empirical studies to be those involving human-to
human interaction between researchers and participants. Such techniques can
include brainstorming, interviews, surveys, and observational studies.

We consider second-degree studies to be those where human processes are
monitored, but where the researchers do not interact directly with the humans
themselves, e.g., by gathering information automatically as people work.

Third-degree studies involve analysis of the artifacts resulting from work,
e.g. source code, documents, and problem reports. The work reported in this
chapter was first-degree (primarily observational studies), although we also used
some second- and third-degree information.

3.2.3 Information-Gathering vs. Experimentation

The final dimension in Figure 3.2 contrasts information-gathering studies with
experiments. Information gathering studies are suitable for generating hypothe
ses, while controlled experiments are more suitable for confirming or testing
hypotheses.

In general, information-gathering studies are used to gather raw information
about a phenomenon; the information may then be used to build a qualitative or

www.manaraa.com

56 Lethbridge and Singer

quantitative model of the phenomenon. Techniques for producing qualitative
models are discussed in detail by Glaser and Strauss (1967). Neuman (1997) and
Denzin and Lincoln (1994) also give more detailed information on how to con
duct qualitative studies.

Quantitative models can be used to develop hypotheses that can be tested in
experiments. Experiments require the existence of a model and hypotheses about
that model that are to be tested; formal experiments follow the scientific method
rigorously and involve setting up some situation where extraneous variables are
controlled, varying some independent variable(s), and measuring some depend
ent variable(s) in order to refute the null hypothesis.

In software engineering, it is usually very difficult to adequately control the
extraneous variables, so true experiments are less widely used. However, there is
one type of experiment that sits in the middle of this continuum and is useful in
software engineering. Quasi-experiments are experiments where subjects are not
randomly assigned to treatments. For instance, one could conduct a quasi
experiment on two different groups who had decided to implement two different
programming processes. Here the two groups were not assigned randomly to the
processes, but rather self-selected to them. For more information on quasi
experiments, see Cook and Campbell (1979).

Our studies of work practices are information-gathering in nature since we
want to describe and model the work of software engineers.

3.2.4 Summary of the Three Dimensions of Empirical Studies

The three dimensions of empirical studies are largely orthogonal, with all points
in space being possible, although not equally probable. For example, experi
ments are more likely to be performed in artificial environments where it is eas
ier to control variables. Nevertheless it is possible to conduct large-scale ex
periments in an industrial context - for example, competitive development of a
product by two teams that use different tools. In the above three-dimensional
model of empirical studies, we have organized the types of empirical studies
according to their data-generation phase, which we discuss in more detail in the
next section. However, the resulting information must also be analyzed so con
clusions can be drawn. This is usually the most time-consuming phase, since
vast amounts of data can be generated, especially for information-gathering
studies. Techniques for the analysis phase are discussed in section 3.4.

3.3 Techniques for Gathering Data in Observation
Sessions

One of the techniques most widely used to understand work practices is obser
vation. Shadowing is a form of observation where the observer moves around

www.manaraa.com

3. Studies of the Work Practices of Software Engineers 57

with the observee, recording what they are doing as they go about their nonnal
daily routine. There are two big difficulties with shadowing: one is to effectively
capture infonnation; the other is to analyze the copious resulting data. To cap
ture data, there are two widely used alternatives, simple note-taking or video
taping. Both require the output to be coded following the observation session
before any analysis is undertaken. In this section we review these classic tech
niques, and then present our synchronized shadowing technique.

3.3.1 Note-Taking and Videotaping

Simple note-taking has two key problems: First, many details may be missed by
the note-taker, partly because he or she may not notice all the nuances of what is
going on, and partly because it is difficult to rapidly take accurate notes using a
consistent fonnat. Second, it is not feasible for the note-taker to record precise
times when events occur, especially where action occurs quickly - the process of
looking at his or her watch would cause the note-taker to miss an important ac
tivity.

Videotaping does not suffer from these problems since it allows one to rec
ord almost all details of a session. However, the process of coding can be very
time consuming because one has much more data to work with.

There are some automatic logging tools that record precisely what occurs on
the computer, such as every key press or every mouse click. These are impracti
cal for our purposes, though, for two key reasons. First, they only record com
puter activity. We are interested in obtaining information about the work envi
ronment which includes situations when the participant looks at documentation,
talks to neighbors, etc. The automatic logging tools do not capture this infonna
tion. Second, because many programmers personalize their computer environ
ment, the output of these tools in often difficult to interpret. For instance, the
tools might tell you that a programmer is in Emacs, but they would not be able
to interpret the macros that the programmer has set up to search for specific
strings in Emacs. This makes these tools less useful in our context.

New tools are being developed that record the screen as well as the user's
voice and synchronize them. We have not tried these tools because they have
one fundamental problem in our context: Our software engineers move around
from place to place, using different computers (e.g., in special hardware labs).
We do not want to use observation techniques that interfere with the natural
work processes.

3.3.2 Synchronized Shadowing

In our case, to make shadowing more practical, we developed an approach that
has many of the advantages of videotaping, but without many of the drawbacks
of note-taking. Our approach uses a program on a laptop computer to provide

www.manaraa.com

58 Lethbridge and Singer

automated assistance to note-takers. The program improves the note-taking pro
cess in the following two ways:

• The note-taker can simply press one of many buttons to record an event that
recurs frequently. This results in substantially increased note-taking speed,
and hence fewer missed events. The notes will also be more consistent and
hence faster to analyze since the buttons correspond to event categories:
Much of the coding takes place at the time of observation. The meaning of
the buttons can be preassigned following pilot studies, although adding new
buttons dynamically during the observation session remains a possibility.
Also, the note-taker can type other information after pressing any button, so
nothing is lost from the ordinary note-taking process.

• Timing information is automatically recorded along with every button
press, allowing for a level of accuracy in data analysis that would normally
be available only by analyzing videotape.

Automated note-taking as described above can be very useful, but we devel
oped the technique one step further: A single person using our program will still
tend to miss much information. This makes sense because it is well known that
when analyzing videotapes, one has to replay sections of the tape several times
in order to notice all the details. We therefore arrange for two note-takers to par
ticipate in the shadowing, each using the automated note-taking program, but
with different meanings for the buttons so they record somewhat different as
pects of the work being observed. The two records are be merged after the ses
sion to form a more complete picture of what happened. A key process that
makes this merging feasible is synchronizing the clocks of the two laptop com
puters so that proper sequences of events can be reconstructed - for this reason,
we call our approach synchronized shadowing (Singer and Lethbridge, 1998).

It is very simple to create basic synchronized shadowing tools. For the event
recording buttons, we created macros in Microsoft Word that redefine certain
keys (control sequences or function keys). Each such button adds a time stamp
as well as an identifying string of characters to the current document. Before the
observation session starts, we synchronize the computers' clocks. After the ses
sion we concatenate the documents and sort them. Figure 3.3 is the source code
for two of the macros and Figure 3.4 illustrates the output of a session.

In addition to MS-Word macros, we have also created a more advanced syn
chronized shadowing tool, illustrated in Figure 3.5. This tool allows events to be
nested within two levels of activities. For example, the highest level of activity
might represent the primary task being performed; the second level might be the
tool being used; and the events might be specific actions performed with the
tool. Our new synchronized shadowing tool allows the user to dynamically add
events, and manipulate various preferences. It provides similar output to that
shown in Figure 3.4.

www.manaraa.com

3. Studies of the Work Practices of Software Engineers 59

Public Sub MAIN()
Dlm count S
Dim counti
count_S - WordBasic. [GetDocumentVar$] ("statementNumber")
counti - WordBasic.Val(count_S)
counti - counti + 1
count $ - Str(countl)
WordBasic.SetDocumentVar "statementNumber", count $
WordBasic.InsertPara
WordBasic.Insert
WordBasic.Insert count_$
WordBasic.Insert " - "
WordBasic.InsertDateTime DateTimePic:-"H:mm:ss", InsertAsField:-O
WordBasic.Insert
End Sub

Public Sub MAIN()
WordBasic.ToolsMacro Name:-"InsDate", Run:-1
WordBasic.Insert "GREP - "
End Sub

Figure 3.3. Two examples of MS-Word macros for automated note-taking while shad
owing. The first inserts time, and the second inserts the time plus the keyword GREP; it
is an example of one of many macros that would be bound to specific buttons.

1 13:32:40 NEW-GOAL Friday, August 01, 1997 Jane Smith
2 13:39:26 still explaining stuff
3 13:39:52 UNIX Is cd
4 13:40:12 EDITOR srh
5 13:40:22 EDITOR quit
6 13:40:28 GREP in system
7 13:40:40 VIS at results
8 13:41:02 EDITOR open found file
9 13:41:33 EDITOR open empty
10 13:41:45 EDITOR copy
11 13:41:52 EDITOR paste
12 13:42:00 EDITOR save as xxdbllq.c
13 13:42:21 MODIFY part of query text
14 13:44:08 EDITOR save
15 13:44:12 MODIFY func name
16 13:44:38 EDITOR save
17 13:44:59 stop observing

Figure 3.4. Output of a synchronized shadowing session using MS-Word macros (lower
case text was typed by the person operating the program).

www.manaraa.com

60 Lethbridge and Singer

E_"""'s: Objects:: Adlons:: SimpIItIod Use c Mop: Press ono< fOf new

fl.lJnbc - !-- !S lJnbc Emacs ~
F2. TkSee _ ~.ul.c - !!P"f1III8

lis rnairoMx.c 10 vwxdoc.htn
2ed

5 __
II,oad

flo &noes _ ;!. ul.h - ~d 31s 6,ead 12f_u

RAl:foRe_ ! . vwxlllgL !-

4 __ ,-- >
711'""_

f5.No!"""- ~ ~- !R'"-

f6.ExlOIn... ~oad

151. ul.h

I'urep ll<t.nOde U,ead

pop

I F9:ND __ II q.MO 0IJjec... II Space:.1IIL. I
flO: Alid now on.. FII: Add.- fl2:AIid IICI_

I I
S1atus. ·"aperedmple gsS- and ·paperelample,tcr saved

Figure 3.5. User interface of our second-generation Graphical Synchronized Shadowing
Tool (GSST).

Synchronized shadowing is not perfect: The note-takers tend to vary the
amount of time between the occurrence of an event and pressing the appropriate
button. Timing, therefore is likely to be accurate only to the nearest 10 or 15
seconds, but this is adequate for our purposes.

3.4 Modeling Work to Develop Requirements

In this section we discuss how we use various techniques, including Use Case
Maps (UCMs), to analyze the data obtained by synchronized shadowing. In the
next section we provide a case study, illustrating the use of these techniques.

3.4.1 Coding Observational Data and Detecting Patterns

It is very difficult to analyze data that result from observational studies. The first
step is to code, or categorize, all interesting events that occurred during the ses
sion. This is a subjective process normally requiring several iterations as the
coders refine the coding scheme.

Once the raw observations are coded (at least preliminarily), there are two
important approaches that can be used individually or together to obtain inter
esting information from the coded data:

• Counting occurrences of types events or summing the total amount of time
spent on classes of activities. This can be useful to give an overall impres-

www.manaraa.com

3. Studies of the Work Practices of Software Engineers 61

sion of how people spend their time. If one has enough data for different
classes of people, one can discover differences among the classes.

• Detecting and modeling patterns of activities. This involves looking for
repeating sequences and cycles that can be used to describe parts of the ob
served activity at a higher level of abstraction. Doing this is described in the
paragraphs below.

The above approaches can be used synergistically. The counting and analysis
of occurrences of these patterns can follow the process of modeling and building
patterns. Similarly, the process of counting can lead to the development of pat
terns by pointing out the important types of events that should be included in
those patterns.

A useful first step in discovering and representing patterns of activities is
finding subsequences that are repeated frequently in the coded data. Several al
gorithms are known that can help with this. A basic approach simply divides an
entire coded sequence of events into all possible subsequences of length n
(called n-grams where n is normally at least 3) and counts the occurrences of
each n-gram. Useful subsequences appear as the n-grams that occur most fre
quently. Even more interesting subsequences can sometimes be found by pro
gressively increasing the value of n.

Exploratory Sequential Data Analysis (ESDA), (Sanderson et aI., 1994) is
another well-known technique that has been applied to describing software en
gineering processes (D' Astous and Robillard, 20(0).

We found, however, that we wanted to go beyond merely finding patterns
that are sequences of events. We sought a graphical technique that could show
the context of each event and could more actively assist software designers to
develop tools, as has been advocated by Bannon (1994) and Suchman (1995).

3.4.2 Use Case Maps

The Use Case Map (UCM) notation shows multiple sequences of localized
events. By localized, we mean that each event occurs in a particular context.
Contexts are shown as boxes. Sequences are shown as paths that wind from
context to context, may form loops and may split into independent sequences or
may merge. Events are points on the paths.

The UCM notation was originally invented by Buhr (Buhr 1998; Buhr and
Casselman, 1996) to represent causal flows of responsibilities in real-time soft
ware systems. In such systems there are normally several parallel processes or
tasks (paths), interacting with different subsystems (contexts) and involving in
teractions or computations (events).UCMs are also ideal, however, to represent
the detailed flow of the tasks of a single person or a small group. As with com
puter systems, people work in parallel on multiple tasks (paths), work with vari
ous different tools, documents or other people (contexts), and perform series of
actions (events).

www.manaraa.com

62 Lethbridge and Singer

Figure 3.6 shows a UCM that is being used to model a user's particular in
teraction with Unix and the Emacs editor. Later in the chapter we will show ad
ditional UCMs containing generalized patterns crystallized from observing
many users.

To understand Figure 3.6, follow the numbered points along the path, and
read the descriptions below:

• The circle is the start symbol.
• The user enters Emacs and opens a directory, the listing of which is shown

as the first inner box. The user enters the context of this directory.
• The user employs an item from the directory listing to initiate the opening

I I. copy

Figure 3.6. An example Use Case Map (UCM) shows the flow of work from context to
context.

www.manaraa.com

3. Studies of the Work Practices of Software Engineers 63

of a file. The bold arrows indicate infonnation being taken to be used later.
• After entering the context of a file, the user perfonns a search.The user per

fonns another search; the loop indicates repetition.
• The user places some information in the copy buffer, to be used later.
• After leaving Emacs and entering the context of the Unix command line, the

user issues a grep command, using infonnation in the copy buffer as the ar
gument (represented again by the bold arrow).

• In the newly created grep context, the path forks. The upper path is that
taken by the user who wishes to do something else while grep is executing.
The lower path, with the clock symbol, is that taken by the computer that
takes time to perfonn the grep (the clock symbol indicates a delay that
could at some point be cancelled if the user gets tired of waiting).

• The user reenters a Unix command-line context and then issues a more
command.

• The user searches using the more tool.
• The user copies some text from the infonnation displayed by more.
• Meanwhile, the grep started earlier has completed and produced its results.
• The user now can get back to dealing with the grep results. The horizontal

line indicates an and-join or synchronization in which the two subpaths
(waiting for grep and the users activities while waiting) are reunited after
both of them are completed.

• The user could do something with the grep results, but decides not to. In
stead he ignores them and issues another grep command using the infonna
tion copied earlier while perfonning more. The path converges with the
path taken earlier using an or-join; the user will now repeat a subsequence
perfonned earlier.

• There is a fork and a delay again during the execution of grep; the user
again has the opportunity to do other things while waiting.

• As before, the results are eventually returned.
• The user waits at the and-join for the grep to be complete; this time he

chooses not to work in the more program.
• This time, the user copies some text from the result.
• Instead of repeating grep for a third time, this time the user goes back to the

Emacs context and opens a file using the contents of the copy buffer (taken
earlier from the grep results) as a file name.

• The user searches in the file using Emacs as he did earlier.
• The user finishes his task, as shown by the line tenninating the path.

The process of creating a UCM from synchronized shadowing data is rela
tively simple, although it is currently a manual process. Proceeding through the
data sequentially, one draws path segments from event to event, drawing new
contexts and placing events inside them as needed (the contexts need to be
coded as part of the synchronized shadowing process). When a sequence is re
peated, one makes the path fonn a loop (having previously detected repeated

www.manaraa.com

64 Lethbridge and Singer

sequences as described above helps one anticipate such loops). We have found
that after a small amount of rearranging, a readable UeM normally emerges.

If a UeM becomes too difficult to read, i.e., with too many events, contexts
and paths, it can be split into several UeMs, each containing paths and contexts
extracted from the large messy UeM. Doing this is how we discover work pat
terns in the UeMs: A work pattern is shown as a simplified UeM that contains
paths that are followed very frequently, and typically involve just one or two
contexts. UeMs provide a mechanism called stubs and plug-ins to facilitate this.

There are also other notations that can be used to model human work:

• data flow diagrams can, at a very high level, show the movement of infor
mation around a business;

• work-flow diagrams and Petri nets can show the sequences and dependen
cies among subtasks;

• and flow charts can show decision-making processes.

None of these notations, however, can clearly show at a detailed level both
the context of the work and the multiple interacting threads of events. UML ac
tivity charts perhaps come closest to what we need. They can cope with multiple
threads and contexts, but the current representation of contexts is limited to one
dimension (the so-called swimlanes). UeMs display contexts in two dimensions,
which is usually more understandable and supports hierarchies of contexts.

In this subsection, we have discussed how Use ease Maps can be used to
represent work. Other researchers working on approaches to help people record
and represent their understanding of work include Pycock et al. (1998) and Jor
dan et al. (1995). More information about use-case maps can be found at
http://www .usecasemaps.org.

3.4.3 Requirements Development

The process described so far that involves developing buttons for synchronized
shadowing, performing the shadowing, detecting patterns in the data, and draw
ing UeMs containing work patterns, should ideally be done in an iterative man
ner as a series of studies. Each step can help improve the other steps in the sub
sequent iterations; for example, the work patterns can give the researchers per
forming synchronized shadowing a better idea of what to look for.

The final, but certainly not least important, step in our process is taking the
work patterns and interpreting them so as to discover potential software re
quirements. The essence of this process is examining the patterns looking for
signs of inefficiency such as the following:

• Frequent sequences that can be automated.
• Frequent situations where the participant jumps back and forth between

contexts, and where it might be possible to allow the required activity to all
occur in only one context and thus eliminate context switching.

www.manaraa.com

3. Studies of the Work Practices of Software Engineers 65

• Situations where the participant must frequently wait, due to system delays.
• Situations where the participant frequently makes mistakes because he or

she has to rely on memory to transfer information or to perform similarly
mentally taxing activities.

Each of these can lead to a requirement to reduce the inefficiency through
improved software.

3.5 A Case Study: Empirical Studies at Mitel

This section presents a case study in which we applied synchronized shadowing
and Use Case Maps to study and model the work patterns of software maintain
ers at Mitel Corporation, and then develop tools to make them more productive.
The Mitel software engineers we studied were working on a large telecommuni
cations system.

Before our first synchronized shadowing sessions, we studied the software
engineers enough to discover the main types of events we would provide as
buttons in the synchronized shadowing tool. Table 3.1 shows the set of control
keys - which we used in place of buttons - that were used by one of the two
note-takers. While the first note-taker recorded the individual actions that the
programmers performed, the other note-taker focused more on their high-level
goals while performing their actions. The programmers were asked to think out
loud while performing their task. It was the job of the second note-taker to code
this information, therefore his codes focused more on hypotheses and plans.

We conducted a total of nine synchronized shadowing sessions with eight
software engineers, each session lasting about an hour. We attempted to coordi
nate our study of each SE so that it would occur at a time when the SE was per
forming what he or she considered typical work with source code.

Prior to meeting the participant to begin each session, we synchronized the

Table 3.1. Control sequences in Microsoft Word macros used by one of the observers
during synchronized shadowing.

Control key
A_V

A_e
A_m

A_S

A_g
A_t

A_U

A_Z

A-space

Description

VIS: Look at something
EDITOR: Issue an editor command
MODIFY: Write or modify some text
SEE: Issue a command in a software exploration tool
GREP: Run grep

TOOL: Work with some other tool.
UNIX: Type a command other than grep

NEW-GOAL: Start something completely new
Miscellaneous

www.manaraa.com

66 Lethbridge and Singer

clocks of the two computers. We also practiced using the synchronized shad
owing interface to ensure that we were familiar with the coding scheme we had
developed.

When the synchronized shadowing data was obtained, it was scanned manu
ally for a short while to begin to find patterns. It was clear (as we had initially
expected from earlier observations) that the vast majority of our participants'
time was spent working in text editors or searching for various kinds of things.

Following the procedure outlined in Section 3.4, we worked our way through
the data and developed a variety of UeMs that represent common work patterns.
We found that the data coded during the initial synchronized shadowing sessions
was coded at the level of detail we needed for the UeMs. Therefore we manu
ally went back through the logs, looking at the free-form notes which had been
added after each button press during synchronized shadowing. We were able to
give more precise codes to each event; e.g., we needed to divide certain types of
search into more detailed categories. The inter-rater reliability of this manual
process was very high once we had agreed on the codes we wanted to use. For
later synchronized shadowing sessions, we were able to add extra buttons to our
tool and therefore reduce the need for subsequent manual analysis.The following
are two examples of ueMs we generated from this work.

While exploring a series of files, our sample logs showed the participants
doing three distinct types of activities: Searching for text, copying text (into the
copy buffer) or merely reading the text. As for searching, it was done either us
ing previously copied text or by manually typing the parameters. Users would
jump repeatedly from file to file, using the contents of the copy buffer to transfer
a piece of text from one file to use as a search parameter in another. Figure 3.7
shows the UeM we constructed to show this work pattern, in the context of a
single file.

Figure 3.8 shows a second example UeM. In this case, the activity being

i ~;, ";tl",,,
copying

Figure 3.7. A Use Case Map showing an abstract view of the paths taken by users when
exploring files (without editing).

www.manaraa.com

4w. Copy
ent ire
grep results

3. Studies of the Work Practices of Software Engineers 67

4b. Enter without
copied text

4x. Copy some text
from
grep results

4y. Grep results
no good

Exi t to
temporarily do
someth ing e lse

Cancel grep
command

Exi t without
copying grep
results

Figure 3.8. UCM showing possible paths when performing a search using grep (the clock

symbol represents a period of waiting).

frequently performed is searching through multiple files using grep. The results
of the searches are then manipulated. The figure illustrates all the possible paths
that occur in this activity.

Important observations we make from Figures 3.7 and 3.8, as well as other
UCMs not shown here are:

• Search within files, and search across files, are fundamental operations
to the maintainers.

• Transfer of information from file to file and from tool to tool was most
commonly performed by copying and pasting. There were two impor
tant sources of information to place into the copy buffer: text in a file
and text in a search result. There were four different destinations into
which the buffer would be pasted. These are; A file that is being edited,
a file name to open, or a search parameter either in an editor or for
grep.

We used a program to count the occurrences of the various categories and
sequences of events in the UCMs. The results are presented in Tables 3.2 and
3.3. Of the 966 events recorded while performing synchronized shadowing, al
most 30% involved searching, and almost 20% involved cutting and pasting.

Table 3.3 shows sequences where the user copies some text and then pastes
it. It is clear that most of the time, when a maintainer selects some text in a file,
he or she intends to use that as a search argument to find other occurrences of
the text in the same file or in other files. Similarly, when a maintainer selects

www.manaraa.com

68 Lethbridge and Singer

Table 3.2. Frequencies of the most important categories of events.

Event types Percent of Percent of Number of

total subtotals events

Total number of events 966

Copy text 9.2% 89
Copy from file 66.3% 59
Copy from search results 34.8% 31
Search 28.3% 273
Search in editor (one file) 59.3% 162
Search across files 40.7% III

Using grep 23.8% 65
Using other tool 16.8% 46
Study (reading) 28.5% 275
Study in editor 87.6% 241
Study search results 12.4% 34
Paste text 10.6% 102
Paste to modify text 7.8% 8
Paste to search in editor 32.4% 33
Paste to open file 22.5% 23
Paste to search across files 37.3% 38

text in a search result, it is generally the name of a file that he or she intends to
open and study in more depth.

Analysis of the data shown above leads us to derive the following require
ments for a software exploration tool we are developing called TkSee (Leth
bridge and Anquetil, 1997; Lethbridge and Herrera, 2000).

• The tool should have a direct way to open a file from search results (e.g., by
simply selecting some result)

• Rationale: 71 % of copy operations performed on search results were per
formed in order to obtain a file name to open. This requirement would
eliminate a considerable number of keystrokes or mouse movement (both
issuing copy and commands, as well as actions required to exit the search
results and enter).

Table 3.3. Copy-paste transitions

Copy from file Copy from search results

Paste to modify text 5.1% 16.1%

Paste to search in file 27.1% 9.7%

Paste to open file 1.7% 71.0%

Paste as search argument 47.5% 3.2%

Not immediately used 18.6% 0.0%

www.manaraa.com

3. Studies of the Work Practices of Software Engineers 69

• The tool should have a simple command to automatically locate occur
rences of whatever is in the copy buffer.

• Rationale: No matter what the source of copied text, users frequently used
the copy buffer as the argument when performing a search in an editor. This
requirement would save many paste operations and reduce the necessity to
bring up a search dialog box.

• Add a command that allows the user to search for whatever is selected in
the editor without doing a copy and then a paste.

• Rationale: 27.1 % of copy operations from a file were immediately used to
search in that file. This would speed this operation.

• In dialog boxes that initiate grep-like searches or searches within a file, pre
fill the box that specifies the argument with whatever text has just previ
ously been selected in the editor and/or the search results.

• Rationale: This would reduce the need to do some copying.

The requirements above come from the data in Tables 3.2 and 3.3; thus it
might be argued that we could eliminate the Use Case Map step and go straight
from patterns in synchronized shadowing data, to tables, to requirements. The
Use Case Maps however, had two critical roles: Firstly, we developed them
iteratively as we performed pilot studies and improved our coding scheme (the
set of buttons) for synchronized shadowing. As we saw patterns emerging, we
drew the UCMs to obtain an understanding of which buttons should be present
in our synchronized shadowing tool. Secondly, having the UCMs allows us to
better explain the requirements.

Implementing the above requirements has allowed us to improve the func
tionality of TkSee considerably. TkSee's overall strengths include its integration
of a variety of techniques for searching through source code (including the re
quirements illustrated above), its ability to allow maintainers to incrementally
build models of aspects of the software, and its ability to support the manipula
tion and saving of search results and explorations. These features include those
that our Use Case Maps tell us are the activities that maintainers perform most
often.

3.6 Summary and Conclusions

We have described several techniques for performing observational field studies
of people at work, and analyzing the resulting data. We applied these techniques
to the work of software engineers in order to develop better tools for them; how
ever, the techniques should be useful whenever one's objective is to understand
work practices.

We situated our empirical study techniques in a three-dimensional space. On
one axis, our techniques involve observation of people performing their every
day work; therefore, they can be called field studies as opposed to laboratory

www.manaraa.com

70 Lethbridge and Singer

studies. On a second axis, our tools involve active observation involving direct
contact with people as they go about their daily work, whereas other techniques
might only indirectly observe people or else study the products of their work. On
the third axis, our techniques involve information gathering for the purpose of
constructing models; we make no attempts to run controlled experiments.

To gather data while observing software engineers at work, we use a note
taking approach as opposed to videotaping. However, since it is hard to be con
sistent when manually taking notes, we developed a technique we call synchro
nized shadowing whereby two people use clock-synchronized computers that
are preprogrammed with buttons that record time-stamped annotations corre
sponding to different kinds of observed events. This technique allows us to
gather reasonably accurate information in real-time that is already partially
coded, hence analysis time is greatly reduced.

We build models from our synchronized-shadowing data using Use Case
Maps (UCMs), a technique originally invented for modeling real-time systems,
but which is ideally suited to model work practices. From the UCMs we can see
work patterns, and from the work patterns we can deduce requirements for soft
ware tools. We call our combined approach WASS (Work Analysis from Syn
chronized Slladowing).

There remain some open research issues with our work: Firstly it would be
nice to analyze the time consumed by the participants performing the work pat
terns, rather than just the sequences. We know, for example, that copying and
pasting is performed very frequently, but it might be that other less time
consuming activities actually take more time. We would also like to use the
technique in a wider context. Currently we have only used it in the one Mitel
empirical study.

3.7 Acknowledgements

We thank the Mitel employees who participated in our studies. We also thank an
anonymous reviewer for valuable suggestions and K. Teresa Khidir for helping
polish the manuscript.

3.8 References

Bannon, L. (1994). Representing work in design. In L. Suchman (Ed.), Repre
sentations of Work: A Symposium. Monograph for proceedings of the 27th
HICSS, January, Maui, Hawaii.

Bannon, L, and BfiSdker, S. (1991). Beyond the interface: Encountering artifacts
in use. In J. Carroll (Ed.), Designing Interaction: Psychology at the Human
Computer Inteiface. Cambridge University Press: New York.

www.manaraa.com

3. Studies of the Work Practices of Software Engineers 71

Bendifallah, S., and Scacchi, W. (1987). Understanding software maintenance
work, IEEE Transactions on Software Engineering, 13(3), 311-323.

Blomberg, J., Suchman, L., and Trigg, R. (1996). Reflections on a work-oriented
design project, Human Computer Interaction, II, 237-265.

Boehm-Davis, D. Holt, R., and Schultz, A. (1992). The role of program structure
in software maintenance, Int. Journal of Man Machine Studies, 36, 21-63.

Buhr, RJ.A (1998). Use case maps as architectural entities for complex systems,
IEEE Trans. Software Engineering,. 24(12) Dec., 1131-1155.

Buhr, RJ.A and Casselman, R.S. (1996). Use Case Maps for Object-Oriented
Systems, Prentice-Hall, Englewood Cliffs, NJ.

Button, G., and Dourish, P. (1996). Technomethodology: Paradoxes and Possi
bilities, In Proc CHI '96; Human Factors in Computing Systems, Vancoun
ver, 19-26 ..

Cook, T., and Campbell, D. (1979) Quasi-Experimentation: Design and Analy
sis Issues for Field Settings. Rand McNally: Chicago, IL.

Curtis, W (1986) By the way, did anyone study any real programmers? In E.
Soloway and S. Iyengar (Eds.). In Proc. Empirical Studies of Programmers.
Norwood, NJ, pp. 256-262.

Curtis, B., Krasner, H., and Iscoe, N. (1988). A field study of the software de
sign process for large systems, Communications of the ACM, 31(11), 1268-
1287.

D' Astous, P., and Robillard, P. (2000). Protocol analysis in software engineering
studies. Empirical Studies in Software Engineering, Khaled El-Eman and
Janice Singer, eds., MIT Press.

Denzin, N.K and Lincoln, Y.S. (1994). Handbook of Qualitative Research, Sage
Publications: Thousand Oaks, CA.

Glaser, B., and Strauss, A., (1967). The Discovery of Grounded Theory: Strate
giesfor Qualitative Research. Aldine deGruyter: Hawthorne, NY.

Hutchins, E. (1994). Cognition in the Wild, MIT Press: Cambridge, MA.

Jordan, B., Goldman, R., and Sachs, P. (1995). Tools for the workplace, Com
munications of the ACM, 38(9),42.

Kraut, R., and Streeter, L. (1995). Coordination in software development, Com
munications of the ACM, 38(3), 69-81.

Kyng, M., and Mathiassen, L. (1997). Computers and Design in Context. MIT
Press: Cambridge, MA.

Lethbridge, T.C. and Anquetil, N. (1997). Architecture of a source code explo
ration tool: A software engineering case study, University of Ottawa, Com
puter Science Technical report TR-97-07.

www.manaraa.com

72 Lethbridge and Singer

Lethbridge, T.e. and Herrera, F. (2000). Towards assessing the usefulness of the
TkSee software exploration tool: a case study, Elsewhere in this book ..

Lethbridge, T., Singer, J., Vinson, N., and Anquetil, N. (1997). An examination
of software engineering work practices. In Proc. CASCON, Toronto, Octo
ber: IBM, 209-223.

Lethbridge, T.e., Lyon, and S., Perry, P. (2000). The management of univer
sity-industry collaborations involving empirical studies of software engi
neering, In Empirical Studies in Software Engineering, Khaled EI-Eman
and Janice Singer, eds., MIT Press.

Litman, D., Pinto, J., Letovsky, S. and Soloway, E. (1996). Mental models and
software maintenance. In Proc. Empirical Studies of Programmers: First
Workshop.

Neuman, W., L. (1997). Social Research Methods: Qualitative and Quantitative
Aproaches. Allyn and Bacon: Boston, MA.

Porter, A., and Votta L. (1998). Comparing detection methods for software re
quirements inspections: A replication using professional subjects, Empirical
Software Engineering, 3, 355-379.

Pycock, J., Palfreyman, K., Allanson, J., and Button, G. (1998). Representing
fieldwork and articulating requirements through VR, In. Proc CSCW, Seat
tle, 383-392.

Simonsen, J., and Kensing, F. (1997). Using ethnography in contextual design,
Communications of the ACM, 40(7),82-88.

Singer, J., and Lethbridge, T. C. (l998a) Work practices as an alternative
method to assist tool design in software engineering, International Work
shop on Program Comprehension, Ischia, Italy, 173-179.

Singer, 1., and Lethbridge, T.C. (1998). Studying work practices to assist tool
design in software engineering. In 6th IEEE International Workshop on
Program Comprehension, Italy, 173-179. A longer version appears as: Uni
versity of Ottawa, Computer Science Technical Report TR-97-08.

Sanderson, P.M., Scott, J.J.P., Johnston, T., Mainzer, J., Watanabe, L. M. and
James, J.M. (1994). MacSHAPA and the enterprise of exploratory sequen
tial data analysis (ESDA). International Journal of Human-Computer
Studies, 41 (5),633-681.

Suchman, L. (1987). Plans and Situated Actions: The Problem of Human
Machine Communication. Cambridge University Press: New York.

Suchman, L. (Ed.) (1995). Representations of work, Special issue of the Com
munications of the ACM, 38(9),33-68.

Walz, D., Elam, J., and Curtis, B. (1993). Inside a software design team: Knowl
edge acquisition, sharing, and integration, Communication of the ACM,
36(/0),63-77.

www.manaraa.com

4
Assessing the Usefulness of the
TkSee Software Exploration Tool

Timothy C. Lethbridge
Francisco Herrera

4.1 Introduction

The goal of our research is to find ways to improve the productivity of software
developers who are maintaining very large legacy systems. To help achieve this
goal, we have developed a software tool called TkSee, which allows software
engineers to explore and understand source code. This tool serves as the infra
structure for various studies of program comprehension, and is used intensively
by several software developers inside Mitel Corporation. As researchers, the
most important part of our mission is to evaluate the usefulness of the ideas we
implement. In this chapter we present a case study in which we obtained insights
about usability while trying to evaluate TkSee's overall usefulness. The intent of
this chapter is to highlight the factors that made the evaluation process difficult,
and to provide pointers to those who wish to assess the usefulness of complex
software products.

4.1.1 Two Independent Factors Leading to Usefulness:
Utility and Usability

When developing a software system with innovative new capabilities, it is im
portant for developers to measure the usefulness of these capabilities so that
future designs can be improved. This process may be made difficult, however,
because some users might not adopt the system, while others might adopt the
system but not exploit its functionality as intended. Failure to adopt the system
may be due to the following reasons:

• they do not know that it exists;
• they are reluctant to change their work practices;
• they lack of time to learn the system;

www.manaraa.com

74 Lethbridge and Herrera

• they have difficulty learning it;
• they experience minor annoyances with it, or
• it does not fit their task.

Failure to exploit functionality as intended may be because of the same rea
sons, or because the users do not learn it effectively.

The following two factors are necessary if a system is to be both adopted by
users and useful to them:

1. The system's functionality must provide high utility; i.e., the system must
have the raw computational capabilities and features that should, in princi
ple, enable users to perform their work.

2. The system must have good usability; i.e., its design must ensure that users
can easily learn and efficiently exploit its functionality.

This distinction between utility and usability is adopted from the work of
Nielsen (1993) and the usability engineering community.1 Both aspects of use
fulness should be measured only in the context of particular groups of users and
tasks. For example, utility can be seen as the fitness of the functionality to a cer
tain task. Similarly, a system that a power-user finds usable might be quite un
usable for an occasional user of the same system (and vice versa).

An important point to consider is that utility and usability, as defined above,
are largely orthogonal. For example, imagine a spreadsheet program developed
for statisticians with all the functional capabilities of Microsoft Excel, but in
which editing a cell involved triple-clicking on the cell to select it and then pull
ing down a nested menu to open a dialog box containing the cell's contents.
Such a program would have high utility (the needed ability to edit a cell is pre
sent), but low usability (users will have difficulties discovering the triple click
ing and would be annoyed at not being able to directly type data in a cell). Con
versely, imagine a second spreadsheet program that had exactly the same user
interface as Microsoft Excel (widely recognized as being good), but which
lacked statistical functions. Such a system would be low in utility for the statisti
cians, but high in usability. Neither system would be very useful, but each for a
different reason.

Much software engineering work is biased away from usability and toward
higher utility. The inventiveness and innovative thinking of most developers is
oriented toward developing as many features as they can. As a result, usability
considerations may be deferred, and then perhaps curtailed as deadlines loom.

1 Note that the ISO 9241 definition of usability, "The effectiveness, efficiency and satis
faction with which specified users achieve specified tasks in particular environments,"
does not as readily allow one to make the distinction between utility and usability that we
consider so important in this chapter. This is because the word "effectiveness" encom
passes some aspects of utility.

www.manaraa.com

4. Assessing the Usefulness of the TkSee Software Exploration Tool 75

This utility bias is often manifested as "feature bloat" - the availability of so
many features, such that the system as a whole becomes so complex that usabil
ity becomes even worse than it otherwise might have been.

One of the main points we will emphasize in this chapter is that it is essential
to view utility and usability as largely separate issues. Clearly seeing the distinc
tion between them allows both to be improved. In particular, one's ability to
measure utility can be significantly reduced by poor usability.

4.1.2 Assessing the Usefulness of a System

Developers should separately assess2 both the utility and usability of systems in
order to arrive at an overall assessment of usefulness.

Assessment of utility means evaluating the innovative computational or data
manipulation facilities that the new software is providing and that are supposed
to help users achieve their goals. The objective of utility evaluation is to confirm
whether the functionality implemented in the system actually helps users to
achieve their goals better or whether it should be improved. In order to make
such an assessment, developers typically give the system or a prototype to a
group of users. The developers then gather information about any missing capa
bilities as well as ideas for improvements.

It is sometimes feasible to fully assess the utility of a proposed system dur
ing the review of its requirements, dispensing with a later assessment of the
completed system. However, this is only realistic when developing simple sys
tems in very well-understood domains. In the case of software that seeks to help
users solve complex problems in new domains, it becomes imperative to assess
the utility by actually having users use the system or a prototype. In the devel
opment of such software, it is typical that not even experts in the domain are
able to clearly propose the required functionality. Hence requirements tend to
originate from bright ideas, rather than systematic analysis of the problem.
These must be validated by users who actually use the system.

The case study presented in this chapter discusses a program comprehension
tool that is a typical example of a system for solving a complex problem: There
is so far no well-recognized standard approach to program comprehension tool
design, and the comprehension task itself is highly complex. The requirements
for new features are therefore hypotheses that must be validated by their utility
assessment.

Assessment of usability means evaluating factors such as the learnability and
efficiency of use of the system, as well as how well the system guides the users
through their task and provides them with feedback in response to their actions.
These factors should be evaluated largely independently of utility. Later on in
this chapter we will see that usability evaluation can be performed by having

2 We use the words "assess" and "evaluate" interchangeably.

www.manaraa.com

76 Lethbridge and Herrera

usability experts survey the system to look for violations of usability heuristics,
or by observing users use the system.

As mentioned earlier, usability is often neglected in favor of utility. This can
be particularly the case in complex systems for new domains, precisely because
so many new functional ideas are being implemented. Unfortunately ignoring
usability can undermine the ability of developers to accurately assess the utility.
If the usability is poor, the users may not learn to efficiently use the functional
ity, may not learn parts of it at all, and may reject the system, saying it is not
useful.

If users reject the system, the developers may blame the functionality when
in fact it might have had excellent potential - with its excellence simply masked
by poor usability. Since many developers are not well trained in software usabil
ity, they may not realize that usability is the real culprit in the failure.

Our thesis, therefore, is that usability must be formally assessed before at
tempting to evaluate the functionality of software. Failure to do this will make it
impossible to accurately measure the underlying utility of implemented features,
and may lead researchers to draw incorrect conclusions when certain features do
not appear useful.

As part of our CSER research, we developed a code exploration tool called
TkSee which is intended to help software engineers explore and understand
source code more efficiently. The process we used for developing the tool was
similar to the one described above: Research activities were undertaken to dis
cover the needed functionality, which was then implemented, but without formal
attention to usability. TkSee was given to a group of software engineers so that
they could use it during maintenance of a large software system. Since an inte
gral part of the research plan was to evaluate the utility of the various ideas we
had implemented, we attempted to determine an appropriate approach for such
an evaluation. We realized that TkSee had not been used as much as we had
initially hoped and therefore we should start by exploring factors contributing to
that situation. One of the issues we realized we should explore was TkSee's us
ability: We should explore how it had affected people's ability to learn and use
the tool.

In the next section, we briefly explain the aspects of TkSee's functionality
that we believe to be innovative and useful to its users. Following that, we look
at some of the difficulties that arose as we set about evaluating the software.
Most of these difficulties occurred because we had paid far more attention to
utility than to usability.

4.2 Features of TkSee: Optimized Search and
Hierarchical Management of Search Results

In this section, we outline the key functionality of TkSee and the process we
used to develop the requirements for that functionality. The purpose of this sec-

www.manaraa.com

4. Assessing the Usefulness of the TkSee Software Exploration Tool 77

tion is to familiarize the reader with the context in which we performed the us
ability studies discussed in the next section.

The goal of our research is to improve the productivity of software develop
ers who are working on large real-time software systems. We are working pri
marily with software systems and developers in Mitel Corporation, although we
are also cooperating with others within CSER. We attempt to follow a disci
plined approach to our research. This involves: (a) studying the work practices
of the Mitel developers to discover what causes them the most difficulty; (b)
designing tools that might reduce these difficulties; and (c) evaluating the tools
to determine to what extent the difficulties have been reduced, and what result
ing productivity increase has occurred.

Studies of software developers we performed prior to deploying TkSee iden
tified two key challenges they face: Effectively searching through the code, and
managing the results of searches. The developers we studied would normally use
the Unix grep tool to search through the code; this is often very time-consuming
since there are millions of lines of code. After obtaining results (lists of lines or
hits which match a grep pattern) the developers would often perform further
searches or other activities, and quickly lose track of earlier search results; they
often, therefore, would tend to repeat the same searches. Also they often would
want to search by name for what they knew to be either a variable, a type or a
routine. Grep, on the other hand, is oblivious to syntax and returns any line that
matches the search pattern (e.g., words in a comment, or variables when the de
veloper is looking for a type). This results in excessively long lists of hits that
take time to examine. When something interesting was found, the developer
would often revert to old technology and write it down on paper, lest it be for
gotten.

We also noted that the developers were using what we call a just-in-time
comprehension strategy to solve problems. This is an opportunistic approach
where developers follow chains of relationships, understanding just the mini
mum needed for the current subproblem, rather than systematically attempting
to learn and understand entire components of the system.

These observations led us to design and implement the following features in
TkSee: A hierarchy of software objects, instant access to the source code, and an
unlimited hierarchical history of named hierarchies. We outline each of these
features in Sections 4.2.1 through 4.2.3. Further details can be found in Leth
bridge (2000) and Lethbridge and Anquetil (1997). A schematic view of TkSee
is presented in Figure 4.1, while a screen-dump of the system as it existed prior
to its ftrst usability evaluation is shown in Figure 4.2. Figure 4.3, at the end of
the chapter, shows the system following usability evaluation and also points out
some more details of its design.

As mentioned at the beginning of this chapter, our goal in developing TkSee
is to improve the productivity of the software developers. This may require us to
merely help the developers do their current work faster; sometimes, however it
requires us to restructure their tasks to a certain extent. When doing this we

www.manaraa.com

78 Lethbridge and Herrera

must, however, ensure that any restructuring does not scare them away from
adopting our tools by forcing changes they do not have the time to learn.

4.2.1 A Hierarchy of Different Types of Software Objects Found
While Searching

The hierarchy of software objects is shown as region B in Figure 4.1 . The soft
ware objects are color-coded and can be such things as files, routines, variables,
types, and lines in a file. The lines in a file are the same as the classic grep hits;
part of our design philosophy was to provide the developers with a superset of
functionality they had already. The ability to search for the other more specific
software objects such as routines and variables means that developers are no
longer limited to searching for whatever strings match their search pattern.

Indentation in the hierarchy represents any kind of relationship between the
parent software object and the child (indented) software objects. Supported rela
tionships include: "routine calls routine," "routine called by routine," ''variable
defined in routine," ''type used in routine," "line found in file," etc. Specific
icons distinguish among the relationships. Prior to the deployment of TkSee, the
Mitel developers had visualized these relationships either in their heads or on
paper. Users can perform many operations in the hierarchy: Some operations
create a new hierarchy by performing general searches in the target system for
any of the different types of software objects. Other operations allow subsets of
the objects in the hierarchy to be extracted, or uninteresting objects deleted. Yet
other functions allow the user to select several objects and ask to display related
objects using indentation. Taken together, these operations were designed to
provide those functions the Mitel developers appeared to need to more easily
perform just-in-time comprehension.

4.2.2 Instant Access to the Source Code from Any Software
Object in the Hierarchy

If a file, routine, or line of code is selected in the hierarchy (area B in Figure

:.:.:.:.:.:.:.:.:.: A: History
:11 I Illac~ ••••••••••

:.:.:.:.:. :.:.:

:.:.:.:.:. :.:.:

B: Software
Object
Hierarchy

:.:.:. :.:.:.:.:

:.:.: . :.: .: .:.:

:.:.:. :.:.:.:.:

c: Source Code or

Software Object Details

Figure 4.1. A schematic view of the TkSee main window.

www.manaraa.com

4. Assessing the Usefulness of the TkSee Software Exploration Tool 79

4.1), then the actual code appears in area C of Figure 4.1. The number of key
strokes or other actions needed to access the code itself is thus minimized.

If a variable or type is selected in area B, then the definition of that variable
or type and a list of places where it is used instantly appear in area C.

4.2.3 An Unlimited History of Named Hierarchies

The hierarchical history of named hierarchies is shown as area A in Figure 4.1.
If a user creates a new hierarchy in area B, they never lose what was there. This
is because the user can select earlier bookmarked hierarchies instantly in area A.
New hierarchies, and hence bookmarks, are created whenever a new global
search is initiated (e.g., searching for all files matching a pattern) or when the
user asks to save a subset of some other hierarchy as a new hierarchy.

Unlike bookmarks in web browsers, no conscious action has to be taken to
save a bookmark. All earlier hierarchies are always available, even those from
previous sessions; also if a user backtracks to older bookmarks and then pro
ceeds forward again, no bookmarks are lost (an annoying problem in web
browsers). The user can manually delete and rename bookmarks; the ability to
rename bookmarks means that they can serve as to-do lists, for example, to re
mind the developer of a set of lines of code that need changing.

During design, there was some concern that the history of named hierarchies,
being unlimited in size, might grow so large as to become confusing. In practice,
this has not been the case. Users are readily able to identifY the hierarchies that
interest them and rapidly delete those of no further interest.

4.2.4 Other Features ofTkSee

TkSee is designed to work extremely fast: A database is built from the compiled
code to allow near-instant searches over millions of lines of code. The premise
for this is that any time spent waiting for an answer represents lost productivity. 3

TkSee is also designed to allow users to perform all their exploration within
one window; this contrasts with some other software browsing tools that make
use of many windows, each query often opening a new window. Our one
window design is intended to minimize the possibility of losing track of search
results, although nothing stops the designer from opening two or more TkSee
windows if he or she desires.

3 The current system is designed for people trying to understand code; once changes are
made, the database has to be rebuilt. This can take considerable time and is a drawback to
our current tool that would need to be rectified if the tool were ever commercialized. In
practice, however, users have not complained much since they tend to start modifying
code only after thoroughly understanding what needs to be done.

www.manaraa.com

80 Lethbridge and Herrera

In the above sections, we have outlined the key features of TkSee that we in
tend to subject to systematic evaluation as part of our research. There are, of
course, many details that we have omitted because they are not central to our
work, and are present in TkSee so it is a practical software exploration tool.

4.2.5 TkSee as One of Many Program Comprehension Tools

There are many software tools that shares the objectives, and some of the fea
tures, as TkSee. For example, commercial tools such as Source Navigator (Red
Hat, 2000) (used to develop TkSee4) and Sniff+ (WindRiver, 2000) provide ex
ploration based on relationships among different types of software objects. Re
search tools such as Rigi (Miiller et aI., 1993) and Software Bookshelf (Finnigan
et aI., 1997) provide powerful capabilities for visualizing software.

TkSee is not meant to compete with these tools, but rather to serve as an ex
perimental testbed for various features, notably the indented list hierarchy and
the history of editable and renamable bookmarked hierarchies. The fact that dif
ferent tool developers have developed different features to solve similar prob
lems suggests that determining which features are best is nontrivial. The onus is
therefore on researchers to carefully evaluate the utility of each feature and de
rive conclusions that can be used in the design of future tools. As mentioned in
the last section, the needed evaluation of functionality faces interesting chal
lenges due to usability and user acceptance concerns. We will address these
concerns in the next section.

4.3 Evaluation of the Usability of TkSee

In this section we continue the case study, discussing our experiences perform
ing a usability evaluation of TkSee. For more details, the reader may consult
Herrera (1999).

4.3.1 Usage Patterns Prior to the Usability Study

Early versions of TkSee were delivered to users in 1996; subsequent versions
have been in continuous use ever since. Figure 4.2 depicts a screendump from
the tool before the usability study. We discovered that we were not able to con
vincingly evaluate TkSee's functionality for two reasons: The tool was used by
relatively few users, and those users only used a small subset of its features in
the intended way.

4 Some people have asked: Why do we not use TkSee to develop itself? We would like to
do this in the future; however, we currently only have parsers to build databases of C,
Pascal, and 68000 Assembler source code. TkSee is written in tcVtk and C++.

www.manaraa.com

4. Assessing the Usefulness of the TkSee Software Exploration Tool 81

-or.
D'PP+KlltClpu ------...

g ll
g ... UI
Uael..,... II
II 11 WI 0_.-

::1:~~~.'!!,:~~~!i;~:::::~ 1It_ ...
0_'

Do bltUIIIlf IgIIII_ ... C.IIf •• flf_ ~Ic-..- "-1

Obl1.JlU RlldnntMt.t~mt
[) "'''''Pat.'~bIOMI_,,* '._M6. BDu1lNl lalTRH
t) ,..U11Ng..... ,,~ Ulatttl TRl:[
tJo Wfjll pM'" ~"'_IIOCM._atMI ..

~ big ,..."'~~_ ... 1Octl._tM_ "fwndYWillllls : :::::::o~:::::.=~:: ~
I) ~Uk.t./'f...tlIU1 IUS ~lItbYttJts

DIrpIII_t*_~Md_a ,..rm.ll ~ UIr'I"t'4'$

........... bI~ i'dc lIOn • ~

.... -a-_c:~_nc.tIM ~.. co.woI-, tnUy~lt.IU~ld).

:> ~""~~~-i" __ ::J =-"' ="===_ .-":=':"';;"-J

Figure 4.2. Example of TkSee prior to changes resulting from usability evaluation.

-

TkSee was made available to a team consisting of about 25 software devel
opers. These people were performing a mix of new feature development and
fixing defects. We did not notice any difference in the use of TkSee between
feature developers and defect fixers. Both used the system to understand the
code they were considering changing.

Only about 10 out of the 25 Mitel developers used TkSee for significant
amounts of work over a two-year period. Of these ten, four adopted it with pas
sion, using it almost constantly in their work, while the others used it for a while
and then stopped or else used it only for very specific tasks. A large number of
other users tried TkSee once or twice and then stopped, while many did not even
try it.

We asked a sample of people what motivated them to use or not use TkSee.
Most of the nonusers were happy with their existing tools and work practices, or
else had felt that TkSee did not quite provide what they wanted. Some of the
complaints of these latter users related to facilities that their existing tools pro
vided but TkSee did not provide (e.g., information about binary executables and
editing within the same window). However, in most cases the nonusers did not
really understand the key features of TkSee either because it had not proved
rapidly learnable or else because they had found some aspect of it difficult to
understand. At some point during their learning attempts, many users had con
cluded that further learning was not worth additional investment of their very
limited time.

www.manaraa.com

82 Lethbridge and Herrera

Even among the heavy users of TkSee, many functions were hardly being
used at all. An example of such a feature is autogrep. A user can take a relation
ship between two software objects in the hierarchy subwindow (region B of Fig
ure 4.1) and ask to display the lines of code involved (e.g., the lines where one
routine calls another). Unfortunately many users were not aware of the avai1abli
lity of such a capability nor what performing the operation really does.

It should be noted that we did not provide extensive documentation or train
ing in the use ofTkSee. Documentation consisted ofa few web pages describing
the operation of the commands; training consisted of demonstrating the tool pe
riodically and providing help to anyone having trouble. We feel sure that a more
proactive training program might have helped increase adoption to some extent;
however, we do not feel that more extensive documentation would have helped
much - we hardly ever observed anyone look at the existing documentation. We
believe that, if possible, a tool such as TkSee should be made sufficiently usable
so as not to need extensive training or documentation.

The fact that a few users had eagerly used TkSee was encouraging; it meant
that some of the functionality was probably quite useful. Mitel reports (Leth
bridge et aI., 2000), based on informal observations, that some new hires who
used TkSee took far less time than normal to become productive with maintain
ing Mitel software. However, we wanted to be scientific in our approach to
evaluation of TkSee, and particularly when evaluating the utility of its individual
features. The low adoption rate made us realize that it would not be possible to
do this until more users efficiently used TkSee. A high adoption rate would have
indicated that utility is high, but a low adoption rate could be blamed on either
poor usability or poor utility (or both), and we did not know which was the case.
To find out, we had to first evaluate and improve usability.

4.3.2 The Usability Study Process

In order to proceed, we designed and performed a usability study of TkSee. Two
main techniques were applied in the study: (a) heuristic evaluation (Nielsen,
1992), and (b) think-aloud usability testing (Nielsen, 1993). We utilized user and
task analysis (Hackos and Redish, 1998) to decide upon users and develop the
tasks necessary for the think-aloud usability testing.

Heuristic Evaluation

The first approach we used is what Nielsen calls heuristic evaluation. We asked
three evaluators to judge TkSee according to a list of usability guidelines found
in Nielsen (1992, 1994). Each evaluator was asked to find as many deficiencies
as they could by systematically examining TkSee. Table 4.1 shows a categorized
summary of the 114 problems found by the evaluators. The main conclusion we
can draw from this table is that the evaluators were able to find many problems
in many different categories.

www.manaraa.com

4. Assessing the Usefulness of the TkSee Software Exploration Tool 83

Table 4.1. Violations of Nielsen's usability guidelines found during heuristic evaluation

of TkSee.

Usability guideline violated Number of problems

I. Use simple and natural dialogue 49 (43%)

2. Speak the users' language 20 (18%)
3. Minimize users' memory load 10 (9%)
4. Be consistent 15 (13%)

5. Provide good feedback 11 (10%)
6. Provide clearly marked exits I (1%)

7. Provide shortcuts or accelerators 2 (2%)

8. Provide good error messages5 0

9. Prevent errors 5 (4%)
10. Provide good help and documentation (1%)

The main difficulty with perfonning the heuristic evaluation was finding
evaluators knowledgeable about usability. In the end, three people performed the
evaluation and each person found different types of problems. One evaluator, for
example, was an expert in usability but not in program comprehension. He
found general usability problems which were not found by the other evaluators.
These problems related to feedback, labeling, graphical design and so on. An
other evaluator was already knowledgeable about TkSee and program compre
hension and tended to point out capabilities that were missing (utility problems
as opposed to usability problems) as well as incorrect behavior. The fact that the
three evaluators found different, but intersecting, sets of problems confirm that
multiple evaluators is important.

We consolidated the reports of the evaluators into a single report that was
given to TkSee developers. This included a severity rating for the problems, as
well as descriptions that were more comprehensive than provided by the evalua
tors. This stage was important since we needed to make it as easy as possible for
the developers to understand the problems and systematically fix them. The
process of reporting usability problems to developers is known to be particularly
difficult and requires special considerations (Jeffries, 1994).

Since the developers were not knowledgeable about usability, they found
some of Nielsen's guidelines difficult to understand. We therefore developed a
more developer-oriented categorization scheme, which is found in Table 4.2.
This categorization is designed to give developers a better idea about what they
need to do to correct the problem. By using both categorizations, developers
could more easily organize the solution of the problems.

This was the first time that TkSee and its developers were exposed to a us
ability evaluation. One hundred and fourteen usability problems were identified.

5 As an exploration environment, where most user interaction is performed by selecting

and issuing commands, TkSee has hardly any error messages.

www.manaraa.com

84 Lethbridge and Herrera

Table 4.2. Types of problems found during heuristic evaluation of TkSee. A categoriza
tion designed to help developers understand usability issues.

Category of problem

1. Poor or missing feedback

The software does not give the user adequate information about what has

happened following an interaction which is a violation of guideline 5 in Table

4.1.

2. Possible confusion

Users may get confused by something such as certain behavior, situation, etc.,

and do not know what to do next or how to proceed.

3. Possible misinterpretation

Users may expect something such as a label, icon, menu item, command, etc.,

to mean one thing when it means something else.

4. Poor labeling

Other general problems with labeling.

5. Lack of labeling

A needed label is missing entirely.

6. Lack of consistency

A violation of guideline 4 in Table 4.1; could refer to consistency of any as

pect of the VI including graphical design, labeling, dialog structure, feedback,

etc.

7. Poor graphical design

Improvements are needed to layout, use of color, spacing, choice of fonts,

aesthetics, etc.

8. Unnecessary capability

The VI would be better without the capability than with it.

9. Lack of needed capability

A capability is missing but users would expect to be present in order to per

form their task; the problem mayor may not relate directly to the VI.

10. Lack of robustness

A crash, hang, or inability to use a feature under certain conditions; the prob

lem mayor may not relate directly to the VI.

11. Incorrect behavior

The system fails to do what is expected; the problem mayor may not be re

lated directly to the VI.

12. Nonoptimal interaction

The way the users must interact to do something is not efficient.

Number of

problems

11 (loolo)

14 (12%)

11 (loolo)

6 (5%)

2 (2%)

15 (13%)

9 (8%)

5 (4%)

11 (loo/o)

6 (5%)

2 (2%)

22 (19%)

www.manaraa.com

4. Assessing the Usefulness of the TkSee Software Exploration Tool 85

This number was much larger than expected so the TkSee developers were
somewhat overwhelmed with the results. We worked with them in a series of
meetings, helping them to understand each problem and to decide about suitable
solutions. It proved essential in this process that the usability evaluator had con
siderable knowledge about TkSee.

We noticed it was difficult for them to understand the problems at an ab
stract level, and they required considerable time to see solutions that did not lead
to other obvious usability problems, or to compare several proposed solutions.
Insufficient knowledge about usability and about TkSee itself were the main
causes of these difficulties. Many problems were also difficult to repair given
the fact that TkSee is complex and was already implemented.

Prioritizing and organizing the problems became critical to developers. Ac
cording to the original plan, developers were going to fix as many problems as
possible prior to the think-aloud usability testing. In the end, only the most criti
calor quickly fixable problems were solved.

User and Task Analysis

User and task analysis was performed in preparation for think-aloud usability
testing. The objective was to find a set of TkSee users that would provide as
much information as possible for the least effort, as well as to determine an ef
fective set of tasks. The process also served to gather information about how
users had employed the tool. Aspects of this activity had been performed as part
of the initial requirements gathering for TkSee, but a more detailed and precise
approach was needed prior to usability evaluation.

In order to understand the types of users, we interviewed Mitel developers
and managers and performed some field observations. We ended up classifying
users in several dimensions: (a) their level of experience performing program
comprehension in general; (b) their level of knowledge about the target software
that is to be understood; and (c) their level of knowledge about TkSee.

The next step was to develop a very concrete set of tasks that we could ask
the participants in think-aloud usability testing to perform. These tasks had to:

• Cover as many as possible of the work patterns (Lethbridge and Singer,
1997, 2000) typically performed during program comprehension. The
work patterns would include performing various kinds of searches and
manipulations of search results with different goals in mind.

• Involve the use of as many TkSee features as possible.
• Take 90 minutes maximum to complete.
• Give participants the opportunity to make some of their own choices

about how to use TkSee. In other words we wanted to ensure that par
ticipants would have to think about how to use TkSee to accomplish a
given task, not to be told precisely how to use it.

www.manaraa.com

86 Lethbridge and Herrera

Our initial approach for generating the tasks was to work top-down, that is,
to ask other TkSee users to give us suitable work scenarios that we could use as
a basis for the concrete tasks. Unfortunately this approach did not work, because
the TkSee users gave us goals that were just too abstract. For example, "Find out
how many network interfaces can be active at the same time." Such a goal could
be achieved in many different ways; what we really wanted were step-by-step
scenarios at an intermediate level of detail so that we could plan the evaluation
more precisely.

The approach we eventually adopted was bottom-up. We asked the TkSee
users to give us actual examples of problems they had been faced with in the
source code, along with step-by-step information about how the problems had
been solved. These were embellished to arrive at a set of tasks that met all the
above requirements.

In developing the tasks, there was a certain amount of risk that some partici
pants in the think-aloud usability testing might already know the relevant sec
tions of the code. In such a case they might not exercise TkSee as intended be
cause they might be able to rely on their memory to provide answers instead of
performing the tasks. We therefore phrased the tasks such that they required
each participant to give a very detailed answer, for example, the exact number of
uses of a variable. To complete a task, the participant also had to display some
thing specific in a TkSee window and write down what they saw.

Think-Aloud Usability Testing

Think-aloud usability testing was used both to look for usability problems that
TkSee users experience when learning and using the tool, and also to explore
how efficiently the developers were capable of using its functionality. We ob
served ten developers performing the tasks prepared in the user and task analy
sis. We conducted a pilot study with first two participants (who happened to be
TkSee developers) and then refined the tasks. The following discussion is based
on results from the remaining eight Mitel participants.

Participants were requested to sign an informed-consent form after we ex
plained to them the nature of the research. For those participants who had never
used TkSee, each session was preceded by a 15-20 minute training session pro
vided by Mitel support personnel.

The tasks were given to participants one at a time on index cards, and the
participants were asked to verbalize their thoughts as they performed each task.
An observer watched the participants, helped them when necessary, and kept
rough notes. After each session, each participant discussed his or her experi
ences with the observer, and completed a short questionnaire. Each session
lasted about 90 minutes and was videotaped.

Following the series of sessions, the notes and videotapes were analyzed and
we arrived at a set of 72 usability problems. We categorized these problems us
ing the same categories as in the heuristic evaluation; the results are in Tables
4.3 and 4.4.

www.manaraa.com

4. Assessing the Usefulness of the TkSee Software Exploration Tool 87

Table 4.3. Violations of Nielsen's usability guidelines found during think-aloud usability
testing of TkSee.

Usability guideline violated

1. Use simple and natural dialogue
2. Speak the users' language
3. Minimize users' memory load
4. Be consistent
5. Provide good feedback
6. Provide clearly marked exits
7. Provide shortcuts or accelerators
8. Provide good error messages
9. Prevent errors
10. Provide good help and documentation

Number of problems

44 (61%)
9 (13%)
o

(1%)
16 (22%)
2 (3%)
0
0
0
0

Table 4.4. Types of problems found during think-aloud usability testing of TkSee. The
same categorization is used in Table 4.2.

Category of problem Number of problems

1. Poor or missing feedback 16 (22%)

2. Confusion 6 (8%)
3. Misinterpretation 8 (11%)

4. Poor labeling 6 (8%)
5. Lack oflabeling 0
6. Lack of consistency 1 (1%)
7. Poor graphical design 0
8. Unnecessary element 2 (3%)
9. Lack of needed capability 7 (10%)
10. Lack of robustness (1%)
II.lncorrectbehavior 1 (1%)
12. Non optimal interaction 23 (32%)

We also categorized the problems according to whether they affected learn
ability only (25%), efficiency of use only (47%), or both (28%). In follow-up
interviews, participants reported that while they thought TkSee was easy to
learn, the learning process took considerable time. They also thought that TkSee
was easy to use, but could be made more efficient for users.

A total of 53% of the problems had already been found in the heuristic
evaluation (lower priority problems that had not yet been fixed). Finding the
same problems again proved that the heuristic evaluation had uncovered legiti
mate problems, but we also showed that testing with users was essential to un
cover other types of problems. All eight participants encountered 7% of the
problems. 14% of the problems were encountered by more than six and 43% of

www.manaraa.com

88 Lethbridge and Herrera

the problems were encountered by less than five. Finally, we noted that those
five participants who were new to TkSee only noticed 20% of the problems
while 7% were only noticed by the three experts.

Think-aloud evaluation was able to find more problems than heuristic
evaluation in the "Use simple and natural dialog" and "Provide good feedback"
categories. This stems from the fact that these categories tend to relate to dy
namic behavior of the system, something that may be harder to evaluate using
heuristics alone. On the other hand the heuristic evaluation found more problems
than think-aloud evaluation in the "Minimize memory load," "Be consistent,"
and "Prevent errors" categories.

All the participants completed all the tasks; however, certain tasks were
completed in very inefficient ways. Novices were not always able to discover
the intended way the tool should be used, and experts had never learned certain
useful features. For example, some tasks required looking for all the occurrences
of a particular string in many files. The tool provided a feature for doing this in
one step. However, none of the participants used that feature and, instead, com
pleted the tasks in a much more cumbersome way.

An interesting side effect of think-aloud usability testing was that it served as
an excellent training and awareness-raising approach in Mitel. TkSee users were
willing to participate in the study even though they had been unwilling to ex
plore the tool on their own. They were given tasks that exploited the power of
the tool and had incentive to try to use the tool to accomplish them. At the end
of each session, we instructed participants about how they could have achieved
the tasks very efficiently. We saw that they then easily learned the features in
volved in solving the tasks and made comments such as "If at least somebody
had told me about that feature before, I would have been using this tool for a
long time." Having learned more about TkSee, the participants then encouraged
other Mitel developers to learn to use the tool as well.

Having the videotapes was extremely helpful. Videotaping released the pres
sure of having to notice every problem in real-time; some problems were only
noticed later upon reviewing the tapes. On the other hand, the analysis of the
videos was tiring and very time-consuming. We had to spend about three to five
times the duration of a video in order to analyze it.

As with the heuristic evaluation, communicating the problems to the TkSee
developers was carefully planned. We prepared a report that summarized and
categorized the problems and walked through this with the developers - showing
them video clips of the problems to emphasize certain points and convince them
of the seriousness. Following this, the developers implemented most of the rec
ommended changes. Figure 4.3 shows TkSee following the changes.

4.3.3 The Impact of Usability Studies on the TkSee Development
Team

In addition to discovering usability problems and helping train Mitel developers

www.manaraa.com

4. Assessing the Usefulness of the TkSee Software Exploration Tool 89

Bookmark : Indentation indicates that it was
created while vie\l.~ng another. Since it is
sleeted. its content is shown below

Improvement: 1enus and
icons relating to a spec:ifi
pane are found directly above
that pane

file (b lue). At zero indentation.
meaning it was pan or the
original search

Routine (brown) found in Ihe
file above

Problem repan (green P)
related to file above

V:tri.ble (gr<"C11) found in the
file above

Type (purple)oflhe v:triable
3bove

Improvement: More compact Improvement: Ability to open
.re. for history of bookmarks the displayed file in an editor

of the user s choice

EDuFIS elf_handle_co
(VARer c.alflCOfd;.

VAR_", ""''S',
VAR tIU'fl':'!"'" bc!allan,:
C"U __ ~t1I!11"d~.nt.rM caJLlti1e_
.oo.1II_eteeents __ ~. ~Jat_
VAR 'OO dJ"_Cl •• -'Ic:tIYMI 1IIfIOO'''Lct .. ,-4'tClIvt:~
VAR fMId •• _ons_cl"',J1ICeiYIIi .oct4I"'-.clolilar_rtctl".
VAR rt: CP-,"",'U:O<II;
tunk.,.daiIlYJIa"_WlU_"11 eOOl..EAN).

Text area, showing source code and
high lighting the item se lected on the
hierarchy at the left

Figure 4.3. Example ofTkSee showing some changes resulting from usability evaluation.

as discussed above, performing the usability study also helped raise awareness
of usability among the TkSee development team.

TkSee had been developed in a university research environment following an
informal and opportunistic development process. Features had been added by
students and researchers when they had had bright ideas they wished to experi
ment with, hence it lacked complete documents describing its requirements, its
design (except that of its database architecture (Lethbridge and Anquetil, 1997)
and how to use it.

There was considerable staff turnover among TkSee developers because
many were students. Also, almost none ofthe staff had any training in user inter
face design and usability. The newer staff was often not able to understand the
tool or the purpose of certain features. They did not appreciate why certain user
interface decisions had been made, or even that certain decisions were deliber
ate, hence they tended to make changes that were poor from a VI perspective
and that led to usability problems.

Several authors describe the idea of stages of acceptance and commitment to
user centered design in software projects (Bias and Mayhew, 1994; Ehrlich and
Rohn, 1994). They explain that software projects can be in one of the following
stages:

www.manaraa.com

90 Lethbridge and Herrera

Stage 1. Skepticism

At this stage, developers focus on creating a large amount of functionality. They
believe that they can create systems with adequate usability and that paying spe
cial attention to usability will be a waste of time. This was the stage in which the
TkSee project appeared to be when we fIrst set about trying to improve usability.
We discovered that it was much better to focus initial usability activities at cre
ating awareness and commitment to usability, rather than trying to obtain the
best possible results. It would not be possible to achieve optimum results with
skeptical developers.

Stage 2: Curiosity

At this stage, developers may admit that the system has usability problems, but
are reluctant to do much about it, primarily because they are afraid of losing
control over development. TkSee developers reached this stage gradually as they
were shown the long list of usability problems and as the problems were care
fully explained to them.

Stage 3: Acceptance

When this stage is reached, the developers accept the assistance of usability spe
cialists and try to follow approaches that promote usability. By the end of the
usability studies, the TkSee team had reached this stage; however, due to staff
turnover there remained a tendency to slide back to earlier stages.

Stage 4: Partnership

At this stage, usability is considered critically important. Members of the design
team, the managers and members of the user organization all work together to
achieve usability, following a disciplined process. The TkSee team is still far
from this stage - and indeed it is questionable whether it could or should ever be
reached in a university research environment.

Even though the TkSee developers moved from skepticism to acceptance of
usability, their insufficient knowledge about usability meant that they had to be
helped in several ways. They had to be helped to understand usability problems,
to see implications of inefficient solutions, to evaluate the effectiveness of dif
ferent solutions, to prioritize the problems, and to decide how to fIx the prob
lems so that no new usability problems were introduced. This type of support
was not always easy to give; producing the best results required experience on
the part of the person performing the usability study.

4.4 Lessons Learned

The objective of this chapter has been to communicate insights we have learned

www.manaraa.com

4. Assessing the Usefulness of the TkSee Software Exploration Tool 91

while preparing to evaluate the usefulness of a software system. We have pre
sented a program comprehension system called TkSee as a case study. Although
the goal of our research has been to develop new approaches to program com
prehension, we have realized that it is impossible to evaluate the usefulness of
these approaches unless we separately consider two key aspects of usefulness:
usability and utility. In this chapter, we have discussed usability evaluation,
which we assert must precede functionality evaluation.

We found that particular challenges arose from the fact that we were study
ing usability in a complex domain where users perform creative problem solv
ing. One of the most important consequences is that the usability evaluator
needs to have considerable domain knowledge so as to be able to develop ap
propriate tasks and communicate effectively with both users and developers.

The creation of detailed tasks prior to the think-aloud usability study was
very helpful. These tasks were used in the usability testing, but also helped
TkSee developers test the system and design features planned for the future.

Due to the complex nature of program comprehension, determining the tasks
for the usability testing became particularly difficult, primarily due to the differ
ent ways that TkSee users could approach the same problem.

We used both heuristic evaluation and think-aloud usability testing. This
proved to be a good decision as both techniques yielded different sets of prob
lems. In both techniques we used people with varied backgrounds, and again the
different people found or ran into different problems. It proved particularly im
portant to performing usability tests with Mitel software developers, TkSee's
intended users.

Communicating effectively with TkSee's developers proved an essential part
of the process: We found it necessary to carefully structure the list of problems
found, and we developed a categorization scheme that helped the developer
more clearly see the nature of the problem. We confirmed that the process of
bringing developers from the stage of skepticism of usability to acceptance of
effective usability processes requires methodical effort over a period of time.

Although the TkSee project addressed usability somewhat late, it was never
theless much better than not having done anything. The usability studies pro
duced immediate benefits: Before the study, for example, we only had a vague
idea why many Mitel developers had not used the tool more. The study exposed
many of the causes and brought to light many ideas to remedy the situation.

After the study, TkSee developers had a much clearer idea of what they
should pay attention to in order to improve the tool. On the other hand, the ad
vanced development status of the tool meant that not all the problems and im
provements revealed by the study could be solved or implemented (we imple
mented all of the important problems and about 60% of the less important ones).
We believe, however, that the usability study allowed us to make TkSee suffi
ciently usable so that we can now start to scientifically evaluate the utility of the
aspects of its functionality that are at the core of our research.

www.manaraa.com

92 Lethbridge and Herrera

4.5 Acknowledgements

We would like to thank the participants at Mitel as well as the TkSee developers
for contributing to this work. We thank K. Teresa Khidir for helping make the
chapter more readable.

4.6 References

Bias, R., and Mayhew, J. (1994). Cost-Justifying Usability. Academic Press,
New York.

Ehrlich, K., Rohn, A. (1994). Cost justification of usability engineering: A ven
dor's perspective. In Cost-Justifying Usability, D. J. Mayhew and R. G. Bias
Eds. Academic Press, New York, 73-110.

Finnigan, P., Holt, R., Kalas, L, Kerr, S., Kontogiannis, K., Muller, M., My
lopoulos, J., Perelgut, S., Stanley, M., and Wong, K (1997). The software
bookshelf, IBM Systems Journal, 36(4) November, 564-593.

Hackos, J., and Redish, J. (1998). User and Task Analysis for Interface Design.
John Wiley & Sons, New York.

Herrera, F. (1999). A Usability Study of the TkSee Software Exploration Tool,
M.Sc. Thesis, School of Information Technology and Engineering, Univer
sity of Ottawa, http://www.site.uottawa.ca/-tcl/gradtheseslfherrera/

Jeffries, R. (1994). Usability problem reports: Helping evaluators communicate
effectively with developers. In Usability Inspection Methods. J. Nielsen and
R. L. Mack, Eds. John Wiley & Sons, New York, 273-294.

Lethbridge, T.C. (2000). Integrated personal work management in the TkSee
software exploration tool. In Proc. 2nd Workshop on the Construction of
Software Engineering Tools (COSET), ICSE 2000, Ireland. (Published as a
technical report by the School of Information Technology and Computer
Science, University ofWollongong, Australia).

Lethbridge, T.e., and Anquetil, N. (1997). Architecture of a source code explo
ration tool: A software engineering case study. University of Ottawa. Com
puter Science Technical Report TR-97-07.
http://www.site.uottawa.ca/-tcl/paperslscet.html.

Lethbridge, T.C., and Singer J., (1997). Understanding software maintenance
tools: Some empirical research. In Workshop on Empirical Studies of Soft
ware Maintenance (WESS 97). Bari, Italy, October, 157-162

Lethbridge, T.C. and Singer, J. (2000). Experiences conducting studies of the
work practices of software engineers, chapter 3 in this book.

www.manaraa.com

4. Assessing the Usefulness of the TkSee Software Exploration Tool 93

Lethbridge, T.C., Lyon, S. and Perry, P. (2000). The management of university
industry collaborations involving empirical studies of software engineering.
In EI-Emam, K and Singer, J Eds, Empirical Studies in Software Engineer
ing, MIT Press, to appear.

Miiller, H., Mehmet, 0., Tilley, S., and Ubi, J., (1993). A reverse engineering
approach to subsystem identification, Journal of Software Maintenance:
Research and Practice, 5(4), December, 181-204.

Nielsen, J. (1992). Finding usability problems through heuristic evaluation. In
Proc. ACM CHI '92, 373-380.

Nielsen, J. (1993). Usability Engineering. AP Professional.

Nielsen, J. (1994). Heuristic evaluation. In Usability Inspection Methods. J.
Nielsen and R. L. Mack, Eds. John Wiley & Sons, New York, 25-62.

Red Hat Corporation (2000). Source Navigator Web Page,
http://www.cygnus.comlsnl.

WindRiver Corporation (2000). Sniff+ Web Page, (Formerly TakeFive Corpora
tion), http://www.takefive.comlindex.htm.

www.manaraa.com

5
Clones Occurrence in Java and
Modula-3 Software Systems

Michel Dagenais
Jean-Fran~ois Patenaude
Ettore Merlo
Bruno Lague

5.1 Introduction

Software engineers often build new subprograms by cloning (copying) an exist
ing one with similar requirements, and then slightly modifying it. While this may
be easier than factoring the common part out, and sharing it from a library, it
increases the system size and often leads to higher maintenance costs. The oc
currence of clones is highly dependent on the system architecture, development
model, language peculiarities, and software management practices.

This chapter studies the occurrence of clones in large sets of object-oriented
software libraries and programs, totaling over 1.1 million lines of code (LOC),
in two different object-oriented programming languages: Java and Modula-3. The
factors affecting the clone detection accuracy and their frequency of occurrence
are discussed. Comparison is made between systems written in both languages.

5.2 Software Clones

In a single-programmer project, once a certain size is reached (e.g., usually about
10,000 lines of code), many frequent patterns (sorting, lexical analysis, list and
table traversals) have been encountered and hopefully abstracted into reusable
components. Further extensions may involve reusing these components and re
quire relatively little new code. Occasionally, new reusable components may also
be discovered and added.

This ideal situation is typically not fulfilled in large multi programmer projects
with tight schedules. Clones may start to appear for anyone of the following
reasons:

www.manaraa.com

96 Dagenais et aL

• Development time: A software engineer clones a procedure when he needs
similar functionality, instead of extracting the common reusable part. This
practice is perceived as a quick solution; however, while it may be faster
for the initial implementation, it often leads to code that is more expensive
to maintain.

• Communication: A software engineer borrows code from a colleague,
but cannot extract the common reusable part. Either he is not sufficiently
knowledgeable about the cloned procedure, or he cannot convince the other
software engineers involved to include this reusable procedure in the library
and modify their code to use it.

• Organizational structure and management factors: A software engineer
borrows code from another subsystem, but cannot avoid cloning because
the other subsystem may not be modified; the other subsystem may belong
to a different department or may not be modifiable. For example, it may
be stored in nonvolatile memory in an embedded system, or frozen after a
lengthy testing/qualification process.

• Lack of information: It may happen that two software engineers came
up with similar procedures independently, thus leading to look-alikes more
than clones. It would be beneficial to replace them with a reusable proce
dure. This sort of redundancy is typically much more difficult to detect as
the procedures may achieve the same functionality with different apparent
structures.

It is important to study the occurrence of clones in software systems in order
to avoid code duplication whenever it is effective to do so (Lague et aI., 1997).
Avoiding code duplication often helps reduce software maintenance costs and
improves quality. Determining the development environment factors affecting the
occurrence of the clones may make their prevention easier.

A cloning relation involves two procedures when one is a copy (perhaps slightly
modified) of the other. Automatic procedures may be used for clone detection.
They may miss some clones because they differ too much (false negative), and
may report as clones procedures with similar structures that are not (false posi
tive). Rejecting false positives requires examining manually the reported clones,
while false negatives are more difficult to uncover. Once the cloning relations are
identified, the reported clones are analyzed to determine their cause. This process
may be used to:

• remove the clones to replace them with reusable components,

• add links between the clones to insure that they all get updated together, if
applicable, when maintenance is required,

• or to better understand how to prevent new clones from occurring in exten
sions to the studied system, or in similar systems.

www.manaraa.com

5. Clones Occurrence in Java and Modula-3 Systems 97

The next section discusses some of the clone detection experiments conducted
in the past and reported in the literature. The following section details the large
object-oriented systems studied in this paper and the underlying organizational
structures of software development. It is followed by the results of the clone de
tection analysis performed. The chapter ends with a discussion of the results and
suggestions for further investigations in this area.

5.3 Related Work

Several studies have been conducted to automatically identify cloned procedures
(Baker, 1995; Church and Helfman, 1993; Horwitz, 1990; Jankowitz, 1988; John
son, 1993; Kontogiannis et aI., 1996; Lague et aI., 1997; Mayrand et aI., 1996).
The more recent systems (Kontogiannis et aI., 1996; Lague et aI., 1997; Mayrand
et aI., 1996) have achieved a good compromise in terms of detection accuracy,
and the ability to handle large systems with millions of lines of code.

An interesting scheme is used in (Lague et aI., 1997) in order to improve the
detection accuracy for systems evolving over several versions. The metrics-based
clone detection, where two procedures separated by a proximity metric value of
less than 61 are identified as clones, is complemented by a study of clones identi
fied in the previous version. Previously identified clones that still exist and that are
less than 62 apart (where 62 is somewhat larger than (1) are kept as clones. This
way, clones that are slowly diverging from one version to another, and would be
missed because their metrics differ by more than 61, but less than 62, are properly
identified.

Another approach to clone detection is to use program text directly without
resorting to parsing first. Such an appraoch is described in Chapter 11 of this
book. The text-based approach is particulary suitable for legacy software, where
parsers and syntactic analyzers are not readily available.

In large systems, clones often represent more than 5% of the code and may in
certain cases reach 20% (Mayrand et aI., 1996). The proportion of cloned pro
cedures varies significantly from one system to another; several factors may be
involved such as the programming environment and software development poli
cies, application domain, and programming language.

5.4 Experimental Context

While object-oriented programming started to enjoy recognition in the early eight
ies (Goldberg and Robson, 1983) and may be traced as far back as to the sixties, it
came to widespread use gradually after 1992 with the popUlarity of C++ (Strous
trup, 1991). The lack of safety, garbage collection, and multithreading support in
C++ led to the creation of Java (Gosling et aI., 1996) in 1995. Java has most of

www.manaraa.com

98 Dagenais et al.

the features found in Modula-3 (Nelson, 1991) and Ada95 (Barnes, 1996), but
retains a C++ like syntax. Because of this recent widespread use, relatively few
large object-oriented systems (developed over several years by multiple software
engineers) are available for study.

5.4.1 Java

Despite Java's young age, several medium-sized systems with freely available
source code were found:

• JDK (JDK, 1.1.5), a development kit from Sun Microsystems with 145,000
lines of code,

• SabieCC (SABLECC, 2.5), CUP (CUP, 0. 109), ANTLR (ANTLR, 2.2.3),
parser generators from McGill University, S. Hudson, and MageLang Insti
tute, respectively, for a total of 74,000 lines of code,

• Swing (SWING, 1.0.2), KFC (KFC, 1.0b), user interface toolkits from Sun
Microsystems, and K. Yasumatsu, with 215,000 and 57,000 lines of code
respectivel y,

• HTTPClient (HTIPCLIENT, 0.3), a web browser developed by R. Tscha
laer with 21 ,000 lines of code.

5.4.2 Modula-3

Modula-3 is a modem object-oriented language with modules, opaque types, ob
jects, safety, exception handling, threads, and garbage collection. It comes with
excellent libraries for graphical user interfaces, 3D graphics, network objects (re
mote method invocation), and stable persistent objects. It offers most of the same
advanced features as Java (threads, safety, garbage collection) while retaining the
efficiency and low-level capabilities oflanguages such as Ada95 and C++.

The SRC Modula-3 (Nelson, 1991) distribution, developed over the years at the
DEC Systems Research Center, qualifies as a multiyear, multiperson, multiplat
form project with a few major reorganizations.

• Its development started in Modula-2+ around 1984, and continued in
Modula-3 since 1990, with several libraries being semiautomatically con
verted.

• At any given time, between 5 and 20 software engineers were involved
developing applications and libraries.

• The system at one point ran on the experimental Firefly multiprocessor
workstation, and was eventually ported to over 26 different platforms rang
ing from small 32-bit systems to 64-bit DEC Alpha processors, and running
one of the numerous POSIX-like operating systems or Win32.

www.manaraa.com

5. Clones Occurrence in Java and Modula-3 Systems 99

• The interface files in SRC Modula-3 (Modula-3, 3.6) amount to 4,565,355
characters in 123,337 lines. The implementation files contain 21,187 pro
cedures/methods, 166,500 statements, for 16,236,505 characters in 493,519
lines. It is divided into 145 packages, 62 of which are programs, and the rest
libraries.

5.4.3 Clone Detection

In Java, there are only methods, and thus no need to perform separate studies of
procedures and methods. In Modula-3, there is no distinction between methods
and procedures. Arbitrary procedures may be used as methods as long as their
signature matches the corresponding method declaration (including the implicit
self argument of the method declaration (Nelson, 1991)). The term procedure
will refer to Java methods for the rest of this text.

The selected granularity for clone detection is thus the procedure. Cloned object
types will appear as several cloned procedures, often in a single module. While in
some cases portions of procedures may be cloned, their detection is much more
difficult and was not attempted here.

Clone detection for Java and Modula-3 systems may be efficiently performed
based on the proximity between a set of computed metrics. For each of n pro
cedures, Pi,i = l,n, a set of m metrics pmi,j,j = I,m, is computed. Two
procedures are then reported as detected clones if the values of these metrics are
closer than a given threshold. Unless the procedures are identical, manual verifi
cation is needed to confirm that the two procedures are indeed clones and could be
shared. Proximity may be computed in different ways, such one metric at a time
as absolute distance or as Euclidean distance (Kontogiannis et al., 1996; Mayrand
et al., 1996). Pairwise comparisons between the metrics for tens of thousands
of procedures would be expensive. Therefore, the values are sorted according to
the number of statements metric, and each procedure is only compared to pro
cedures with up to Onbstatements more statements. Then, for procedures within
Onbstatements statements of each other, the other metrics are compared to see if
they differ by less than OJ. The clone detection procedure can accept absolute or
relative values of 0 for each metric.

As discussed in (Kontogiannis et al., 1996), a small number of weakly corre
lated metrics are very effective for clone detection. For each procedure, the num
ber of statements, cyclomatic number, input variables, output variables, and local
variables were used.

Other more cosmetic metrics such as average identifier length are quite ef
fective at finding exact clones and rejecting procedures that just happen to have
the same values for the structural metrics, such as size and number of variables.
However, such metrics were not used because of the risk of falsely rejecting a real
clone simply because the identifiers were systematically replaced (as often done
in cloned undergraduate projects) (Jankowitz, 1988).

www.manaraa.com

100 Dagenais et al.

5.5 Results

The first experiment, shown in Table 5.1, examines how the number of detected
clones varies with the procedure size. A minimum size of six statements was im
posed. Indeed, small procedures are frequent and are more likely to have identical
metrics. Even with this minimal size, both Modula-3 and Java analysis report mul
tiple clones having metrics within 10% of one another. In Modula-3, 6,952 of the
21,187 procedures were involved in 78,418 pairs while in Java, 2,661 of 19,955
procedures were involved in 16,325 pairs.

For small sizes, the number of detected clones is extremely large, most of which
are false positives, as will be seen later. This is explained by the very large num
ber of small procedures, especially initialization procedures, and for which the
metrics do not vary much.

An interesting element to notice is the higher number of detected clones for
Java procedures with eight or nine statements. This peak is mostly due to a small
procedure in SableCC, called setNode, which is reproduced in many places and
accounts for 6,566 of the 9,624 reported clones. It is not surprising to find this
in a parser generator, since there are many different node types, and that setNode
procedure needs to be called with all these different node types.

The second experiment, in Figures 5.1 and 5.2, measures the variation of the
number of detected clones with the difference 8j allowed for each metric. The
minimum size is ten statements. For the section with relative differences, the
other metrics are allowed to be within 10%, and for the section with absolute
differences, the difference allowed for the other metrics is O.

In both languages the number of detected clones varies greatly with the size
and the cyclomatic number. It is therefore important to appropriately select the
maximum allowed difference. The possible reduction in false negatives is offset
by the large number of additional false positives. Using relative differences is sen
sible for the number of statements as one may easily add a few statements to a
large cloned procedure. The cyclomatic number, on the other hand, is a more fun
damental structural measure and it may be preferable to use absolute differences.
It leads to a more controlled increase in the number detected clones, as shown in
Figures 5.1 and 5.2.

In Modula-3, the number of input and output variables is typically very small
and relative differences are impractical for small discrete values. Furthennore,
varying one parameter alone does not change much the number of detected clones
because of correlations with the other metrics. The number of local variables has
a greater impact than input or output variables on the number of detected clones.
It is nevertheless smaller than the impact of the size or cyclomatic measures.

In Java, there are no VAR parameters, typically used as output variables. There
fore, a different metric was used: the number of non local variables assigned or
used by a procedure. The correlation between this metric and the number of input
and local variables is weaker than between the number of input and output vari
ables in Modula-3. Nonetheless, absolute differences seem preferable for thresh-

www.manaraa.com

5. Clones Occurrence in Java and Modula-3 Systems 101

Table 5.1. Number of clone relations detected for different size ranges. For each size range,
the number of procedures involved is computed. Some procedures, however, may be in-
volved in cloning relations in neighboring size ranges (a 10% difference in size is allowed).

Number of Clones detected Procedures involved
statements M3 Java M3 Java
6,7 48,513 5,583 2,617 1,005
8,9 13,106 9,624 1,591 785
10, II 7,639 514 1,472 292
12,13 4,183 198 1,066 165
14,15 2,106 156 692 142
16,17 769 100 486 84
18,19 539 56 374 66
20,21 400 23 270 27
22,23 233 12 199 21
24,25 158 20 143 17
26,27 112 II 116 12
28,29 299 I 104 2
30,31 55 9 70 10
32,33 48 3 63 6
34,35 32 3 36 6
36,37 24 0 37 0
38,39 35 I 47 2
40,41 38 0 44 0
42,43 17 0 27 0
44,45 13 0 22 0
46,47 12 I 16 2
48,49 9 0 15 0
50-59 55 6 52 9
60-69 II 3 16 6
70-79 4 0 8 0
80-89 0 0 0 0
90-99 3 0 6 0
100-109 I 0 2 0
110-119 I I 2 2
120-129 2 0 4 0
130-... 0 2 0

www.manaraa.com

102 Dagenais et al.

Table 5.2. Modula-3: Identical clones c, near clones nc, and falsely reported clones (similar
s, vaguely similar vs, and unrelated u) for various sizes.

Nb.of
stmts. c nc s vs u

6 0 0 0 0 20
8 0 0 0 0 20

10 0 0 0 0 20
12 0 0 0 14 6
14 0 0 0 I 19
16 0 0 0 0 20
18 0 0 0 19
20 0 0 0 0 20
24 1 0 0 0 19
28 9 0 0 0 11
32 2 0 0 0 18
40 11 1 0 0 8
50 7 0 0 7 6
60 5 1 0 8 6

120 2 0 0 0

olds on these metrics, and their impact on the number of detected clones is smaller
than for the size and cyclomatic metrics.

The results from Figures 5.1 and 5.2 may be used to have a better feeling for
the process of identifying potential clones. They illustrate the problem of false
positives among small procedures, and outline the need to select appropriately the
proximity thresholds for metrics. The subsequent results presented in this section
directly address the more critical question of what and where are the real clones.
They were obtained with a minimal size of six and each metric with a relative
difference of less than 10%.

In Tables 5.2 and 5.3, for various sizes, the 20 first clones reported are sampled
and their type is determined manually: identical, nearly identical, similar (worth
sharing), similar structure, totally unrelated.

The proportion of false positives is larger for smaller procedures (more than
75%). Indeed, there are relatively few different combinations of number of vari
ables, and cyclomatic number for small sizes; thus, numerous unrelated proce
dures have the same values by coincidence. Since small procedures account for
most of the detected clones (in Modula-3, 78% of the 78,418 clones detected are
of size between six and nine versus 93% in Java), a large proportion of the de
tected clones indeed consists of false positives.

Once again, as with the number of detected clones in Table 5.1, we see the effect
ofthe SabieCC setNode procedure in Table 5.3. Most of the true positives with
eight statements are due to that procedure.

One aspect of Java that favors cloning is that it doesn't provide generic modules

www.manaraa.com

II)
Ql
c:
0
(3

"0
Q;
D
E
::J
Z

II)
Ql
c:
0
(3

"0
Q;

D
E
::J
Z

5. Clones Occurrence in Java and Modula-3 Systems 103

6000

5000

4000

3000

_f .. ,¢'-<<ft'/~~·~~~:~~'~~··
~~~. 

2000 .~~:;;~i.. 

1000 

o 
0.0 0.1 0.2 0 .3 0.4 0.5 0.6 0.7 0.8 0 .9 

6000 

5000 

4000 

3000 

2000 

1000 

0 
0 

Max relat ive difference 

(a) Relative difference 

2 3 4 5 6 

Max absolute difference 

(b) Absolute difference 

statements 
cydomatic 
input var. 

output var. 
local vaT. 

7 8 9 

Figure 5.1. Java: Number of clones detected while varying the threshold for different 
metrics. 



www.manaraa.com

104 Dagenais et al. 

IJ) 
Q) 
c: 
0 
"0 
'0 
Q) 
.D 
E 
:::l 
z 

60000 

50000 

40000 

30000 

20000 

10000 

, 

, .. ... --

_.-- _._._.-. _._._. - .- - - - - . -- -, '- - ' 
... ----....... ~-- --- ~ ....... -- .. .. ............... ", .. ...... ... .. . ...... ... -....... ",,,,, ...... . 

o L-__ ~ __ ~ __ L-__ L-__ ~ __ ~ __ ~ __ ~~ 

(/) 
Q) 
c: 
0 
"0 
'0 
Q) 

.D 
E 
:::l 
z 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 .9 
Max relative difference 

60000 

50000 

40000 

30000 

20000 

10000 

(a) Relative difference 

,/ 
", 

.... ~ ..... 

3 4 5 6 
Max absolute difference 

(b) Absolute difference 

s aments 
cyc!omatic 
input vaL 

output var. 
local var. 

7 8 9 

Figure 5.2. Modula-3: Number of clones detected while varying the threshold for different 
metrics. 



www.manaraa.com

5. Clones Occurrence in Java and Modula-3 Systems 105 

or types. Because of this, many procedures are duplicated with only the type of 
some attributes being changed. Such clones were found in both small and large 
procedures. They account for at least 15% of the true positive clones. 

Many clones are also found in the DebugGraphics class from Swing. Indeed, in 
debugging mode, the same special instructions need to be added at many places 
in the program, in order to produce tracing information. 

Swing offers many look-and-feel choices for graphical user interfaces: Metal, 
Mac, Motif and Windows. More than 8% of the true positive clones in Table 5.3 
are due to these look&feel variants. 

In Modula-3, it is interesting to note that the module name and procedure name 
are probably the best indicators of cloning. Among the 78,418 clones detected, 
2,251 have the same procedure name (identifier), and 279 have the same proce
dure and module name (qualified identifier, e.g., ModuleName.ProcedureName). 
Of these procedures with the same name, 1,803 were derived automatically, pro
duced by code generators such as network objects or stub generators for stable 
objects. These are not part of the source code to maintain and may be ignored. 

The remaining clones detected with the same procedure name, but not the same 
module name, are in large part false positives with generic names such as Init, 
New, Pop, Setup, Check, and Eval. Among 279 detected clones with the same 
qualified identifier, 272 have all metrics equal (and are all clones), and 7 have 
slight metrics differences (2 are clones and 5 have a similar structure). 

In order to further investigate the importance of the name in the clone detec
tion, the 167 clones detected with size 40 and larger were manually examined: 
all those without the same qualified identifier are false positives. The presence of 
real clones which don't have the same name (among the 76,000 detected clones 
without the same name) is more difficult to assess. While their proportion is def
initely very low, a few with very similar structure, perhaps worth sharing, were 
found manually (with intimate knowledge of the system content): ParseName vs 
ParseCIName (case insensitive or not), and MeetH vs DifferenceH (2D regions 
intersection versus difference). 

5.6 Discussion 

When comparing the occurrence of clones between the DEC SRC Modula-3 dis
tribution and the collection of Java systems, a number of factors need to be con
sidered. Despite their different syntactic flavors (Pascal versus C-like), the two 
languages have many equivalent features. The differences in how procedures and 
types are grouped into interfaces and modules may affect the level of access con
trol and encapsulation, but should not affect cloning significantly. The multiple 
interface inheritance mechanism in Java may help slightly avoiding clones. How
ever, the most important feature for reducing clones may be generic modules, 
supported in Modula-3 but not yet in Java (the keyword generic is reserved for 
future use in Java). 



www.manaraa.com

106 Dagenais et al. 

Table 5.3. Java: Identical clones c, near clones nc, and falsely reported clones (similar B, 

vaguely similar VB, and unrelated u) for various sizes. 

Nb.of 
stmts. c nc s vs u 

6 4 2 0 0 14 
8 6 13 0 0 1 

IO 3 3 0 0 14 
12 4 5 1 0 IO 
14 3 0 2 0 15 
16 0 11 0 0 9 
18 0 IO 0 0 IO 
20 3 9 0 0 8 
24 11 2 0 0 7 
28 0 7 0 0 7 
32 3 7 1 0 9 
40 0 1 0 0 1 
50 0 4 0 0 2 
60 2 1 0 4 

120 0 0 0 0 0 

Another important factor explaining the differences in the occurrence of clones 
is the development environment. Indeed, DEC SRC Modula-3 was developed over 
several years by a small to medium team. Experimentation was encouraged, but 
a tight control was maintained over who could modify each package. By con
trast, the Java packages studied were developed independently and simultane
ously. Thus, no copying could take place across packages. Furthermore, these 
young packages have not yet gone through several reorganizations and developer 
turnover. 

In Modula-3, the largest sources of real clones are in the packages Postcard 
and Webcard; Postcard is a mail/news client, and Webcard is a modified version, 
by another author, with an integrated Web client. From a maintenance point of 
view, Webcard should simply supersede Postcard. The next largest source of real 
clones are modules named TextExtras, RealRect, and RealInterval which are re
peated in two or three packages. The effort of convincing the maintainers of the 
base libraries (where Text and Geometry operations reside) to incorporate these 
modules was presumably an obstacle. Colleagues of the auhtors of the modules 
simply copied these to their packages upon need, thus creating clones. 

Interestingly, there are four clones of a procedure named QuickSort. They 
were probably created before the inclusion of Generic modules in Modula-3, and 
generic sorting facilities in the base library. Similarly, the 2D and 3D modules, the 
INTEGER and REAL modules, and the geometry modules have a lot in common 
and could be shared through the careful use of generic modules, which were not 
available when these modules were initially developed. In the following example, 



www.manaraa.com

5. Clones Occurrence in Java and Modula-3 Systems 107 

Axis.T could be defined as X, Y for 2D and as X, Y, Z for 3D, and Length.T could 
be defined as INTEGER, REAL, or LONGREAL. 

GENERIC INTERFACE 
Geometry (Axis , Length); 

TYPE 
Point = ARRAY Axis.T OF Length.T; 

Rect = RECORD pl, p2: Point; 

Several procedures with the same structure have a common origin but would 
require more work for sharing. The stubs generators for network and stable ob
jects, the main program for m3build, m3ship, and m3where, the graphical pro
grams columns and fours, and a few modules to add HTML markup to Modula-3 
source code all have a similar structure, and were created by copy and modifica
tion. However, they fulfill different tasks and parameterizing the code to make it 
shareable may affect its readability negatively. 

In the Java systems studied, as expected, few clones involve more than one 
system. Most of the clones occurred in closely related classes. It appears that 
some Java clones could be removed by proper encapsulation within higher level 
classes. Typical examples are the List and TableList classes that contain many 
nearly identical procedures. These two classes could be derived from a common 
ancestor class, sharing common procedures. In other cases, notably the highly 
cloned SabieCC setNode, the procedures are too simple to be worth sharing. 
FinalIy, several clones could be removed through the use of generic modules, if 
such a facility existed in Java. 

5.7 Conclusion 

The number of real detected clones in SRC Modula-3 is not negligible (about 
1 % of 500,000 lines), but somewhat less than in other large systems studied in 
the literature (Lague et aI., 1997). In the Java systems analyzed, the cloning level 
is higher at 6% of the 512,000 lines. The level of cloning is a direct result of a 
system's history and development environment. SRC Modula-3 was developed in 
a research environment with emphasis on quality and novelty; thus, it was sub
ject to time constraints to a much lesser extent. However, some of the code was 
developed through experimentation by cloning existing packages, but was not 
maintained later, providing little incentive to remove the clones. 

Code duplication by lack of information is less likely in SRC Modula-3 than in 
other systems because of the high level of communication between the members 
of this relatively small group. However, the quality standards for the base libraries 



www.manaraa.com

108 Dagenais et al. 

were such that several generally useful modules could not be included (because 
they did not fit these standards or by lack of time to perform a careful review). 
These were cloned in the few packages needing such functionality. 

The larger occurrence of clones in the Java systems studied is surprising at first. 
Indeed, cloning is more likely in very large mUltiyear projects, than in smaller 
young packages such as the Java systems examined. A closer examination of the 
systems brings two plausible explanations. The development of the larger sys
tems (JDK, Swing) was realized at Sun under considerable pressure, given the 
competitive and time sensitive commercial interests at stake. A second factor is 
the absence of generic modules in Java, which would have easily prevented a large 
number of clones. 

As more studies on cloning appear in the literature, it may become possible 
to better isolate and measure separately the effect of system size, team compo
sition, development environment, development history, programming language 
(C++, Ada95), and programming paradigm. 

5.8 Acknowledgements 

The financial support of Bell Canada, and of the Canadian National Science and 
Engineering Research Council, is gratefully acknowledged. The authors also wish 
to thank Gregory Knapen for his initial development of a Java parser and AST 
generator. 

5.9 References 
ANTLR (2.2.3). Predicated-LlJ.k) Parser Generator. MageLang Institute, 

http://www.antlr.org/. 

Baker, S. (1995). On finding duplication and near duplication in large software 
systems. In Proceedings of the Working Conference on Reverse Engineering, 
Toronto, Canada. 

Barnes, J. (1996). Programming in Ada. Addison-Wesley, Reading, MA. 

Church, K. and Helfman, I. (1993). Dotplot: a program for exploring self
similarity in millions of lines of text and code. Journal of Computational 
and Graphical Statistics, 2(2): 153-174. 

CUP (0.10g). LALR Parser Generator for Java. Scott E. Hudson, GVU Center, 
Georgia Tech, http://www.cs.princeton.edur appel/modern/javaiCUPI 

Goldberg, A. and Robson, D. (1983). Smalltalk-80: The Language and its Imple
mentation. Addison-Wesley, Reading, MA. 



www.manaraa.com

5. Clones Occurrence in Java and Modula-3 Systems 109 

Gosling, J., Joy, B., and Steele, G. (1996). The Java Language Specification. 
Addison-Wesley, Reading, MA. 

Horwitz, S. (1990). Identifying the semantic and textual differences between two 
versions of a program. In Proceedings of the ACM SIGPLAN Conference 
on Programming Language Design and Implementation, White Plains, NY, 
20-22 June, pages 234-245. SIGPLAN Notices, 25(6). 

HTIPCLIENT (0.3). Http client library. 
Ronald Tschalaer, http://www.innovation.chljavaIHTIPClientJ 

Jankowitz, H. (1988). Detecting plagiarism in student Pascal programs. Computer 
Journal,31(1):1-8. 

JDK (1.1.5). Java Development Kit. Sun Microsystems, Inc. 

Johnson, H. (1993). Identifying redundancy in source code using fingerprints. In 
Proceedings ofCASCON'93, pp. 171-183, IBM Center for Advanced Stud
ies, Toronto, Canada. 

KFC (l.Ob). Kazuki Yasumatsu's Foundation Classes. Kazuki Yasumatsu, 
http://ring.aist.go.jp/openlab/kyasu/ 

Kontogiannis, K., DeMori, R., Berstein, M., Galler, M., and Merlo, E. (1996). 
Pattern matching for clone and concept detection. Journal of Automated 
Software Engineering, 3:77-lO8. 

Lague, B., Proulx, D., Mayrand, J., Merlo, E.,and Hudepohl, J. (November 1997). 
Assessing the benefits of incorporating function clone detection in a devel
opment process. In Proceedings of the International Conference on Software 
Maintenance, November, Bari,ltaly. 

Mayrand, J., Leblanc, c., and Merlo, E. M. (November 1996). Experiment on the 
automatic detection of function clones in a software system using metrics. In 
International Conference on Software Maintenance, pp. 244-253, Monterey, 
California. 

Modula-3 (3.6). Modula-3 Compiler for Unix, Windows/NT, and Windows 95. 
Digital Equipment Corporation, 
http://www.research.digital.com/SRC/modula-3/html/srcm3 .html 

Nelson, G. (1991). Systems Programming with Modula-3. Prentice-Hall, Engle
wood Cliffs, NJ. 

SABLECC (2.5). Object-oriented compiler framework. 
Etienne Gagnon, Sable Research Group, School of Computer Science, 
McGill University, http://www.sable.mcgill.ca/sablecc/ 



www.manaraa.com

110 Dagenais et al. 

Stroustrup, B. (1991). The C++ Programming Language . Addison-Wesley, Read
ing,MA. 

SWING (1.0.2). SWING Component Set. Sun Microsystems, Inc., 
http://www.javasoft.com/products/jfc/tsc/ 



www.manaraa.com

Part II 

Architectural Recovery 



www.manaraa.com

6 
Pattern-Based Design Recovery with 
SPOOL 

Rudolf K. Keller 
Reinhard Schauer 
Sebastien Robitaille 
Bruno Lague 

6.1 Introduction 

Automated tool support is crucial for the comprehension of large-scale, object
oriented software and involves compressing and clustering the vast amount of 
information that is contained in the source code. However, software comprehen
sion demands more than the mere understanding of the static structure of the 
source code. The clear representation of the system's physical and logical struc
ture is still insufficient for a developer to fully comprehend the purpose of a 
given piece of software (Beck and Johnson, 1994). Underlining this statement, 
Booch estimates that "it takes a professional programmer about 6-9 months to 
become really proficient with a larger framework," and he adds that "this rate 
increases rather exponentially to the complexity of software" (Booch, 1996). We 
agree with Beck and Johnson that one reason for this gigantic effort for software 
comprehension and evolution is that "existing design notations focus on commu
nicating the what of designs, but almost completely ignore the why." They argue 
that comprehension of the rationale behind the design decisions is equally as 
much important as understanding of the software's structural and logical con
stituents. Yet, for the most part, current reverse engineering tools completely 
neglect recovery of the design rationale. 

Design patterns capture the rationale behind recurringly proven design solu
tions and illuminate the trade-offs that are inherent in almost any solution to a 
nontrivial design problem. In forward engineering, the advantages of design 
patterns are widely accepted (Beck and Johnson, 1994), but in reverse
engineering their usefulness encounters strong resistance throughout both the 
pattern and the reverse-engineering communities (Buschmann et aI., 1996). The 
main arguments are that patterns can be implemented in many different ways 



www.manaraa.com

114 Keller et al. 

without ever being the same twice, and that the same structure may recur with 
widely different intents. In addition, existing studies that were aimed at detecting 
design patterns in existing software systems (Antoniol et al., 1998; Kraemer and 
Prechelt, 1996) failed to convey the usefulness of this approach to reverse engi
neering, considering the minimal results of recovered pattern instances. Never
theless, it is these patterns of thought that comprise the rationale of many pieces 
of an existing software system, and to comprehend the software we need to re
cover these patterns, be it automatically or manually. 

In the SPOOL project (Spreading Desirable Properties into the Design of 
Object-Oriented, Large-Scale Software Systems), a joint industry/university 
collaboration between the software quality assessment team of Bell Canada and 
the GELO group at the University of Montreal, we investigated methods and 
tools for software comprehension and for assessing software design quality, for 
instance, in respect to changeability (see Chapter 10). As part of the project, we 
have developed the SPOOL environment for design pattern engineering, which 
comprises functionality for design composition (Keller and Schauer, 1998), 
change impact analysis (see Chapter 10), and most importantly, support for the 
recovery of design patterns. 

Note that with "support" we underline the purpose of the environment as an 
aid for gaining a pattern-based overview of the software system under investiga
tion. It would be pretentious to argue that the environment itself can comprehend 
the rationale behind a design, ''which would go far beyond the current state-of
the-art in artificial intelligence" (Brown, 1997). However, by generating appro
priate views, it may lead a human analyzer to the recovery of the rationale be
hind some of its most critical parts. Using the environment, the analyzer can 
zoom into these design components l that resemble patterns, extract them as dia
grams in their own right, contrast the pattern description with the implemented 
structures, or, in the case of a false positive, dismiss the existence of the auto
matically identified pattern instance. 

In this chapter,2 we apply our environment to the reverse engineering of de
sign components that are based on some of the design pattern descriptions de
fined by Gamma et al. (1995). The purpose is to introduce pattern-based reverse 
engineering as a valuable technique for software comprehension and thus coun
ter the widely held believe that design patterns are only meaningful in forward 
engineering. Applying our approach to several case studies extracted from in-

1 Note that we introduced the tenn design component as the reification of design ele
ments, such as patterns, idioms, or application-specific solutions, and their provision as 
software components (JavaBeans, COM objects, or the like), which are manipulated via 
specialization, adaptation, assembly, and revision. We refer to Keller and Schauer (1998) 
for further details on this approach to software composition. For the purpose of this 
chapter, we use the tenn design component as a package of structural model descriptions 
together with informal documentation, such as intent, applicability, or known-uses. 
2 This chapter is a revised and extended version of Keller et al. (1999). 



www.manaraa.com

6. Pattern-Based Design Recovery with SPOOL 115 

dustrial, large-scale software, we show that pattern-based reverse engineering cf 
design components is helpful for understanding software-in-the-Iarge. In Section 
6.2, we explain the architecture of the SPOOL environment. In Section 6.3, we 
describe the three c++ systems that we used for experimentation, present three 
case studies that show how we applied pattern-based reverse engineering of de
sign components, and discuss the findings of our experiments. Section 6.4 com
pares our approach with related techniques. Section 6.5 concludes the chapter 
and provides an outlook into future work. 

6.2 The SPOOL Reverse Engineering Environment 

The SPOOL reverse engineering environment (Figure 6.1) uses a three-tier ar
chitecture to achieve a clear separation of concerns between the end-user tools, 
the schema and the objects of the reverse-engineered models, and the persistent 

Source Code Capturing 

Source Code (C/C++, Java) 

t 
Source Code Parser 

(Datrix) 

Intennedilte Format 
(DatrixlTA-XML) 

t 
Intennediate Format Importer 

(xmI4j) 

Pattern-Based 
Design Recovery 

(automatic, 
semi-automatic, 

manual) 

Visualization and Analysis 
• Source code visualization 

• Dependency analysis 

• Searching and browsing 

• Design querying 

• Design inspection and visualization 

• Design component editing 

• Metrics analysis 

Design Repository 

Repository Schema 

• Reverse engineered source code models 

• Abstract design components 

• Implemented design components 

• Recovered design models 

• Re-organized design models 

Object-Oriented 

Database Management System 

Figure 6.1. Overview of SPOOL reverse-engineering environment. 



www.manaraa.com

116 Keller et al. 

datastore. The lowest tier consists of an object-oriented database management 
system, which provides the physical, persistent datastore for the reverse
engineered source code models and the design information. The middle tier con
sists of the repository schema, which is an object-oriented schema of the reverse 
engineered models, comprising structure (classes, attributes, and relationships), 
behavior (access and manipulation functionality of objects), and mechanisms 
(higher-level functionality, such as complex object traversal, change notification, 
and dependency accumulation). We call these two lower tiers the SPOOL design 
repository. For a detailed description of the design repository, refer to Chapter 
13. The upper tier consists of end-user tools implementing domain-specific 
functionality based on the repository schema, i.e., source code capturing and 
visualization and analysis. 

In this section, we first describe the environment's techniques and tools for 
source code capturing. Then, we explain its functionalities for pattern-based de
sign recovery and for design representation. 

6.2.1 Source Code Capturing 

Source code capturing is the first step within the reverse-engineering process. Its 
goal is to extract an initial model from the source code. At this time, SPOOL 
supports C++ and uses Datrix (Datrix, 2000) to parse C++ source code files. As 
the Datrix team already provides CSER members with a parser for Java, SPOOL 
will soon be able to extend its support for reverse engineering Java source code. 
Datrix provides complete information on the source code in form of an ASCII
based representation, the Datrix/TA intermediate format. The purpose of this 
intermediate representation is to make the Datrix output independent of the pro
gramming language being parsed. Moreover, it provides a data export mecha
nism to analysis and visualization tools, ranging from Bell Canada's suite of 
software comprehension tools to the SPOOL environment and to other CSER 
source code comprehension tools. 

SPOOL parses the Datrixlf A files, which are generated for each compile 
unit, and imports the data into the SPOOL repository. In order to leverage off
the-shelf parsing technology for this intermediate format, we convert Datrixlf A 
into XML (W3C, 1998) syntax (Datrix/TA-XML) and use IBM's xml4j XML 
parser (IBM, 1999) to read and traverse the content of the DatrixlfA-XML files. 
The xml4j parser complies with the Document Object Model (DOM) (W3C, 
1999) as the industry standard for XML-based file content traversal, and it sup
ports the Simple API for XML (SAX, 2000). Since the generated Datrixlf A
XML files are typically quite large, we opted for using SAX, which views an 
XML document as a stream of elements that can be discarded quickly. An import 
utility as part of the SPOOL repository infrastructure assembles the nodes and 
arcs of the DatrixlfA-XML intermediate source code representations and con
structs the objects of an initial physical model in the SPOOL repository. Note 
that we are currently working on substituting the Datrixlf A-XML representation 



www.manaraa.com

6. Pattern-Based Design Recovery with SPOOL 117 

by an XMI-based solution (XMI, 2000; Saint-Denis et aI., 2000). At the current 
state of development, we capture and manage in the repository the source code 
infonnation as listed in Table 6.1. 

Table 6.1. Source code information managed in the SPOOL repository. 

1. Files (name, directory) 

2. Classifier - classes, structures, unions, anonymous unions, primitive types 
(char, int, float, etc.), enumerations [name, file, visibility]. Class declarations 
are resolved to point to their definitions. 

3. Generalization relationships [superclass, subclass, visibility]. 

4. Attributes [name, type, owner, visibility]. Global and static variables are stored 
in utility classes (as suggested by the UML), one associated to each file. Vari
able declarations are resolved to point to their definitions. 

5. Operations and methods [name, visibility, polymorphic, kind]. Methods are 
the implementations of operations. Free functions and operators are stored in 
utility classes (as suggested by the UML), one associated to each file. Kind 
stands for constructor, destructor, standard, or operator. 

5.1. Parameters [name, type]. The type is a classifier. 

5.2. Return types [name, type]. The type is a classifier. 

5.3. Call actions - [operation, sender, receiver]. The receiver points to the class to 
which a request (operation) is sent. The sender is the classifier that owns the 
method of the call action. 

5.4. Create actions. These represent object instantiations. 

5.5. Variable use within a method. This set contains all member attributes, pa
rameters, and local attributes used by the method. 

6. Friendship relationships between classes and operations. 

7. Class and function template instantiations. These are stored as normal classes 
and as operations and methods, respectively. 

6.2.2 Pattern-Based Design Recovery 

The purpose of pattern-based design recovery is to help structure parts of class 
diagrams to resemble pattern diagrams (see Figure 6.2, window 4). We envision 
three techniques to support this task: automatic design recovery, manual design 
recovery, and semiautomatic design recovery. Automatic design recovery relates 
to the fully automated structuring of software designs according to pattern de
scriptions, which are stored in the repository as abstract design components. We 
have implemented query mechanisms that can recognize the structural descrip
tions in the source code models, extract these from the source code, and visual-



www.manaraa.com

118 Keller et al. 

-- ... , .. ' J:1 ti l l ' tl\l"'>'O 1.1 110." '" ... r-

O'l'D'lWl •• _.pe"......~ • ......" 
.,1bt."""'IfId.~ ,... 
'*Oft ..... CMt, .............. ... 
~r=n ... llt" ... iIC1IMII ... ~ --o"""" .. eIttnCIiIIft ...... IInIIIm.,....,. 
.., .................. 1 .... "' .. 
( M . .... IrtdttPIl.,. .... UNn ..... fMI 
....,.,..I .... ,.. IOdI.."....~ 
..,.. .... fII ..... ........ 

O C ...... IfI .. ~.1n 
.1hUtDft ...... N'IItM InINd.,_, 
....... IVwcoGlII'\MIIdiNt ....... 

Figure 6.2. Graphic user interface of the SPOOL environment. 

ize them within the class hierarchies. This technique will be further detailed in 
Section 6.3. 

Manual design recovery relates to the structuring of software designs by 
manually grouping design elements, such as classes, methods, attributes, or rela
tionships, to reflect a pattern. Our environment allows the developer to select 
model elements and associate them with the roles of the respective pattern ele
ments. Manual design recovery gives the human analyzer the possibility to look 
at a model from his or her own perspective and cluster design elements to design 
components. It provides the flexibility that is necessary to group and communi
cate ad-hoc solutions as proto-patterns (Appleton, 1998), which may at some 
time even become patterns. 



www.manaraa.com

6. Pattern-Based Design Recovery with SPOOL 119 

Semiautomatic design recovery combines both strategies, automatic and 
manual recovery. It may be implemented as a multiphase recovery process. The 
fIrst phase consists of the automatic detection of low-level idioms or the general 
core of pattern descriptions. Subsequent phases match the identifIed instances 
with more specifIc implementation details, which may be provided interactively 
by the analyzer who is in control of the recovery process. He or she may inter
rupt recovery runs to confIrm or decline the existence of a pattern occurrence, 
and to manually supply specifIcs that are not covered by the default recovery 
queries. At the current stage of development, we have implemented the tech
niques for automated and manual design recovery. 

6.2.3 Design Representation 

The purpose of design representation is to provide for the interactive visualiza
tion and analysis of source code models, abstract design components, and im
plemented components. It is our contention that only the interplay among human 
cognition, automatic information matching and flItering, visual representations, 
and flexible visual transformations can lead to the all-important why behind the 
key design decisions in large-scale software systems. To date, we have imple
mented and integrated tools (see Figure 6.1, "Visualization and Analysis") for 
the following: 

• Source code visualization (visualizing classes, attributes, methods, operation 
calls, instantiations, friendship dependencies, type dependencies based on 
the types of parameters, operations and methods, and attributes), 

• Interactive and incremental dependency analysis (the user may select a 
number of classes, flIes, or directories, and the system loads and visualizes 
the dependencies among these elements; see Section 6.4.3), 

• Design investigation by searching and browsing, based on both structure 
and full-text retrieval, using the SPOOL Design Browser (Robitaille et aI., 
2000) (cf. Section 6.3.2), 

• Design querying to classes that collaborate to solve a given problem, 
• Design inspection and visualization within the context of the reverse-engi

neered source code models, 
• Design component editing, allowing for the interactive description of design 

components, and 
• Metrics analysis to conduct quantitative analyses on desirable and undesir

able source and design properties. 

Figure 6.2 illustrates the graphic user interface of the SPOOL environment. 
Windows 1 and 2 show the inheritance hierarchy of ET++ (Weinand et aI., 
1989) (tree layout generated with Dot (KontsofIos and North, 2000) and spring 
layout generated with Neato (North, 2000». Via the property sheet associated 
with such diagrams (window 3), all the other association relationships stored in 



www.manaraa.com

120 Keller et al. 

the repository, such as instantiation or aggregation relationships, can be illus
trated as well, in both separate and combined forms. Different colors distinguish 
the different kinds of association relationships. On the left hand side of each 
window, a tree view can be optionally displayed (windows I, 4, 5, and 6) to con
vey in textual form the source code models, abstract design components, or im
plemented design components. Through a diagram's pop-up menu, design 
queries on the information contents of the current diagram can be launched, with 
subsequent visualization of the query results (window 4). In our environment, 
each of the supported abstract design components (the pattern like structures to 
be discovered) comprises a so-called reference class. This is the class in the 
component's structure diagram that is considered most characteristic of the com
ponent's nature. 

Upon design recovery, we incrementally draw bounding boxes around the 
reference classes of the implementations of an abstract design component (win
dow 4). In this way, a class that is the reference class for several of these imple
mented design components ("multiple reference class") will exhibit a taller 
bounding box than a class that is just part of a single component. Keeping the 
size of these bounding boxes constant during zooming leads to the effect that 
once their diagrams are sufficiently zoomed out (window 4), multiple reference 
classes will protrude from the diagram. The implemented design components can 
then be extracted into a separate diagram and related to the classes, methods, and 
attributes of their respective abstract design components (window 5), which in 
this study represent the descriptions of design patterns. The more informal con
stituents, such as intent, motivation, or applicability, can be viewed in the same 
or in separate diagrams (window 6). These informal descriptions are crucial for 
understanding the design, as they capture the rationale that may be at the root of 
the automatically identified design component. 

Design representation also encompasses interactive description of design 
components. The SPOOL environment provides a class diagram editor based on 
the UML notation 1.1 (UML, 1997) for structural descriptions and an HTML 
editor for specifying the informal constituents of design components. Using these 
editors, the environment allows for the modeling, documenting, and storing of 
new abstract design components in the design repository. The environment also 
supports the refinement and generalization of existing abstract components. This 
is essential as design components can be rendered in different forms. For exam
ple, a design component representing an Adapter pattern can be refined into a 
Class Adapter or an Object Adapter, and similarly, a Composite may be spe
cialized into a Transparent Composite or a Safe Composite component (Keller 
and Schauer, 1998). 

The user interface of the SPOOL environment is implemented based on Java 
1.2, the JFCISwing components (Sun, 2000), and the graphic editor application 
frameworkjKitlGO (Instantiations, 2000). For visualizing the HTML code, the 
ICEBrowser (ICESoft, 2000) JavaBeans component is being used. To generate 
initial layouts of the system under investigation, we developed an interface to 



www.manaraa.com

6. Pattern-Based Design Recovery with SPOOL 121 

external layout generators. We integrated Dot (Kontsofios and North, 2000) for 
tree layouts and Neato (North, 2000) for spring layouts. 

6.3 Applying Pattern-Based Reverse Engineering 

The purpose of this section is to point out the importance of pattern-based re
verse engineering of design components for the comprehension of large-scale 
software. We chose a case study approach to illustrate and discuss some of our 
fmdings when analyzing industrial systems. We have selected the following ab
stract design components, which we based on the corresponding descriptions in 
the pattern catalogue of Gamma et al. (1995): Template Method, Factory 
Method, and Bridge. 

To assess the feasibility of pattern-based reverse engineering and the useful
ness of the SPOOL environment, we analyzed the source code of three industrial 
C++ systems. Bell Canada provided us with two large-scale systems from the 
domain of telecommunications. For confidentiality reasons, we call these sys
tems System-A and System-B. Our third test system is the well-known applica
tion framework ET++ 3.0 (Weinand et aI., 1989), as included in the SNiFF+ 
development environment (TakeFive, 2000). Table 6.2 shows some size metrics 
for these systems. Note that header files from the compiler are included in these 
numbers. 

In this section, we first show how we reverse-engineered the selected compo
nents in System-A, System-B, and ET++, respectively. Then, we discuss the 
three case studies. 

Table 6.2. Size MetriCS of industrial systems. 

System-A System-B ET++ 

Lines of code 472,824 291,619 70,796 

Lines of pure comments 60,256 71,209 3,494 

Blank lines 80,463 90,426 12,892 

# offiles (.C/.h) 1,900 1,153 485 

# of classes (.C/.h) 3,103 1,420 722 

# of generalizations 1,422 941 466 

# of methods 17,634 8,594 6,255 

# of attributes 1,928 13,624 4,460 

Size of the system in the repository 63.1 MB 41.0MB 19.3 MB 



www.manaraa.com

122 Keller et al. 

6.3.1 Case Study #1: Template Method 

"Template Methods define the skeleton of an algorithm in an operation, defer
ring some steps to subclasses" (Gamma et aI., 1995). Template methods are of
ten referred to as the characterizing building blocks of white box frameworks, 
which let clients extend the framework by overriding predefined hook methods 
that are called by the framework (Fayad and Schmidt, 1997). The rationale be
hind a Template Method is to make the steps of an algorithm easily exchange
able. The trade-off is that if not used with care, Template Methods can 
contribute to overly complex software, especially when the hook methods them
selves are Template Methods deferring functionality to other hook methods. In 
large, framework-based application software, such as System-A, knowledge 
about the existence and location of Template Methods is crucial for the judicious 
evolution of the applications. 

We reified the Template Method pattern (Figure 6.3 shows its structure) as 
an abstract design component, stored it in our repository, and associated it with a 
query that searches the source code models for the component's structure. The 
default implementation of the Template Method query traverses all classes (Ab
stractClass), goes into each method (TemplateMethod), looks up the operation 
call tree for local operation calls (PrimitiveOperation), and verifies if Primi
tiveOperation is polymorphic. If all conditions are met, all relevant information 
is passed to a Design Component Builder object, which creates an Implemented 
Design Component containing references to the identified elements in the source 
code model. Note that through query options, the human analyzer can specify 
deviations from the default behavior of the query, for instance, to recover only 
those TemplateMethods in which PrimitiveOperation in AbstractClass is purely 
virtual (in the case of a C++ system), or to check if PrimitiveOperation is over
ridden by at least one other class (ConcreteClass) in the AbstractClass ' subclass 
hierarchy. 

Figure 6.4 illustrates the recovered Template Methods in one class tree of 
System-A (note that the reference class of Template Method is AbstractClass). 

Abstracl Class 
PrimitiveOperation1 0 

TemplateMethod() 
PrimiliveOperalion1 () PrimitiveOperation20 
PrimiliveOperalion2( ) 

t;, 

Concrele Class 

Primit ive Operal ion1 () 
Primitive Operalion2() 

Figure 6.3. Structure ofTemplate Method (Gamma et aI., 1995). 



www.manaraa.com

A -.nr..., 
A _ 
A _ 
A _ 
A _ A_ A __ 

A _ 
A r._ 
A'_ A_ 
... e- .. I11,~ A_ 
A _ 
A __ 

A _ 
A _ 
A _ 
A _ ... -.-

6. Pattern-Based Design Recovery with SPOOL 123 

Figure 6.4. Template Methods in System-A. 

This diagram clearly shows the key players within this part of the application, 
and conveys an impression of how many such mini-algorithms, which may be 
refined in subclasses, exist in the class tree. For instance, the main class, visible 
on top of the diagram, contains 43 Template Methods. More detailed informa
tion can be recovered by zooming into the diagram, showing operations and at
tributes, or by spawning another diagram that shows the implementation of one 
particular Template Method only. 

It is our experience that knowledge on both the rationale and the existence of 
Template Methods is essential to develop an understanding on how to hook into 
the mechanisms that are enforced by a framework like architecture. Such knowl
edge may be of great help in flattening the learning curve of a framework. 

6.3.2 Case Study #2: Factory Method 

"Factory Methods define an interface for creating an object, but let subclasses 
decide which class to instantiate" (Gamma et aI., 1995). Factory Methods are 
specialized Template Methods in that the PrimitiveOperation in the Concrete
Class instantiates a concrete product (see Figure 6.5). Factory Methods are often 
used when different objects have the same construction process. The construc
tion algorithm is coded in the Creator class, and the steps that instantiate the 
objects are deferred to the subclasses. 



www.manaraa.com

124 Keller et al. 

Creator 
product :: 

F actoryMethod( ) ------ FactoryMethodQ 

AnOperation( ) 

~ 
ConcreteProduct 

ConcreteCreator return new 
-- - - - - ConcreteProduct 

F actoryMethod( ) 

Figure 6.5. Structure of Factory Method (Gamma et al., 1995). 

The query for the Factory Method is, obviously, similar to that of the Tem
plate Method, except for the condition that the FactoryMethod in Concrete
Creator is required to instantiate a ConcreteProduct. By default, the query does 
not enforce that ConcreteProduct be a subclass of another class (Product), but 
this additional constraint can be specified through query options. 

Figure 6.6 illustrates the results of the Factory Method query as applied to 
System-B. The upper window shows the inheritance tree of all classes of System
B, which we laid out with Neato. Due to the high zooming ratio (the small points 
constitute large inheritance trees), the recovered design components protrude 
from the diagram. This is crucial information that can help find a basis for un
derstanding a complex piece of software, which is presented in the lower win
dow of Figure 6.6. We zoomed into the tallest bounding box and extracted the 
detailed information into a separate diagram (lower window). It illustrates a cen
tral Creator class, which defines 13 abstract FactoryMethod operations, and 57 
subclasses, which implement these operations. 

This automatically generated diagram provides essential information about 
the rationale behind the design of the system. The developers designed this part 
of System-B for easy extension with new classes. This was necessary as this part 
of the system deals with user interface forms and input tables, which by nature 
change very fast. The diagram also tells us that the designers decided to instanti
ate objects in the same classes that provide the functionality for their manipula
tion. In the example, a better solution would have been the use of an Abstract 
Factory, which ''provides an interface for creating families of related or depend
ent objects" (Gamma et at, 1995). This would have provided for more flexibility 
as the manipulation functionality could have evolved independently from the 
object created by the factory. Thus, a different family of objects, which may re
flect changed user requirements or a different user interface platform, could have 
been plugged into the class hierarchy without the need of subclassing existing 
classes. This would have reduced the number of classes from 57 to about 30, 
improving understandability and maintainability. This example illustrates pat
tern-based reverse engineering of design components as a technique that can 



www.manaraa.com

6. Pattern-Based Design Recovery with SPOOL 125 

•• ., 

Figure 6.6. Factory methods in System-B: overview diagram (upper window); extracted 
Factory Methods (lower window). 

help a human analyzer not only to comprehend a complex piece of software, but 
also to make substantial design improvements. 

As a further example, window 1 of Figure 6.7 illustrates the occurrences of 
the Factory Method pattern in ET++. The user may want to inspect the recov
ered pattern instances by starting the design inspection tool (window 2). This 
diagram shows in its upper part the list of recovered Factory Method patterns, 
identified by the Creator class and the FactoryMethod. The middle part shows 
the selected Factory Method as a collaboration diagram. The example shows the 
class ET_Object with the method GetObserverlter, which calls the Factory
Method Makelterator (top row). This method is overridden in five subclasses of 
ET_Object (middle row). Each of these implementations of Makelterator instan
tiates different Products (bottom row). The lower part of the window shows the 



www.manaraa.com

126 Keller et at. 

Figure 6.7. Inspection of Factory Methods in ET++, involving overview diagram, design 
inspection tool, the SPOOL Design Browser, and the SNIFF+ source code environment. 

recovered classes in the context of the overall class hierarchy. This example pre
sents the case where the design patterns Factory Method and fterator (Gamma et 
aI., 1995) are combined to provide for a flexible traversal mechanism of ET ++ 
containers, such as lists, sets, dictionaries, collections, and arrays. Note that the 
SPOOL Design Browser with its structure and full-text retrieval functionality 
might have been used to hint at instances of the Iterator pattern (Robitaille et aI., 
2000). 

The content of the design inspection diagram was automatically generated by 
the query for the Factory Method pattern. The diagram provides important in
formation for program comprehension as it presents in a concise way all the 
classes that take on some role in a pattern-based collaboration. Note that in the 
physical file structure, these classes may be spread out over many directories and 
subsystems. Yet, the diagram falls short in conveying all the information a user 



www.manaraa.com

6. Pattern-Based Design Recovery with SPOOL 127 

might wish to obtain about the design fragment at hand. He or she might want to 
know, for instance, the classes and methods that invoke Makelterator, or get 
information about the semantics of the method GetObserverlter, whose name 
alludes to its purpose of creating an Iterator of the Observers of a view element. 
A visual design inspection tool can never answer all of these questions. 

The SPOOL Design Browser together with the SPOOL mechanism for inte
grating external tools provides the flexibility to obtain detailed knowledge as 
well as context information about the constituents of a recovered, pattern-based 
design. For example, the browser of window 3 shows all the methods from which 
Makelterator is invoked, including the GetObserverlter method already identi
fied in window 2. By invoking the SNiFF+ environment (TakeFive, 2000), the 
user can then investigate and edit the retrieved elements directly in the SNiFF+ 
source code editor (window 4). This provides invaluable context information 
about how, in our example, a Factory Method is used. 

6.3.3 Case Study #3: Bridge 

The intent of a Bridge pattern is to "decouple an abstraction from its implemen
tation so that the two can vary independently." (Gamma et aI., 1995) The Bridge 
is a design technique that can avoid combinatorial explosion of class hierarchies 
if a domain concept in different variations can be implemented in mUltiple ways. 
If realized using inheritance, each variation would have a subclass for each of the 
possible implementations. To avoid this, the Bridge suggests separate class hier
archies for the abstraction and the implementation (Figure 6.8). 

We include the Bridge as one of those patterns that demand human insight to 
be recovered from source code. The Bridge is a semantic concept that can have 
many forms of physical appearance in the source code. For instance, we have 
identified Bridges with Abstractions that are not subclassed, Concretelmple-

imp-> OperationlmpQ 

----Abstraction imp Implementor 
~ 

Operation( ) Operationlmp( ) 

6 ~ 
I 1 

ConcretelmplemenlorA ConcretelmplemenlorB I RefinedAbstraclion I 
Operalionlmp( ) Operalionlmp( ) 

Figure 6.8. Structure of Bridge (Gamma et al., 1995). 



www.manaraa.com

128 Keller et al. 

mentors that do not have a common superclass, or OperationImps that constitute 
Template Methods (see Section 4.1) in which not OperationImp, but its hook 
method, is overridden. Our Bridge query captures these cases, and as an addi
tional heuristic verifies that Abstraction and Implementor are not in the same 
path of the inheritance tree, which otherwise would be counter to the very intent 
of the Bridge. The final result was 46 Bridge-based design components in ET++, 
which not unsurprisingly included many false positives. It is our contention that 
the systematic discovery of the Bridge pattern within source code needs human 
insight into the problem domain of the software. However, as Figure 6.9 illus
trates, a machine can generate appropriate diagrams that are of great value for 
the human analyzer to identify instances of the Bridge. 

In the upper window of Figure 6.9, we illustrate all recovered Bridges in 
ET++. Abstraction serves as the reference class, which is decorated with a 
bounding box for each Operation that delegates functionality to a subclass of the 
abstract Implementor that is the target of the maximum number of delegations. 
More specifically, our default Bridge query looks for classes with an instance 
variable (imp) ofa type Implementor. It then goes into the operation call tree of 
each method (Operation) in Abstraction, and verifies if the receiver of an opera
tion call (OperationImp) is of type Implementor and is overridden by at least one 
subclass of Implementor (ConcreteImplementor). By default, we also allow that 
OperationImp be a Template Method, meaning that not OperationImp itself is 
overridden, but one of its polymorphic hook methods (see Case #1). We discov
ered many Bridge Implementors in industrial code that were based on Template 
Methods. 

Our query reported 46 Bridge-based design components in ET ++, yet most 
of the visualized Bridges had only up to three bounding boxes (i.e., operation 
calls to Implementor), meaning that most probably these automatically recovered 

AI ' .... ..... 
AI ......... , .... 
A _ 
A _ A_ 
A .. _ A_ 
A _ ... 
0 -
A ,«_ 
Or
A
A c:-.~ 
Oc_ 

Figure 6.9. Bridges in ET++: overview diagram (upper window); ET_TextView class 
(lower left window); ET_Window class (lower right window). 



www.manaraa.com

6. Pattern-Based Design Recovery with SPOOL 129 

implementations of Bridge reflect only its structure, but not its intent. Clearly 
visible in Figure 6.9 are a few reference classes with tall bounding boxes (right 
side of upper window). The lower windows of Figure 6.9 illustrate the three ref
erence classes that exhibit the most bounding boxes. The lower left window 
shows ET_TextView with its superclass ET_StaticTextView, both delegating 
mUltiple methods to ET_Text (not displayed in Figure 6.9). The documentation 
of ET ++ (Weinand et aI., 1989) describes ET _ Text View and ET _ Text as the view 
and model of the MVC architectural design pattern, which is in this example 
applied to text handling. In other words, subclasses of ET_TextView provide 
different rendering strategies for instances of ET_Text, thus serving as the Ab
stractions for ET_Text Implementors, which is the very intent of the Bridge de
sign pattern. The lower right window of Figure 6.9 shows the ET _ Window class 
with 11 bounding boxes. Gamma et ai. (1995) describe this case as one of the 
known uses of Bridge. In ET++, the ET_WindowPort class serves as the abstract 
Implementor for different kinds of windows, and ET_XWindowPort and 
ET_SunWindowPort as the ConcreteImplementors. 

6.3.4 Discussion o/Case Studies 

The purpose of our work is to provide a technique that can supplement current 
reverse-engineering tools with the support to recover the all-important rationale 
behind the design decisions. We based this technique on design patterns and 
presented three case studies, each illustrating a different pattern on a different 
industrial system. Related studies on pattern detection (Antoniol et aI., 1998; 
Kraemer and Prechelt, 1996) provided tables indicating numbers for the detected 
patterns and the true pattern implementations in the investigated systems. We 
argue that these numbers are misleading as they neither express quality of the 
analyzed software or the detection tool, nor convey the rationale behind the pat
tern-based design (see Section 6.4 for further discussion). 

We believe in the strength of visualization and the integration of the human 
into the recovery process. Therefore, we selected a case study approach to con
vey the practicability of pattern-based reverse engineering. However, for com
parison purposes, we summarize the results of our default recovery queries in 
Table 6.3. 

Table 6.3. Implemented pattern-based design components. 

Template method 
Factory method 
Bridge 

System-A 
3,243 
247 
108 

System-B 
1,857 
168 
95 

ET++ 

1,022 
44 
46 

As the structures of Template Method (Figure 6.3) and Factory Method (Fig
ure 6.5) unambiguously reflect the intent of the respective pattern, and in light of 



www.manaraa.com

130 Keller et al. 

our rich software repository, which includes information on both operation calls 
and polymorphic methods, we can rely on the recovered design components for 
both patterns being correct. The Bridge pattern, on the other hand, requires hu
man judgment. It is one of those patterns that can be implemented in many dif
ferent ways. We captured some of these implementations, and, as case study 3 
illustrates, used the technique of growing bounding boxes to visually identify 
those Abstractions that delegate many operations to an Implementor. In System
A, for example, the reference classes of 13 out of 108 discovered Bridge design 
components exhibited more than 5 bounding boxes; 6 of these were surrounded 
by more than 50 bounding boxes, which was clearly visible in the diagram. Four 
design components were real Bridge pattern implementations; the two others 
delegated many operations to another class, which provided much functionality, 
but did not have the semantics of an Implementor for the Abstraction of the con
sidered component. 

6.4 Related Work 

Below, we will briefly review a number of studies dealing with the detection and 
the identification of design patterns. Also, we will discuss related work address
ing fine-grained design recovery. Finally, we will reflect on the added value of 
our approach in the realm of documentation with patterns. 

Several studies reported in the literature aim at detecting design patterns in 
object-oriented software based on structural descriptions. Kraemer and Prechelt 
(1996) developed a Prolog-based front-end to the Paradigm Plus CASE tool. 
They observed a precision ranging from 14 to 50 percent. Similar results are 
reported by Antoniol et al. (1998). However, as the number of patterns found in 
the analyzed software was close to zero, the precision factor has little signifi
cance. Moreover, both studies report that only the header files of C++ programs 
were analyzed, meaning that their experiments were conducted in the absence of 
information on function calls and object instantiations. Moreover, Kraemer and 
Prechelt (1996) do not report whether they considered polymorphism in their 
tool, and Antoniol et al. (1998) mention that they do not handle polymorphism, 
information that we consider indispensable for the identification of pattern like 
structures in source code models. Note that we consider the information cur
rently managed by our repository (Table 6.1) as the minimum for serious recov
ery of pattern-based design components. Finally, we believe that only by the 
direct involvement of the human analyzer in the recovery process interesting 
pattern-based design components may be found. 

Other studies that have influenced our work report on identifying patterns in 
existing software. Brown (1997) reviews the Gamma et al. patterns and provides 
an overview of how to identify each pattern in Smalltalk software. He discusses 
the difficulties of recovery of patterns in existing software, but also stresses the 
feasibility of detecting useful patterns in source code. Martin (1995) summarizes 



www.manaraa.com

6. Pattern-Based Design Recovery with SPOOL 131 

his experience when manually looking for patterns in existing software. Despite 
the fact that the application that his team investigated had been designed without 
any formal knowledge of patterns, they discovered that "in one or other form 
every pattern of Gamma et ai. was used." Both studies convey the message that it 
is the human analyzer who needs to be in control of the detection process. 

The recovery of design components has been subject of active research under 
varying terminology. Rich and Waters (1988) coin the term cliche for "com
monly used combinations of elements with familiar name." Similarly, Baniassad 
and Murphy (1998) define conceptual modules as "a set of lines of source code 
that are to be treated as a logical unit." The difference between these techniques 
and pattern-based recovery of design components is in the level of abstraction. 
Whereas cliches and conceptual modules represent only small algorithms or data 
structures, patterns illustrate the complex relationships among the large pieces of 
software and, equally important, embody informal explications of the rationale 
behind the suggested designs. It is our contention that reverse engineering of 
large-scale software needs to put more emphasize onto discovering these well
known patterns of thought. Revisiting the statement of Johnson in our introduc
tion, it is the rationale behind the design decisions (the why) that needs to be 
recovered to gain insight into more complex pieces of software. Cliches, con
ceptual modules, and alike cannot convey the why, but certainly are much 
needed building blocks for achieving more elaborate recovery of pattern-based 
design components. 

Many authors have discussed the advantages of documenting software, and in 
particular frameworks, with pattern (Butler et aI., 2000; Johnson, 1992; Odenthal 
and Quibeldey-Cirkel, 1997). Johnson brings their cause to the point: "Patterns 
can describe the purpose of a framework, can let application programmers use a 
framework without having to understand in detail how it works, and can teach 
many of the design details embodied in the framework" (Johnson, 1992). We 
claim that only the visualization of the implemented patterns in the context of the 
application under investigation will make documentation with patterns truly ef
fective, elucidate the rationale behind the framework's design and make the ap
plied patterns more tangible and understandable. In reverse engineering, pattern
based documentation of existing frameworks and large-scale software needs so
phisticated tool support allowing the human analyzer to look at the software 
from different perspectives, and thus gain a more-encompassing picture of the 
complex relationships among the system's constituents. 

6.5 Conclusion 

Design patterns capture the subtle design decisions that have proven successful 
in many software development projects. They document the rationale behind the 
design, which is so important to understand when evolving a software system to 
meet the continuously changing requirements. Our experience when manually 



www.manaraa.com

132 Keller et al. 

analyzing parts of two telecommunications software systems of Bell Canada con
finn the findings of Martin that most of the design patterns of Gamma et ai. 
(1995) are present in sizeable software systems (Martin, 1995). However, we 
also learned that the effort for the manual recovery of a significant number of 
design patterns in large-scale systems is infeasible, even with the use of state-of
the-art software comprehension tools, such as SNiFF+. Our study shows that 
effective pattern-based reverse engineering of sizable software systems is indeed 
feasible, but that it requires both support from pattern analysis tools and tech
niques, as well as the cognitive strength of the human analyzer. 

In this chapter we have discussed the SPOOL environment for the pattern
based recovery of design components. We assessed our technology based on 
three case studies taken from industrial C++ software systems. The visualization 
technique of growing bounding boxes around the reference classes of pattern
based design components proved very helpful to gain an immediate understand
ing about the nature of the patterns in the software under investigation. In most 
cases, the size of the bounding box indicated if the recovered design component 
also carried the intent of the respective pattern. Advanced tool support compris
ing extraction of the design component into a separate diagram and design navi
gation helped verify the existence of the pattern. 

Beyond extending the SPOOL environment with additional visual aids, we 
plan to work in five areas related to this study. First, we will continue conducting 
studies about specific design patterns and idioms, covering further patterns from 
the catalogue of Gamma et ai. (1995) and beyond (Schauer et aI., 1999; Keller 
and Schauer, 2000). Second, we wish to extend our repository to capture all 
major constructs of C++ and to cover additional programming languages. The 
schema of the repository will be based on multiple logical layers, each increasing 
the level of abstraction of the source code models. Third, we plan to supplement 
our current visualization technique, which is based on bounding boxes around 
the reference classes of pattern-based design components, with alternative tech
niques. This includes the UML-style pattern notation (UML, 1997) and compo
nent-specific rendering techniques. For example, to convey the essence of the 
Layers architectural pattern (Buschmann et aI., 1996), its classes should be illus
trated top-down according to their association with a layer, or, once jKitlGO 
(Instantiations, 2000) supports three-dimensional graphic objects, within three
dimensional space, each layer being a two-dimensional structure diagram and the 
connections among the layers being represented in the third dimension. Fourth, 
we aim to investigate the recovery of pattern-based design components with full
text, pattern-matching techniques. We believe that analyzing the names ofidenti
fiers and comments can retrieve much information about patterns. Fifth, we will 
integrate our environment with the suite of software comprehension tools of Bell 
Canada, including source code parsers for several programming languages, a 
tool for clone detection, and an environment for metric analysis. Such integration 
will provide the software quality assessment team of Bell Canada with an indus
trial-strength environment that can support them in the assessment of supplier 
software for maintenance and evolution. 



www.manaraa.com

6. Pattern-Based Design Recovery with SPOOL 133 

6.6 Acknowledgments 

We would like to thank the following organizations for providing us with li
censes of their tools: Bell Canada for the source code parser Datrix; Lucent 
Technologies for the layout generators, Dot and Neato, as well as for the C++ 
source code analyzer GEN++ used in the previous versions of SPOOL; and 
TakeFive Software for the SNiFF+ software development environment. 

6.7 References 

Antoniol, G., Fiutem, R., and Cristoforetti, L. (1998). Design pattern recovery in 
object-oriented software. In Proceedings of the Sixth International Work
shop on Program Comprehension, Ischia, Italy, June 1998, pp. 153-160. 

Appleton, B. (1998). Patterns and software: Essential concepts and terminology. 
On-line at http://www.enteract.coml-bradapp/docs/. 

Baniassad, E. L. A. and Murphy, G. (1998). Conceptual module querying for 
software reengineering. In Proceedings of the 20th International Confer
ence on Software Engineering, Kyoto, Japan, April 1998, pp. 64-73. 

Beck, K. and Johnson, R. (1994). Patterns generate architectures. In Proceedings 
of the 13th European Conference on Object-Oriented Programming, 
Springer-Verlag, LNCS 821, pp. 139-149 .. 

Biggerstaff, T. J. (1989). Design recovery for maintenance and reuse. IEEE 
Computer, 22(7):36-49, July 1989. 

Booch, G. (1996). Object Solutions: Managing the Object-Oriented Project, 
Reading, MA: Addison-Wesley. 

Brown, K. (1997). Design reverse-engineering and automated design pattern 
detection in Smalltalk. On-line at http://hillside.net/pattems/papersl. 

Buschmann, F., Meunier, R., Rohnert, H., Sommeriad, P., and Stal, M. (1996). 
Pattern-Oriented Software Architecture: A System of Patterns, New York, 
John Wiley and Sons. 

Butler, G., Keller, R. K., and Mili, H. (2000). A framework for framework 
documentation. ACM Computing Surveys, 32(1), Symposium on Object
Oriented Application Frameworks. 

Datrix (2000). Datrix homepage, http://www.iro.umontreal.ca/labs/gelo/datrixl. 

Fayad, M., and Schmidt, D. C. (1997). Object-oriented application frameworks. 
Communications of the ACM, 40(10):32-40. 



www.manaraa.com

134 Keller et al. 

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: 
Elements of Reusable Object-Oriented Software, Reading, MA: Addison
Wesley. 

IBM (1999). IBM-alpha Works, http://www.alphaworks.ibm.com/tech!xml!. 

ICESoft (2000). ICES oft NS, Bergen, Norway. ICEBrowser. Online 
documentation at http://www.icesoft.no/. 

Instantiations (2000). jKit/GO online documentation. Instantiations, Tualatin, 
OR. On-line at http://www.instantiations.com/. 

Johnson, R. (1992). Documenting frameworks using patterns. In Proceedings of 
the Conference on Object-Oriented Programming: Systems, Languages and 
Applications, Vancouver, B.C., October 1992, pp. 63-76. 

Keller, R. K., and Schauer, R .. (1998). Design components: towards software 
composition at the design level. In Proceedings of the 20th International 
Conference on Software Engineering, Kyoto, Japan, April 1998, pp. 302-
310. 

Keller, R. K., Schauer, R., Robitaille, S., and Page, P. (1999). Pattern-based re
verse engineering of design components. In Proceedings. of the 21st Inter
national Conference on Software Engineering, Los Angeles, May 1999, pp. 
226-235. 

Keller, R. K., and Schauer R. (2000). Towards a quantitative assessment of 
method replacement. In Proceedings of the Fourth Euromicro Working 
Conference on Software Maintenance and Reengineering, Zurich, Switzer
land, February 2000, pp. 141-150. 

Kontsofios, E., and North S. C. (2000). Drawing graphs with Dot. AT&T Bell 
Laboratories, Murray Hill, NJ. Available on-line at http://www.reasearch. 
att.com/sw/tools/graphviz. 

Kraemer, C., and Prechelt, L. (1996). Design recovery by automated search for 
structural design patterns in object-oriented software. In Proceedings of the 
Working Conference on Reverse Engineering, Monterey, CA, November 
1996, pp. 208-215. 

Martin, R. (1995). Discovering design patterns in existing applications. In J. 
Coplien and D. C. Schmidt, Eds., Pattern Languages of Program Design, 
Addison-Wesley, pp. 365-393. 

North S. C. (2000). NEATO User's Manual. AT&T Bell Laboratories, Murray 
Hill, NJ. On-line at http://www.research.att.com/sw/tools/graphvizi. 

Odenthal, G., and Quibeldey-Cirkel, K. (1997). Using patterns for design and 
documentation. In Proceedings of the 11 th European Conference on Ob
ject-Oriented Programming, Jyvaskyla, Finland, June 1997, pp. 511-529. 



www.manaraa.com

6. Pattern-Based Design Recovery with SPOOL 135 

OMG (1998). Object Management Group (OMG). XML Metadata Interchange 
(XMI). Document adl98-1O-05, October 1998. Available on-line at 
ftp://ftp.omg.orglpub/docs/adl98-10-05.pdf/. 

Rich, c., and Waters R. (1988). The programmer's apprentice: A research over
view. IEEE Computer 21(11):11-24. 

Robitaille, S., Schauer, R., and Keller, R. K. (2000). Bridging program compre
hension tools by design navigation. In Proceedings of the International 
Conference on Software Maintenance (ICSM'2000j, San Jose, CA, October 
2000, pp. 135-141. 

Saint-Denis, G., Schauer, R., and Keller, R. K. (2000). Selecting a model inter
change format. The SPOOL case study. In Proceedings of the Thirty-Third 
Annual Hawaii International Conference on System Sciences, Maui, HI, 
January 2000. 

Sax (2000). Sax 1.0: The simple API for XML. 
http://www.megginson.comlSAXI. 

Schauer, R., Robitaille, S., Martel, F., and Keller, R. K. (1999). Hot spot recov
ery in object-oriented software with inheritance and composition template 
methods. In Proceedings of the International Conference on Software 
Maintenance (ICSM'99j, Oxford, Britain, August 1999, pp. 220-229. 

Sun (2000). Sun Microsystems, Inc. Java Foundation Classes (JFC) 
documentation. http://www.javasoft.comlproducts/j fc/index.html. 

TakeFive (2000). TakeFive Software. SNiFF+ dcumentation set. On-line at 
http://www.takefive.coml. 

UML (1997). Documentation set version 1.1. http://www.rational.com. 

W3C (1998). World Wide Web Consortium (W3C). Extensible Markup Lan
guage (XML) 1.0. W3C recommendation, February 1998, 
http://www.w3.orgITRlI998IREC-xml-19980210. 

W3C (1999). World Wide Web Consortium (W3C). Document Object Model 
(DOM). W3C recommendation, June 1999. http://www.w3.orgITRlPR
DOM-Level-l. 

Weinand, A., Gamma, A., and Marty, R.. (1989). Design and implementation of 
ET++, a seamless object-oriented application framework. Structured Pro
gramming, 10(2):63-87. 



www.manaraa.com

7 
Approaches to Clustering for Program 
Comprehension and Remodularization 

Timothy C. Lethbridge 
Nicolas Anquetil 

7.1 Introduction 

When presented with a large legacy system which has little design information, 
an important approach to understanding and maintaining it is to automatically 
divide it into a more understandable set of modules or subsystems-a process 
called remodularization. 

In this chapter we review several remodularization approaches that employ 
clustering technology. These approaches require making decisions that include 
which algorithms to use as well as which information to use as input to the algo
rithms (e.g., words in file names, use of global variables, etc.). Here we discuss 
several alternatives and present some experimental evidence to help guide deci
sion making. We also present various methods to evaluate the effectiveness of 
the clustering approaches. These methods include examining the coupling and 
cohesion of clusters, as well as the size of the largest cluster created and the 
number of unclusterable singleton files that remain. In Chapter 8 of this volume, 
Tzerpos and Holt provide a discussion of the clustering problem focusing on 
automatic techniques that are also used in other disciplines. 

Many legacy software systems are very difficult to understand and change. 
An important reason for this can be that they are not effectively divided into 
modules and subsystems. It can be useful to automatically rearrange the soft
ware into a new set of modules and subsystems, either in order to permanently 
restructure the system or to temporarily view it from an alternative perspective. 
We will refer to both tasks as remodularization. 

Remodularization can be accomplished using clustering technology. In this 
chapter we hope to guide those who wish to try clustering, by presenting a re
view of many alternative approaches as well as the results of some experiments. 

In Section 7.2, we present an overview of various algorithms for clustering, 
with an emphasis on hierarchical algorithms. In Section 7.3 we discuss how 
these algorithms can be evaluated. Then in Section 7.4 we discuss some experi-



www.manaraa.com

138 Lethbridge and Anqueti1 

ments we have performed to help determine which algorithms are best for re
modularization. 

7.2 Approaches to Clustering 

Software engineers arrange software components into modules to reduce com
plexity, and promote reuse. For example, methods are arranged into classes; 
procedures and classes into files; and files into packages, directories and librar
ies, etc. In this chapter, we will describe how to use clustering algorithms for 
remodularization. 

7.2.1 Coupling, Cohesion and Hierarchies: Characteristics of 
Good Modularization 

The main purpose behind creating well-designed modules is to make the soft
ware easier to understand and therefore to change. In conventional software en
gineering practice, one recognizes the following as important characteristics of 
good modularization: 

• Aspects of the software that are logically related are kept closer together 
and therefore easier to find and manipulate. This property is known as high 
cohesion. 

• There are fewer linkages between diverse parts of the system; therefore, 
changes are more likely to have a more localized impact. This property is 
known as low coupling. 

• Modules are organized into hierarchies of subsystems, with increasing ab
straction as one moves upward towards the root. Modules that are lower in 
the hierarchy (closer to the leaves) have higher cohesion. 

• One should avoid modules or subsystems that are either too large or too 
small. In other words, the hierarchy should be reasonably balanced. 

Coupling and cohesion tend to be inversely related: A module that has higher 
cohesion because it contains components that are closely related tends to have 
lower coupling. Low coupling and high cohesion make it easier to achieve in
formation hiding, whereby the internals of a module need not be known by those 
who work only with the interface. Unfortunately, the coupling, cohesion and 
hierarchical organization of many software systems is often quite poor. This is 
due to reasons such as the lack of a directory hierarchy in older operating sys
tems, the lack of knowledge about software architecture on the part of the origi
nal designers, and the undermining of the original modularization as many addi
tions and alterations were made. 

Effective software remodularization therefore involves trying to rearrange 
software source code into a new, reasonably balanced, module hierarchy that has 



www.manaraa.com

7. Approaches to Clustering for Remodularization 139 

lower average coupling and higher average cohesion. One might also choose 
additional criteria to evaluate a potential remodularization, but we believe these 
are among the most important. 

7.2.2 Manual and Automatic Approaches to Remodularization 

There are two general approaches to remodularization: manual and automatic. 
The manual approach relies on the judgement of experts to rearrange the system. 
However, automatic approaches will often be superior in large systems because 
they may be more cost effective and reliable; in addition, human experts may 
not be available. In this chapter we will discuss automatic approaches. 

Automatic and manual approaches can be combined: experts could evaluate 
several automatic clusterings and select the best, or the automatic approaches 
could use limited expert input as one of their decision-making criteria. Auto
matic clustering of software can be used for permanent remodularization, or to 
provide alternative and temporary views for a person who is trying to understand 
the software from a certain perspective. 

No matter which approach is used, Clayton et al. (1998) points out that it is 
important to have a firm objective in mind when designing and evaluating a re
modularization approach. The objective might be greater flexibility, higher co
hesion, lower coupling, an object-oriented architecture, or some combination of 
these. 

7.2.3 Overview of Automatic Clustering 

Automatic clustering can be used in many disciplines to organize things into 
groups. For example, in biology it has been widely used to group organisms into 
species, genera, families, etc. The clustering literature is therefore very exten
sive. Wiggerts (1997) presents an overview of this literature and its application 
to remodularization. Lakhotia (1997) proposes a comparison framework for 
various aspects of clustering as applied to software remodularization. 

The purpose of the current chapter is to shed additional light on clustering 
approaches so that better decisions can be made when applying them to re
modularization. We do this, in part, by presenting some experimental results 
later in the chapter. 

To apply automatic clustering, one needs to make several decisions: 
What are the elements to be clustered together? In software remodulari

zation, this is most frequently files, although routines or methods can also be 
clustered to create new files or classes. The latter is important in attempts to 
make systems more object-oriented (Girard et aI., 1997). 

What relationships between elements should be considered? There are 
many possibilities for software remodularization; this topic is explored in the 
next section. 



www.manaraa.com

140 Lethbridge and Anquetil 

How do we represent information about the elements and relationships? 
We discuss this in Section 7.2.5. 

What clustering algorithm should be used? There are several different 
classes of algorithms, and many alternatives within each class. These are dis
cussed in Section 7.2.6. Some of these algorithms are also in common use in 
other disciplines. These classical clustering algorithms are also surveyed in 
Chapter 8. 

7.2.4 Relationships for Clustering 

An automatic clustering algorithm relies on evaluating the relationships among 
the elements to be clustered-in our case software components. Such an algo
rithm will try to keep related components in the same cluster, both to increase 
cohesion and at the same time to reduce coupling. Also, the clusters that are 
most closely related will be kept inside higher-level clusters, hence closer to the 
leaves of the hierarchy. Since there are many different kinds of relationships, 
and vast numbers of potential intercomponent links based on these relationships, 
choosing the best approach for automatic clustering requires considerable ex
perimentation. The best approach will likely vary from one software system to 
another. The following are some of the categories of relationships among soft
ware components that automatic clustering tools may consider: 

I. Direct static uses relationships: Two components are related if one uses 
the other in some way. For example, a file includes a file, a routine calls 
another, a file contains routines that call routines in another file, etc. 

2. Sibling static uses relationships: Two components might be considered 
related if they both use some third thing. For example: two files share the 
same included file; two routines call the same routine, or access the same 
global variable, or use the same type, etc. The more things used in common 
by the components, the closer they are related. 

3. Dynamic relationships: Two components might be considered related if 
execution traces show that they are used together to perform a particular 
operation at run time. The more frequently, and the closer in time, the two 
components appear together in a trace, the closer they can be considered 
related. 

4. Similar use of descriptive words: Two components might be considered 
related if they contain the same words or phrases embedded in naming con
ventions and comments. The use of similar words implies they deal with 
similar abstract concepts. The more words or phrases shared by the com
ments or names of the components, the closer they are likely to be related. 
See Anquetil and Lethbridge (1999a) for an example of the application of 
this approach. 

5. History of common modification: Two components might be considered 
related if they have been altered together in the past to effect a particular 



www.manaraa.com

7. Approaches to Clustering for Remodularization 141 

change to the system. The more changes that have required altering both 
components, the closer they are likely to be related. 

6. Membership in a design pattern: Two components might be considered to 
be related if they both participate in an instance of a design pattern, or both 
have the same role in several instances of the same design pattern. Well
understood design patterns for object-oriented code may be found in 
Gamma et al. (1994); however one may consider many other types of pat
terns. Examples of clusters built from patterns are: (I) All adapters might 
be considered related; (2) a particular adapter and adaptee might be consid
ered related; (3) after defining a utility as a routine that has high fan-in, all 
utilities might be considered related (and hence put in a utility package). 

Many of the most important relationships defined in the above list (catego
ries 2 and 4, and many cases of 3, 5, and 6) are similarity relationships in the 
sense that the related elements share a particular property; we will exploit this 
fact later. Some categories (1, 2, 3, and 6) contain formal relationships between 
components: We define a formal relationship to be one that represents part of 
the implementation of the system. The behavior of the system would normally 
be different if such a relationship were different. Conversely, categories 4 and 5 
contain informal relationships; however their informality does not mean that 
such relationships are less useful. Design intent is captured most strongly in 
categories 1 and 6 and also to a significant extent in categories 2, 3, and 4. Con
versely, emergent l properties of design are captured in categories 5 and 3, and 
to a lesser extent in the others. 

7.2.5 Combining and Representing Information About 
Entities and Relationships 

A convenient way to represent information about the entities and relationships 
described above is to represent each entity as a vector of attributes. The more 
similar two vectors are, the more closely related will be the entities that the 
vectors describe. For example, if using the sibling static uses relationship "file 
inclusion," then the attributes set would be "all the files that might possibly be 
included." Vectors for each entity would be of equal length (the number of at
tributes) and each vector would contain "one" in those positions corresponding 
to files that are actually included by the entity, and "zero" otherwise. In this 
case, "file inclusion" would often be referred to as the descriptive feature. 

Table 7.1 shows how information might be encoded for each of the catego
ries of relationships listed in Section 7.2.4. Note that in many cases this encod
ing would result in extremely long vectors; hence, the clustering algorithms are 

I Properties that may not have been expected or intended by designers, e.g., two data 
structures might be related because users tend to modify one then the other, or because 
maintenance requests always require changes to both. 



www.manaraa.com

142 Lethbridge and Anquetil 

Table 7.1. Representation of software entities as vectors of attributes that can then be 
compared for similarity. 

Category of 
relationship 

I. Direct static 
uses 

2. Sibling static 
uses 

3. Dynamic 

Possible attributes 
(vector elements) 

For every interesting 
relationship, every pair 
of entitiesa 

For every interesting 
relationship, every en
tity 

Every entity 

Every time period in a 
trace, at some level of 
discretization 

What each attribute might represent so 
that the vectors can be compared for 
similarity 
Whether the current entity is a member 
of the pair. 

The degree of relatedness between the 
current entity and the vector element 
entity. This can be a Boolean indicat
ing the existence of a relationship or 
can be a count of the number of occur
rences. 

Looking at execution traces, how close 
in time do the current entity and the 
vector element entity appear? 

Whether the current entity appears in 
the time period, or the number of times 
it appears. 

4. Similar use of Every interestingb word Whether or not the word is used in the 
words 

5. History of 
modification 

6. Membership 
in a pattern 

Each official change 
submitted to the con
figuration management 
system 

For every interesting 
pattern, every entity 

Every role in every 
interesting pattern 

current entity, or the number of times it 
is used 

Whether the current entity was 
changed, or a numeric value quantify
ing the extent of changes. 

Whether the current entity participates 
in the pattern 

Whether the current entity plays the 
role. 

aSince we intend to compare vectors element-by-element for similarity, the attributes must be such 

that the two related entities have the same attribute value when they are related. This necessitates 

representing direct static uses relationships a~ pairs of entities, meaning that these vectors would be 

prohibitively long. Direct static uses relationships are therefore unsuitable for this clustering ap

proach, so an alternative approach, e.g., Bunch (Mancoridis et a!., 1998), might be used. 

b/nteresting words can be a set of technical terms extracted automatically or semi-automatically 

from the system's comments; or can be all words except a predetermined set of common English 

words (stop words). 

typically computationally expensive. Also, many of the vectors will be sparse, 
with most elements "zero" or "false." Although in the table completeness, en-



www.manaraa.com

7. Approaches to Clustering for Remodularization 143 

coding direct static uses relationships are shown as similarity vectors, this is not 
practical because the vectors would be prohibitively long-sibling static uses 
relationships can be used instead. 

When clustering, it is common to just use one type of relationship; however, 
at the cost of longer vectors and hence greater computing time, one can combine 
information from several relationships. Two issues can then arise: conflicts and 
redundancy. 

First, it is necessary to handle conflicts among the categories of relation
ships: For example, what should one do if a static uses relationship (relationship 
category 1 or 2, above) says that two components are closely related, while the 
history of common modification (category 5) suggests they are not? In this case, 
the overall similarity might be merely moderate, which may not be what is 
wanted. An approach might be to give absolute priority to some relationships. 

Secondly, one has to handle redundancy in the relationships. For example 
imagine two files, where one includes another (i.e., a direct static uses relation
ship). They will likely refer to some of the same symbols (a sibling static uses 
relationship), have similar words in their comments (informal knowledge) and 
have been modified at the same times in the past. 

Performing clustering in the presence of all this redundancy can cause algo
rithms to take much more computing time than necessary, so it might be a good 
idea to discover which relationships have the least mutual redundancy and 
choose to use just those. On the other hand, the redundancy could have a rein
forcing effect on clustering decisions: If several relationships agree that two 
components are related, then perhaps it is more certain that they should be in the 
same cluster. 

7.2.6 Clustering Algorithms 

In the previous three subsections, we have discussed the software elements and 
their relationships that can be used for clustering, as well as how they can be 
represented as attribute vectors. In this section, we survey a few approaches to 
clustering that make use of these vectors. 

It is important to understand that these algorithms do not discover some hid
den or unknown structure in a system; instead they impose a structure on the set 
of entities they are given. They decide to ignore some links and favor others; a 
decision based on such factors as the metrics used to compute similarity between 
two vectors or the sub-Igorithms used to group similar entities together. The 
structures imposed by the different algorithms have different qualities; only a 
few may be useful to software engineers. Several classes of algorithms can be 
used to generate clusters; these are discussed in the next three subsections. 

Hierarchical Clustering Algorithms 

Hierarchical clustering algorithms start by imagining the elements are arranged 



www.manaraa.com

144 Lethbridge and Anqueti1 

in an n-dimensional space, where n is the number of elements in each vector. 
Some hierarchical algorithms are agglomerative; these seek the most similar 
elements or existing clusters in this space and place them together in anew, 
larger, cluster. The algorithms continually build larger and larger clusters in this 
manner until all elements are in one large supercluster with the individual ele
ments being the leaves of the hierarchy. It is also possible for hierarchical algo
rithms to work in reverse, starting with all elements in one cluster and finding an 
appropriate way to split each cluster into subclusters, based again on distance in 
n-space. 

Hierarchical algorithms differ depending on their choice of two key subalgo
rithms: The metric used to compute the similarity of vectors, and the linkage 
rule used to join together two clusters whose elements vary in similarity. We 
will outline these issues in Sections 7.2.7 and 7.2.8, respectively. The experi
ments we report in Section 7.4 are primarily based on hierarchical clustering 
algorithms. 

Partitioning Algorithms 

Partitioning algorithms create a set of clusters that form a partition of the ele
ment set. There are many flavors of them: They may start with a fixed number 
of clusters and put each element in one of these; or they may start with no clus
ter at all and create new ones as new elements are inserted that cannot be joined 
to any existing cluster, etc. One tool using such an algorithm is Bunch (Man
coridis et aI., 1998). It is based on a hill-climbing algorithm that tries to maxi
mise overall cohesion and minimize overall coupling. For comparison, we will 
present a few results from using Bunch in Section 7.4. 

Concept Analysis Algorithms 

Starting with attribute vectors, concept analysis algorithms build a lattice whose 
nodes are called concepts, and which can be converted to clusters. A concept 
contains a set of elements and is described by a set of attributes. A concept that 
is the parent of several concepts has just those attributes that are valid for all the 
child elements. The top, or supremum, concept contains all the elements, but 
most likely has no attributes since nothing is likely to be true for all elements. 
The bottom, or infimum, concept contains the empty set of elements as well as 
all attributes. 

Concept analysis generates the complete set of concepts that are possible 
given the vectors. Unfortunately, this set will normally be vast. To be useful to a 
software engineer there has to be some way to pick a subset of intermediate
sized clusters. One feature of concept analysis is that an element can be in more 
than one of the resulting clusters; this mayor may not be useful. 

Examples of applications of concept analysis to software remodularization 
include Kuipers and van Deusen (1999); Lindig and Snelting (1997); and Siff 
and Reps (1997). 



www.manaraa.com

7. Approaches to Clustering for Remodularization 145 

7.2.7 Similarity Metrics 

Similarity metrics are used in clustering to compute the closeness between two 
vectors. Here we present an overview of some alternative such metrics; see An
quetiJ and Lethbridge (I 999b) or Sneath and Sokal (1973) for more details. 

Three important categories of similarity metrics are as follows: 

Association Coefficients 

Association coefficients consider each attribute as a binary value and compute 
similarity based on the number of zeros or nonzeros in each vector. Several dif
ferent formulas can be used, based on the following four quantities: a=lIxnYlI, 
b=IIX\YlI, c=IIY\X1I and d=IIF\(XuY)II, where X and Yare the two vectors being 
compared and F is a vector of all-ones. Popular association coefficients include: 

• Simple-matching: 1-«a+d)/(a +b+ c+d)) 

• Jaccard: l-(a/(a+b+ c)) 

• S~rensen-Dice: 1 - «a + d)/ 2a/(2a +b +c) 

Distance Coefficients 

Distance coefficients consider each attribute to be a scalar value. Popular dis
tance coefficients include: 

IIAI 

• Taxonomic: E (Xi - Yi )2 
i=l 

IIFII 

• Camberra: E ~Xi - y;j!(Xi + yJ) 
i=l 

where Xi and Yi are elements of X and Y. 

Correlation Coefficients 

Correlation coefficients compute a value on a + 1 to -1 scale, which is then 
mapped to a 0.1 similarity scale. The linear correlation coefficient is widely used 
in statistics. 

The Zero Problem 

Choosing an appropriate metric requires experimentation, and the appropriate 
choice depends strongly on the type of vector. An important problem that must 
be resolved is dealing with sparcity, i.e., the very large numbers of zeros in the 
vectors; some vectors may, in fact, be all zeros. If two vectors have zero for the 
same attribute, it does not mean that they should be considered more similar. For 



www.manaraa.com

146 Lethbridge and Anquetil 

example, the fact that routine x and routine y do not call routine z is of very little 
interest; what is important is if they both call routine w. 

A good association coefficient such as S(brensen---Dice and Jaccard will 
counter zero problems by only considering the presence of ones. The formulae 
for computing correlation are also somewhat immune to the zero problem. On 
the other hand, the simple matching and distance coefficients do not work very 
well, in the latter case because vectors with zero for many attributes will natu
rally be closer together in n-space. 

7.2.8 Linkage Rules 

We have described above how one might compute the similarity (or conversely 
the distance) between two individual elements. Agglomerative hierarchical algo
rithms then use linkage rules to compute distance between successively larger 
clusters. Imagine the scenario shown in Figure 7.1, where we want to create a 
new cluster by combining the closest two of the three existing clusters. In order 
to compute the overall distance, d, between a pair of clusters the following are 
several alternative linkage rules we can use, where dij is one of the distances 
between a member of one cluster and a member of the other (i and j iterate over 
the members the two clusters whose distance is being computed): 

• Single linkage: d = min(di,j). This is the closest-neighbor rule and favors 
noncompact but more isolated clusters, hence it should encourage low cou
pling. In Figure 7.1, the closest members of C2 and C I are closer than the 
closest members of C3 and C I; hence C I and C2 would be joined into a 
larger cluster. 

• Complete linkage: d = max(di,j) This is the furthest-neighbor rule and fa
vors compact but less-isolated clusters, hence it should encourage high co
hesion. Referring to Figure 7.1, C 1 and C3 would be joined if this rule were 
used. 

• Weighted average linkage: d = average(di,j). This is a compromise between 
single and complete linkage. 

• Unweighted average linkage: This is similar to the weighted average, but 
deals more fairly with the situation where the members of the clusters are 

ci2~QC~ 
•• el • 

Figure 7.1. Three example clusters used to illustrate linkage rules. 



www.manaraa.com

7. Approaches to Clustering for Remodu1arization 147 

themselves clusters with unequal numbers of elements. It gives each ele
ment equal weight (the weighted average linkage rule, on the other hand, 
results in the elements of smaller clusters being given more weight). 

7.3 Approaches to Evaluating Clustering 

In the last section we discussed a large number of options that one can use when 
performing clustering. In this section, we discuss three criteria for evaluating a 
clustering approach: 

l. The expert criterion that compares an automatic remodularization to one 
created by experts, 

2. The design quality criterion that uses both coupling and cohesion metrics, 
3. The algorithm behavior criterion that evaluates size and inclusiveness of the 

clusters generated by the algorithms. 

These evaluation criteria are best used together. An algorithm should give good 
results for all three. 

The three evaluation criteria work on a partition of the element set, whereas, 
our experiments generate a hierarchy. In order to convert hierarchies to parti
tions, we chose to cut the hierarchy of clusters at various heights and use the 
evaluation criteria separately for each cut. The heights vary from zero, where all 
clusters contain a single element, to one, where all elements are gathered into 
one big cluster. This method proved useful in analyzing the dynamics of the 
cluster hierarchy, that is to say, how the evaluation criteria behave as the clusters 
get bigger and bigger. 

7.3.1 The Expert Criterion 

When evaluating a clustering algorithm using the expert criterion, one compares 
the clusterings produced by the algorithm to modularizations created by human 
designers, who we call experts. If the expert modularizations for several systems 
are very similar, or congruent, to those produced by the algorithm being evalu
ated, then we conclude that the algorithm has good properties. If the expert 
modularization is very different from what the algorithm generates, then we can 
conclude that either the algorithm is poor, or else has divided the system in a 
different (but not necessarily bad) way. 

To obtain expert modularizations, we could ask experts to cluster systems 
manually. However, this would not be necessary in the case of systems where a 
good modularization is captured in a configuration management system or a 
directory hierarchy. We can use these existing modularizations to calibrate our 
algorithms, which will then be used to cluster those systems that are not well 
modularized. 



www.manaraa.com

148 Lethbridge and Anquetil 

There are several approaches to detennine the similarity, or congruence, 
between two different module hierarchies, each containing the same elements. 
Here we discuss two such approaches. 

Comparison of Pairwise Distance Measures (PDMs) 

Lakhotia and Gravley (1995) summarize the method of comparing pairwise dis
tance measures. For each pair of elements in a cluster hierarchy, one first com
putes d, the distance between the elements. The distance can be calculated as the 
shortest path between the elements in a graph representing the hierarchy of 
clusters, although several alternative methods are also available. The distance 
would be zero if the elements were in the same cluster, and large if the only en
closing cluster was the root cluster containing all others. The distance is ex
pressed as a value from 0 to 1, where 1 would be used for the maximum possible 
path length. 

The following equation illustrates how, for each pair of elements z;. and Zj' 

one can sum the differences between the pairwise distances in cluster hierarchies 
1 and 2. The congruence would be equal to 1 for identical hierarchies. 

,,1 n2 

congruence = 1- E Eldl (Zi' Zj) - d2 (zj, Zj)1 
l=lJ=l 

Lakhotia and Gravley outline several alternative equations that can be used, 
each more complex than the one shown here; however, the principle of all such 
equations is similar. 

Comparison of Intra and Inter Pairs 

Instead of comparing entire hierarchies, one can compare two sets of clusters 
-where a set of clusters is a cut across a hierarchy at some level as described 
earlier, or where it is the result of a nonhierarchical clustering approach. A pair 
of entities is intra if both are members of the same cluster and inter if they are 
members of different clusters. 

The infonnation-retrieval metrics precision and recall can then be used to 
compare the sets of pairs. Precision is the percentage of intra pairs proposed by 
the automatic clustering method, which are also, intra in the expert set of clus
ters. Recall is the percentage of intra pairs in the expert set, which are also intra 
in the automatic set. For more details about this approach, see Anquetil and 
Lethbridge (I 999b). 

7.3.2 The Design Quality Criterion 

The design quality criterion for evaluating a clustering algorithm relies on 
measuring coupling and cohesion. There are several ways of doing this, but one 
of the simplest is based on the same attribute vectors and similarity functions we 
described in Section 7.2. 



www.manaraa.com

7. Approaches to Clustering for Remodularization 149 

Cohesion can be computed as the average similarity of all the intra pairs (see 
Section 7.3.1 for a definition of these), while coupling is the average similarity 
of all the inter pairs. As with the clustering methods themselves, the choice of 
entities and relationships for the vectors is important, as is the choice of similar
ity measure (Patel et aI., 1992; Kunz and Black, 1995). 

When using a design quality approach it is important to use different attrib
utes for evaluation than were used for clustering; otherwise one is guaranteed 
artificially good results. For example, one could use vectors where the attributes 
are "common calls to routines" to compute the coupling and cohesion of a clus
tering scheme that is based on "common uses of words in file names." 

7.3.3 The Algorithm Behavior Criterion 

Clustering algorithms can result in sets of clusters with two key undesirable 
properties. These properties express imbalances in the sizes of the clusters, and 
can be illustrated using astronomical analogies (Hutchens and Basili, 1985). 

• One excessively large cluster (a black hole): This occurs when an algorithm 
decides to keep adding elements to one single cluster without creating any 
additional clusters, that is, sucking them all into the black hole. A good met
ric to capture the tendency for this to happen is the size of the largest cluster 
(in a given cut through the cluster hierarchy), as a percentage of the total 
number of elements. The ideal value of this metric is near lin, where n is 
the number of clusters in the cut; at this value, the clusters in the cut have 
nearly equal size. 

• Many leftover unclustered elements (a gas cloud): This occurs when some 
subset of the elements are clustered into a hierarchy, but many elements are 
left out. A suitable metric is the number of unclustered elements, expressed 
as a percentage of the total number of elements; the ideal value is zero. 

More details of these properties can be found in Anquetil and Lethbridge 
(1999b). Examples of the application of the various algorithms are presented in 
the following section. 

7.4 Results of Experiments 

We conducted a series of experiments to determine which of the various algo
rithms described in Section 7.2 worked best for software remodularization. Due 
to space limitations, we present here only a shortened overview of the selected 
results. More detailed results and additional information can be found in An
quetil and Lethbridge (I 999b), and interested readers are encouraged to visit the 
web site at http://www.site.uottawa.cal-anquetiIlClusters/. 

We experimented with four different systems, the Linux kernel (available at 
http://www.kernel.org/), Mosaic version 2.6 (at ftp://ftp.ncsa.uiuc.edu/Mosaic/ 



www.manaraa.com

150 Lethbridge and Anquetil 

Unix/source), gcc version 2.8.1 (at http://www.gnu.ai.mit.edu/software/gcc/ 
gcc.html), and a substantially large proprietary telecommunications system. Ba
sic metrics about these systems has been tabulated in Table 7.2. for the reader's 
convenience. 

We used files of source code as our entities to be clustered; these do not 
count include files. We used the seven types of attributes for our vectors that are 
shown in Table 7.2. Five of the attributes were sibling static uses relationships: 
uses of global variables, types, and macros as well as calls to routines and inclu
sions of files. The remaining two attributes captured informal information--the 
words found in identifiers (Anquetil and Lethbridge, 1999a) and the words 
found in comments. 

Table 7.2. The four systems used in our experiments. The last seven lines are the attrib-
utes we used in our experiments. 

Gcc Mosaic Linux Telecom S~stem 
Lines of code 460K 140K 600K 2M 
Files (entities) 215 225 875 1,817 
Global variables 684 152 770 12,982 
Types 209 323 906 6,586 
Macros 1,710 1,292 8,827 N/Aa 
Called routines 1,753 1,091 1,904 7,306 
Included files 129 262 457 1,655 
Words in identifiers 4,739 3,821 11,111 7,105 
Comment words 6,072 5,967 14,431 12,446 

a Macros are treated as function calls by the parser that processes this system. 

7.4.1 The Zero Problem with Attributes 

As discussed in Section 7.2.5, it is best to compose the descriptive vectors from 
attributes that are less likely to have values equal to zero. One problem with 
such attributes is that some of the similarity metrics do not work well when there 
are many zeros. However, an even worse problem occurs when a vector is com
posed of all zeros. The problem is that two entities with such vectors cannot be 
distinguished, no matter what algorithm is used. 

Table 7.3 shows that global variables and called routines were most prone to 
the above mentioned zero problem. This makes intuitive sense, since it is gener
ally considered to be quite good practice to avoid the use of global variables, 
and many low-level utilities will not call other routines. On the other hand, the 
informal features tended to not have the zero problem. This was due to the fact 
that it was normally possible to find usable technical terms in the identifiers or 
the comments. 



www.manaraa.com

7. Approaches to Clustering for Remodularization 151 

Table 7.3. Percentages of elements (files) that had vectors of all zeros when particular 
attributes were used as a basis for clustering. 

Attribute Gcc Mosaic Linux Telecom S~stem Mean 
Types 23 24 21 19 22 
Global variables 44 65 53 28 48 
Called routines 33 29 42 38 36 
Included files 18 12 24 21 19 
Macros 22 12 27 N/A 20 
All of the above formal 8 6 10 12 9 
attributes 
Words in identifiers 4 0 0 15 5 
Comment words 3 6 2 3 

7.4.2 Overall Evaluation of Attributes 

Figure 7.2 shows how the use of different attributes affected the performance of 
clustering. The four graphs in this figure contain curves generated from Mosaic 
using hierarchical clustering with the Jaccard similarity metric and complete 
linkage. For comparison, we also present the results for Bunch in Table 7.4.For 
the design criterion graphs, the "words in identifiers" and "all formal" attribute 
vectors performed the best for cohesion. Both also performed better than 
Bunch.2 "Words in comments" clearly performed worse. The differences for 
coupling are not significant. 

For the expert criterion graphs, again the "words in identifiers" and "all for
mal" attribute vectors performed similarly and seem overall the best, while 
"words in comments" has good recall. Among the individual formal features, 
"file inclusion" is good while "variable use" has good precision. 

General conclusions from these results are that it is important to use more 
than one type of attribute, and to consider using formal attributes. 

7.4.3 Evaluation of Linkage Rules 

Figure 7.3 illustrates the effect of applying different linkage rules when 
combining clusters into larger clusters (described in Section 7.2.8). The x-axis 
shows clusters generated by cutting the cluster hierarchy at various heights. All 
four graphs in Figure 7.3 were generated from Linux, using included files as 
attributes and the linear correlation coefficient as the similarity metric. 

As expected, complete linkage gave the best cohesion, but the least good 

2 Due to the need for further experiments, we cannot conclude from this data that Bunch, 
or non-hierarcical algorithms in general are poor; instead we can only say that hierarchi
cal algorithms are comparable. 



www.manaraa.com

152 Lethbridge and Anquetil 

0.8 

0.6 

0.4 

0.2 

o 

Cohe ion Coupling 
U. l 

0.08 ............... 

0.06 

0.04 

0.02 

0 
o 0.2 0.4 0 .6 0 .8 0 0 .2 0.4 0.6 0.8 

Height of cut 

Precision 
100 

80 ., 
~60 
c: ., 
~ 40 

Q.. 

20 

0 

0 0.2 0.4 0.6 0.8 

Height of CUI 

The formal features ............. .. .... . 

Words in identifiers ----+---. 

Height of cut 

Recall 
100 

80 ., 
~/j60 
c: ., 
t 40 

Q.. 

20 

0 
0 0.2 0.4 0.6 0 .8 

Height of cut 

The formal features combined 

Words in comments .... ~. - - . 

Figure 7.2. Evaluation of several different types of attributes using design and expert 
criteria. 

coupling, single linkage gave the opposite effect, and the other two linkage rules 
gave intennediate effects. The choice of linkage rule should therefore depend on 
which design quality appears more important. 

Table 7.4. Evaluation of several types of attributes using design and expert criteria (Mo
saic) with the Bunch tool (Mancoridis et aI., 1998). 

Descriptive feature Cohesion Coupling Precision Recall 

All formal 0.235 0.080 0.956 0.233 
Variable use 0.252 0.094 0.748 0.021 
Macro use 0.242 0.075 0.921 0.281 
Routine call 0.267 0.090 0.967 0.078 
File inclusion 0.236 0.081 0.890 0.197 
TYl2e use 0.263 0.080 0.888 0.190 



www.manaraa.com

Cohesion 

0.3 

0.2 

0.1 

7. Approaches to Clustering for Remodularization 153 

Coupling 
0. 1 ....--------------------, 

0.08 

0.06 

0.04 

0.02 

0+----,-----.----,----1 O +-----r---~----_r--~ 
o 0.2 0.4 0.6 0.8 o 

Height of cut 

Precision 

80 : ....... 

r 
c: 
840 

cE 
20 

<.. \/_.< 
\. :.\ _ .. 
"\ . ". " \ . .. ~~\, 
\ 
\ :. \ 
\. .' .... , \. 

'~';, ", \ 

............ ,.-... -.~-....... , ,.::,:,~,:~"~,,;::...~ 

30 .., 
eo 
'" ZlO 
~ .., 
P- IO 

0+-----,,-----.------r-------1 0 
o 0.2 0.4 0.6 0.8 0 

Height of cut 

complete -- unweighted 
weighted single 

0.2 0.4 0.6 
Height of cut 

Recall 

0.2 0.4 0.6 
Height of cut 

Figure 7.3. Comparison of linkage rules using design and expert criteria (Linux) 

0.8 

0.8 

There was also a similar contrast between complete linkage and single link
age when using the expert evaluation criteria (inter-intra pairs method). Com
plete linkage, in general gave significantly better precision (i.e., the files it 
grouped together tended also to be grouped together by experts). However it 
produced worse recall (i.e., it failed to group together many of the pairs of files 
that were grouped together by experts). 

Figure 7.4 applies the algorithm behavior criterion to the complete and single 
linkage rules. The larger the black area on the graphs, the better the algorithm is 
behaving. This is due to the fact that it is generating clusters of intermediate 
size. 

In the case of Figure 7.4, complete linkage performs significantly better than 
that of single linkage. These graphs were generated from gcc, using routines as 
the attributes and the Jaccard similarity metric. Note that the x-axis has been 
foreshortened. 



www.manaraa.com

154 Lethbridge and Anquetil 

til 
(1) 

200 

;;:150 
...... o 
b 100 

.D 

§ 50 
Z 

Single linkage 

til 
(1) 

200 

Complete linkage 

~150 ]fmlmB 
t lOO 

.D 

§ 50 
Z 

o 
o 0.450.85 0.9 0.95 o 0.450.85 0.9 0.95 

Height of cut Height of cut 

largest ~ 
intermediates _ 

singletons I?ZZZZZl 

Figure 7.4. Comparison of linkage rules using algorithm behavior criteria (gee). 

7.4.4 Evaluation of Similarity Metrics 

Figure 7.5 presents graphs of three of the similarity coefficients, using the algo
rithm behavior criteria. These graphs were generated from Mosaic using com
plete linkage and the macro attributes. 

The Jaccard and correlation coefficients both perform well, with a large 
black area of intermediate clusters. Taxonomic distance, on the other hand, tends 
to fall into a black hole pattern: It has a large cluster that at some point captures 
all the intermediate clusters. 

The results for the Bunch tool are 32 singleton clusters, 159 elements in in
termediate clusters, and 39 in the largest cluster. This is very similar to the better 
cuts in the hierarchical clustering approaches. 

7.5 Summary and Conclusions 

In this chapter we have reviewed many of the decisions that have to be made 
when designing a hierarchical clustering algorithm for remodularization of soft
ware. We also presented evaluation criteria and experimental data to illustrate 
the effect of various decisions. The evaluation criteria included design qualities 
(coupling and cohesion), comparison with expert modularizations, and the ten
dency of the algorithm to produce a balanced set of clusters. 

Several general algorithm approaches are available for clustering. We com
pared hierarchical algorithms to a nonhierarchical tool called Bunch and con
cluded that the hierarchical algorithms perform at least as well. However, they 
might be favored because they produce a hierarchy of clusters instead of just a 



www.manaraa.com

'" v 
200 

i2150 
'o 
~IOO 

.D 

§ 50 z 

7. Approaches to Clustering for Remodularization 155 

Jaccard coefficient Correlation coefficient 

o --'jId<up.uy:nn:r;w:up~ll:I:i:1lJj1 
o 0.6 0.75 0.85 0.9 0.95 

Height of cut 
o 0.3 0.4 0.5 0.6 0.78 

Taxonomic distance 

o 2 3 4 5 6 8 14 
Height of cut 

Height of cut 

largest c:s::s:sl 
intermediates _ 

singletons E7ZZZZJ 

Figure 7.5. Comparison of three similarity metrics using algorithm behavior criteria (Mo
saic). 

simple set. When given a hierarchy, it is still necessary to make cuts at one or 
more levels to arrive at useful sets of modules or subsystems: Cutting in the up
per half of the hierarchy gives the best results. 

A key choice in designing a clustering algorithm is which sources of infor
mation will be used to make decisions about the elements to put together. We 
conclude from our experiments that one should make use of several sources of 
information (e.g. , uses of data types, uses of global variables, as well as file in
clusions), and consider using informal information such as the words found in 
comments and the names of identifiers. Hierarchical algorithms require that 
these sources of information be composed into vectors--one vector per entity 
being clustered. 

The hierarchical algorithms make use of similarity metrics to compare vec
tors. Several such metrics are available, but we found the Jaccard and correlation 
coefficients had the best performance. 

Finally, the algorithms require one to choose rules for combining clusters 
into larger ones. The rules dictate whether the nearest (single linkage) or farthest 
(complete linkage) elements in two clusters should be used when determining 



www.manaraa.com

156 Lethbridge and Anquetil 

the distance between the clusters. We conclude that complete linkage is the best, 
especially if high cohesion is a goal. The intermediate approach called un
weighted linkage might be better if coupling is important. Single linkage tends 
to result in a black hole phenomenon, where the algorithms build one single 
large cluster. 

7.6 Acknowledgements 

We wish to thank those who provided software tools and data to make this re
search possible, including the Datrix group at Bell Canada and Ric Holt at the 
University of Waterloo. We also thank Cedric Fourier who participated in early 
phases of this work and K. Teresa Khidir for her editorial help. 

7.7 References 

Anquetil, N., and Lethbridge, T.C. (1999a). Recovering software architecture 
from the names of source files, 1. Software Maintenance: Research and 
Practice, 11(3), 201-22l. 

Anquetil, N., and Lethbridge, T.e. (1999b). A comparative study of clustering 
algorithms and abstract representations for software remodularization, In 
Proc. Working Conference on Reverse Engineering, IEEE, Atlanta, pp. 235-
255. 

Clayton, R, Rugaber, S., and Wills, L. (1998). On the knowledge required to 
understand a program, In Proc. Working Conference on Reverse Engineer
ing. IEEE, Oct. 1998,69-78. 

Gamma, E., Helm, R, Johnson, R, and VIis sides 1. (1994). Design Patterns: 
Elements of Reusable Object Oriented Software, Reading, MA: Addison
Wesley. 

Girard, J-F., Koschke, R, and Schied, G. (1997). Comparison of abstract data 
type and abstract state encapsulation detection techniques for architectural 
understanding, In Proc. Working Conference on Reverse Engineering. 
IEEE, Oct., 66-75. 

Hutchens, D. H., and Basili, V. R (1985). System structure analysis: Clustering 
with data binding, IEEE Transactions on Software Engineering, 11(8), 
August, 749-757. 

Kuipers, T., and van Deusen, A., (1999). Identifying objects using cluster and 
concept analysis, In Proc. 21st International Conference on Software Engi
neering, ACM, May, 246-55. 



www.manaraa.com

7. Approaches to Clustering for Remodularization 157 

Kunz, T., and Black, J.P. (1995). Using automatic process clustering for design 
recovery and distributed debugging, IEEE Transactions on Software Engi
neering, 21(6), June, 515-527. 

Lakhotia, A. (1997). A unified framework for expressing software subsystem 
classification techniques, 1. of Systems and Software,. 36(3), March, 211-
231. 

Lakhotia, A., and Gravley, J. M. (1995). Toward experimental evaluation of 
subsystem classification recovery techniques. In Proc. Working Conference 
on Reverse Engineering, Toronto, 262-269. 

Lindig, c., and Snelting, G. (1997). Assessing modular structure of legacy code 
based on mathematical concept analysis. In Proc. 19th International Con
ference on Software Engineering, ICSE'97, May, 349-359. 

Mancoridis, S., Mitchell, B. S., Rorres, c., Chen, Y., and Gansner, E. R. (1998). 
Using automatic clustering to produce high-level system organizations of 
source code. In Proc. 6th International Workshop on Program Comprehen
sion. IEEE Computer Society, June, pp. 45-52. See also 
http://www .mcs.drexel.edul -sergI 

Patel, S., Chu, W., and Baxter, R. (1992). A measure for composite module co
hesion, In Proc. 14th International Conference on Software Engineering, 
ACM,38-48. 

Siff, M., and Reps, T. (1997). Identifying modules via concept analysis. In Proc. 
International Conference on Software Maintenance, Oct. 1997, IEEE Com
puter Society, 170-79 

Sneath, P. H. A., and Sokal, R. R. (1973). Numerical Taxonomy, W.H. Freeman 
and Company, San Francisco. 

Wiggerts, T. (1997). Using clustering algorithms in legacy systems remodulari
zation. In Proc. Working Conference on Reverse Engineering. IEEE, Octo
ber,33-43. 



www.manaraa.com

8 
Automatic Architectural 
Clustering of Software 

Vassilios Tzerpos 
Richard C. Holt 

8.1 Introduction 

The definition of the term large software is constantly changing, as the size of 
software systems continues to increase rapidly. What DeRemer and Kron called 
a large system in their classic paper on programming-in-the-Iarge (1976), would 
probably be classified as a medium-sized, if not small-sized, system today. Ad
vances in hardware technology concerning the size, speed, and cost of primary 
and secondary storage, as well as the advent of modem programming languages 
and object-oriented programming, have allowed the size of software systems to 
increase significantly in the last decade. 

When a system becomes large, it is very hard to ensure that its structure is the 
intended one. Moreover, the original documentation, if it exists at all, becomes 
outdated as the system evolves, since the developers are usually busy trying to 
meet the next deadline. The fact that developers often discontinue their associa
tion with such large projects intensifies the problem, since they take a lot of the 
knowledge about the system with them. 

These factors contribute to the transformation of a piece of software into what 
is known as legacy code or software, namely a piece of code that one uses but does 
not necessarily understand. The drawbacks of having legacy code in a software 
system become obvious when the time comes to alter its functionality, to adapt it 
to a new hardware platform or operating system, or to improve its performance. 
One needs to understand the code once again. 

Even systems that are still under development are impacted by these problems. 
Parts of the system might become legacy code, if only because they have not been 
maintained for some time. Also, large projects often hire new people who must be 
brought up to speed, but the seasoned developers are often too busy to help with 
this. If the documentation is obsolete, then a newcomer is at a loss as to where to 
start, and cannot know the full impact of a potential modification on the rest of 
the system. 



www.manaraa.com

160 Tzerpos and Holt 

Clearly, a solution to all these problems is required. If one could derive a de
composition of a large software system into meaningful subsystems in an auto
matic (or semi-automatic) way, then much of the effort required to understand and 
to improve a software system would be alleviated. At the same time, this capabil
ity would enable one to remodularize legacy code, as well as to identify candidate 
subsystems for extraction of reusable components. 

Automatic clustering techniques described in the literature claim that they can 
do exactly this-detect the natural groups (or clusters) in a collection of entities, 
such as procedures or source files. However, none of these algorithms has been 
shown to be effective on large systems. Further research is required in order to 
reveal the best approach to the problem of decomposing a software system. 

Since research on clustering began long before the term software was coined, 
many techniques are already in use in other disciplines. In this chapter, we will 
argue that these techniques (heretofore called classic clustering techniques) can 
be used effectively in a software context, once they have been adapted to fit the 
peculiarities of this specific problem domain. 

The structure of the rest of this chapter is as follows. Section 8.2 is a survey 
of current approaches to the software clustering problem by researchers in the 
software community. A more detailed discussion of general approaches to clus
tering can be found in Chapter 7 of this book; here we will focus on automatic 
clustering using classical techniques. In this light, Section 8.3 first presents clus
tering techniques from other disciplines. In Section 8.4, we explain why we think 
classic clustering techniques would be appropriate for the software version of the 
problem. Section 8.5 outlines research challenges and open problems of interest. 
Finally, Section 8.6 presents our conclusions. 

8.2 Previous Work on Software Clustering 

8.2.1 Knowledge-Based vs. Structure-Based Approaches 

A common approach to the problem of understanding a software system and re
covering its design is the knowledge-based approach. In the bottom-up version of 
this approach, one attempts to reverse-engineer and understand small fragments of 
the source code, using preexisting domain knowledge. One then combines these 
fragments in an effort to understand the system as a whole, thus determining its 
design. This approach has been shown to work well with small systems. 

When dealing with large systems, however, this approach does not perform as 
effectively. One of the reasons is that the size of the knowledge base is becoming 
prohibitively large. Other reasons are outlined by Neighbors (1996): "Knowledge
based understanding of large system semantics [is] currently too difficult for three 
reasons: absence of a robust semantic theory, lack of problem domain specific 
semantics, and knowledge spreading in the source code." 

For these reasons, the software clustering community mainly adopts structure-



www.manaraa.com

8. Automatic Architectural Clustering of Software 161 

based approaches. In these approaches, the decomposition of a software system 
is determined by looking at syntactic interactions (such as call or fetch) between 
entities (such as procedures or variables). In this case, the problem of clustering a 
software system can be thought of as the partitioning of the vertex set of a graph, 
where the nodes are defined as procedures or variables, and the edges as relations 
between these entities. 

The rest of this section presents a survey of important publications in the field 
of software clustering, as well as some of the recent approaches to the problem. 

8.2 .2 Early Work 

In one of the early works in software clustering, Belady and Evangelisti (1981) 
recognized the need to automatically cluster a software system in order to reduce 
its complexity. They also presented a first approach to doing this for a specific 
system. In addition, they provided a measure for the complexityl of a system 
after it has been clustered. Their approach, however, only works with a specific 
kind of system, and they did not validate their complexity measure. A point of 
interest is that they did not extract information from the source code, but rather 
from the system's documentation. 

Subsequent to this work, Hutchens and Basili (1985) performed clustering 
based on data bindings. A data binding was defined as an interaction between 
two procedures based on the location of variables that are within the static scope 
of both procedures. They defined different kinds of data bindings, from simplistic 
and easy to compute (e.g., a data binding between two procedures p and q exists, 
if there exists a variable that belongs in the static scope of both procedures) to so
phisticated and hard to compute (e.g., the data binding only exists if control flow 
might be given to procedure q after the value of the common variable has been set 
by p). On the basis of the data bindings, a hierarchy is constructed from which a 
partition could be derived. 

An interesting feature of their paper is that they compared their structures with 
the developer's mental model with satisfactory results. They also raised the im
portant issue of stability; when the system changes slightly, how is the clustering 
affected? Finally, they recognized that it might be necessary to disregard certain 
information, such as omnipresent nodes, in order to get a clearer view of the struc
ture of a software system. 

One of the most active researchers in the area of software clustering in the early 
1990s was Schwanke. His papers (Schwanke et aI., 1989; Schwanke and Platoff, 
1989; Schwanke, 1991) and his tool (called ARCH) addressed the problem of au
tomatic clustering in an innovative way. Although his approaches were not tested 
against a large software system, they showed promise. 

lComplexity here refers to how difficult it is to understand a system after it has been 
clustered in a specific way. 



www.manaraa.com

162 Tzerpos and Holt 

One of Schwanke's main contributions was that he added to the classic low
coupling and high-cohesion2 heuristics by introducing the shared-neighbors tech
nique (Schwanke and Platoff, 1989) in order to capture patterns that appear com
monly in software systems. This refers to identifying subsystems that are not com
prised of resources cooperating to implement a specific functionality, but rather 
of resources providing similar functionality, such as the routines of a math library. 

Furthermore, his maverick analysis (Schwanke, 1991) enabled him to refine a 
partition by identifying components that happened to belong to the wrong subsys
tem, and placing them in the correct one. He also attempted to provide names and 
descriptions for automatically generated clusters, but not very convincingly. 

Choi and Scacchi (1990) presented an approach to finding subsystem hierar
chies based on resource exchanges between modules. The complexity of their 
algorithm is O(n2 ), which is better than Schwanke's O(n3 ), but still probably 
too high for large systems. It appears to perform well on small examples, but its 
ability to scale up is questionable. 

Muller has also been involved in the automatic clustering problem (Muller and 
Uhl, 1990; Muller et aI., 1993). His approaches tend to be semi-automatic, mean
ing that they are meant to help a designer perform clustering on a software sys
tem. He introduces the important principles of small interfaces (the number of 
elements of a subsystem that interface with other subsystems should be small 
compared to the total number of elements in the subsystem) and of few inter
faces (a given subsystem should interface only with a small number of the other 
subsystems) . 

8.2 .3 Recent Work 

The last couple of years have seen a renewed interest in the problem of clustering 
a software system automatically. The main reason for this is the rapid growth 
of Reverse Engineering as a research field, largely due to the Year 2000 and Euro 
conversion3 problems. Understanding large software has become a very important 
issue and clustering can help deal with it. 

Lakhotia (1997) introduced a unified framework for expressing software clus
tering techniques. Realizing that the techniques in the software clustering litera
ture have been presented using different terminology and symbols, he proposed a 
framework consisting of a consistent set of terminology, notation, and symbols, 
which can be used to describe the input, output, and processing performed by 
these techniques. Several existing techniques have been reformulated to conform 
to this framework. 

2 Low coupling is a software engineering principle that requires that interactions be
tween subsystems should be as few as possible. High cohesion is a related principle that 
requires that interactions should be kept as much as possible within a subsystem. 

3Financial software in Europe had to be modified in order to accommodate the common 
currency. 



www.manaraa.com

8. Automatic Architectural Clustering of Software 163 

Neighbors (1996) attempted to identify subsystems with the ultimate goal of 
hand extraction of reusable components. He looked at compile-time and Iink
time interconnections between components and tried different approaches. The 
approaches that were successful were based on naming and on reference con
text. His results were validated by the developers of the system on which 
he experimented. 

An interesting alternative approach was presented by Anquetil and Lethbridge 
(1997). Instead of looking at structural information, such as procedure calls or 
data references, they only looked at the names of the resources of the system. 
Their experiments produced promising results, but their approach has the obvious 
drawback that it relies on the developers' consistency with the naming of their 
resources. In Chapter 7 of the present book, Lethbridge and Anquetil discuss in 
more detail both their technique and other clustering techniques not covered here. 

Bowman and Holt introduced the term ownership architecture (1999). They 
argued that the organization of system developers into teams can help one un
derstand a software system, and that such a structure is often congruent to the 
system's concrete architecture. An extensive case study involving the Linux oper
ating system was presented to corroborate their conjecture. 

Finally, various researchers have recently started looking at techniques used 
in other disciplines in order to come up with a better solution to the automatic 
clustering problem. 

Wiggerts (1997) presented a survey of techniques used by the cluster analysis 
community and attempted to reuse them for system remodularization. His future 
plans include clustering a software system in "a more or less" object-oriented 
way. 

Several researchers attempted to use concept analysis in order to identify sub
systems (Lindig and Snelting, 1997; van Deursen and Kuipers, 1999). Their ex
periments demonstrated that concept analysis could be helpful in certain reverse
engineering scenaria, such as object identification. 

Mancoridis et al. (1998) treated clustering as an optimization problem and em
ployed genetic algorithms in order to overcome the local optima problem of hill
climbing algorithms, which are commonly used in clustering problems. His ex
periments demonstrate encouraging results and fast performance. 

8.2 .4 Observations 

By examining the literature on software clustering, one can draw interesting ob
servations. First, most researchers seem to agree on structural-based criteria and 
naming conventions as being the most promising approaches. However, there ex
ists a variety of different interactions between modules that are used as the basis to 
decide which resources depend on which modules. Isolating the interactions that 
are appropriate for the software clustering problem, and determining the proper
ties that make them so, are problems that need more study. 

Another observation is that none of the approaches has been tested extensively 



www.manaraa.com

164 Tzerpos and Holt 

against large software systems.4 This omission becomes more interesting when 
one considers that these approaches were developed with such systems specifi
cally in mind. It is not clear whether these approaches scale up to large systems. 

Also, validation of an approach against more than one system is required. Many 
researchers present results that demonstrate that their algorithm performs very 
well for a given software system. It would be interesting to see how the algorithm 
performs on a number of systems, since an algorithm can be specifically tuned to 
perform well on a particular system. 

Finally, the issue of performance is very important. Most graph partitioning 
problems are shown to be NP-complete (Garey and Johnson, 1979) or NP-hard. 
The approaches presented above, however, are heuristic approaches that attempt 
to reduce this complexity to polynomial upper bounds. What kind of complexity 
is acceptable for large systems remains to be seen. 

A more detailed description of open problems and research challenges can 
be found in Section 8.5. In the next section, we present popular cluster analy
sis approaches that have been used to solve clustering problems found in other 
disciplines. 

8.3 Classic Clustering Techniques 

8.3.1 Background 

Cluster analysis has been used in a number of different disciplines5 in order to 
solve a wide spectrum of problems. Its objective is to find algorithms and methods 
for grouping or classifying objects. Many diverse techniques have been developed 
in order to discover structure within complex bodies of data. 

Computer science has also benefited from clustering techniques. For example, 
the data base community uses clustering to group related entities together in rela
tional (Silberschatz et aI., 1997), as well as object-oriented data bases (Tsangaris 
and Naughton, 1991). Data mining also employs similar techniques in order to 
cluster spatial and multidimensional data (Ng and Han, 1994; Zhang et aI., 1996). 

In this section, we will present the most important cluster analysis techniques 
found in the literature. Since these techniques are used in many disciplines, there 
is considerable confusion of terminology. For example, the raw material to be 
clustered has been called point, item, data unit, subject, object, element, entity 
and many other terms. We will use the term object. Also, the aspects of the objects 
that we look at in order to decide on the appropriate clustering have been called 
variables, attributes, characters, or features. We will use the term feature . 

4 A large system refers to an industrial system with a size of order of magnitude close 
to a million lines of code. 

5Examples include psychology, biology, statistics, social sciences, and various fields of 
engineering. 



www.manaraa.com

8. Automatic Architectural Clustering of Software 165 

8.3.2 Similarity Measures 

One of the first things that a clustering approach usually does is to decide on what 
grounds two objects will be judged to be similar. Moreover, one needs a measure 
that will decide which pair of objects are more similar than any other pair. The 
answer to this problem is a similarity measure. 

Similarity measures can be divided in two groups, depending on the kind of 
information that serves as their input. We distinguish the following kinds of 
information: 

I. Relations between the objects. In this case, the problem can be represented 
as a graph, where the nodes are the objects and the edges are the relations. 
If we have more than one relation, then the graph will have multiple kinds 
of edges. 

Common similarity measures that deal with cases like this are based on 
the number of edges connecting two objects, the length of the shortest path 
between two objects, or the weight that different kinds of edges might have. 
Whether the graph is directed or undirected is also a factor. 

2. The score of the objects on different features. In this case, similarity is usu
ally measured by association coefficients. These are expressed in terms of 
the number of features that are present for each object. For this reason, 
association coefficients assume binary features (i.e., reflecting whether a 
feature is either present or not). The following table is used in order to cal
culate various coefficients between object i and object j: 

Object j 1 Object j 0 
Object i 1 a b 
Object i 0 c d 

In the above table, a is the number of features that are present for both ob
jects, b the number of features present only for object i, and so on. Different 
coefficients treat 0-0 matches (their number is given by d) differently and 
also put different weightings on any of the four entries of the table. The 
most common coefficients are: 

• the simple matching coefficient, defined as: a+~t~+d 
• the Jaccard coefficient, defined as: a+~+c 

An extensive study of coefficients can be found elsewhere (Anderberg, 
1973). 

Other similarity measures that are found in the literature include distance mea
sures (usually Euclidean or Manhattan), correlation coefficients, and probabilistic 
measures (based on the assumption that agreement on rare features is more im
portant than agreement on frequent ones). 



www.manaraa.com

166 Tzerpos and Holt 

ALL ONE 

Figure 8.1. An example partition sequence. 

8.3.3 Algorithms 

Once the similarity measure has been decided upon, an appropriate algorithm has 
to be chosen as well. The majority of the algorithms found in the literature can 
be categorized into one of the following three categories: hierarchical algorithms, 
partitional algorithms, and graph-based algorithms. We will present each cate
gory in detail. 

Hierarchical Algorithms 

These algorithms produce a nested sequence of partitions. In one end of this se
quence is the partition where each object is in a different cluster (we will call this 
partition ALL), and in the other end the partition where all the objects are in the 
same cluster (we will call this partition ONE). At each step through this sequence 
two of the clusters are joined together. Figure 8.1 shows an example partition 
sequence for four objects A,B,C, and D. 

A common representation for a hierarchical structure is that of a dendrogram. 
Figure 8.2 presents the dendrogram for the example partition sequence. 

However, different partitions in a sequence like the one shown in Figure 8.1 
are not of equal importance. Actually, one is usually interested in a small number 
of them (maybe only one). This is usually referred to as finding cut points for 
the dendrogram. Factors that influence the selection of a cut point are usually a 
priori knowledge on the expected structure, or prechosen parameters such as the 
maximum number of clusters allowed, or the maximum number of objects in a 
cluster. 

A B c D 

Figure 8.2. The dendrogram for the example partition sequence. 



www.manaraa.com

8. Automatic Architectural Clustering of Software 167 

Hierarchical algorithms are divided into two categories, agglomerative 
and divisive: 

1. Agglomerative (or bottom-up). These start with partition ALL and itera
tively join the most similar clusters based on the similarity measure. An 
interesting point of debate between researchers is how to compute simi
larity between a newly formed cluster and the rest of the already formed 
clusters. This is called the update rule problem. 

Many different solutions exist for it. The most common include the single
link update rule (the similarity of the newly formed cluster to an existing 
cluster G is the maximum of the similarities of its constituents to G), and 
the complete-link update rule (the similarity of the newly formed cluster to 
an existing cluster G is the minimum of the similarities of its constituents 
toG). 

2. Divisive (or top-down). These start with partition ONE and try to iteratively 
split it until we reach partition ALL. Such algorithms, however, suffer from 
excessive computational complexity, as one has to look at an exponential 
number of partitions at every step. This is the main reason why these algo
rithms are not very popular. 

Partitional Algorithms 

Partitional algorithms usually work by starting with an initial partition and trying 
to modify it in an attempt to optimize a criterion that represents the quality of 
a given partition. What constitutes a good criterion is an interesting problem. It 
usually has to do with the domain on which one tries to cluster. For example, a 
criterion could be a mathematical expression that is maximized when the cohesion 
of the clusters is maximized. 

The challenge that partitional algorithms face is the combinatorial explosion of 
the number of possible partitions. Even for a small number of objects the number 
of possible partitions is astronomical. For example, there are 34,105 partitions 
of ten objects into four clusters, but this number explodes to approximately 11 
million if the objects are increased to 19. 

The usual workaround to this problem is to start with an initial partition (chosen 
randomly or based on some heuristics) and attempt to optimize the chosen crite
rion by modifying that partition in an appropriate way. These algorithms (called 
hill-climbing algorithms) do converge (Anderberg, 1973), but usually to local op
tima. Therefore, the choice of the initial partition is crucial for the success of the 
algorithm. 

Perhaps the best-known partitional algorithm is ISODATA (Anderberg, 1973). 
Its effectiveness is based on the successful initial choice of value for seven pa
rameters that control factors such as the number of expected clusters, the number 
of objects in a cluster, etc. The algorithm then proceeds to iteratively improve 
on an initial partition by joining and splitting clusters, depending on how close 



www.manaraa.com

168 Tzerpos and Holt 

to the chosen parameters the actual values for the current partition are. Several 
variations of this method exist in the literature. 

Graph-Based Algorithms 

A particular class of algorithms that is of interest are the ones that are based on 
graph properties. Different categorizations of these techniques exist, depending 
on the perspective one chooses (Corneil and Woodward, 1978; Wiggerts, 1997). 
We distinguish the following categories: 

• Minimum Spanning Tree (MST) algorithms. These algorithms begin by 
finding an MST of the given graph. Next, they either iteratively join the 
two closest nodes into a cluster (hierarchical agglomerative version) or split 
the graph into clusters by removing inconsistent edges (partitional version). 
The definition of an inconsistent edge varies, but they are usually consider
ably larger than the rest of the edges on the MST. 

• Clique algorithms. These algorithms start with the maximal complete sub
graphs (cliques) of the given graph, and either define them as clusters, or 
use them as the basis for other algorithms. 

• Local connectivity algorithms. The number of edge or vertex disjoint paths 
of a specified length between two points is the criterion used in these algo
rithms in order to decide which objects (or nodes in this case) are similar 
enough to be in the same cluster. For example, instead of only using edges 
(paths of length I) as an indication of closeness, one could also use paths 
of length 2 (Vaswani, 1968). 

• Aggregation algorithms. These algorithms select sets of nodes and collapse 
them into aggregate nodes, which can be used as clusters or can be input for 
a new iteration to find higher level aggregates. Graph reduction is an aggre
gation technique that is based on the notion of the neighborhood of a node 
(von Laszewski, 1993). Bicomponents and strongly connected components 
have also been used for this purpose (Botafogo and Schneiderman, 1991). 

• Heuristic approaches. As mentioned before, the large number of possi
ble partitions makes the problem of graph partitioning almost impossible 
to solve optimally. Heuristic approaches attempt to search the space of 
possible solutions in a clever way in order to come as close to the opti
mal solution as possible in a reasonable amount of time. For example, the 
Kernighan-Lin method (1970) attempts to overcome the local optima prob
lem of hill-climbing algorithms by choosing to go downhill for a while in 
the hope of finding a taller hill in the next few steps. 



www.manaraa.com

8. Automatic Architectural Clustering of Software 169 

8.3 .4 Observations 

By examining the literature on cluster analysis, one can draw some interesting 
observations. First, researchers agree that "a classification is neither true or false" 
(Everitt, 1993). This means that no particular partition can be the ideal answer to 
the problem of classifying a large number of objects. Based on different points of 
view, one can come up with two different, but equally valid, decompositions of the 
same set of objects. Some classifications, however, are more useful than others. 
It is the job of the cluster analysis researcher to find what factors determine the 
usefulness of a particular clustering. 

Another observation is that "the multitude of alternatives makes it difficult to 
say that a particular measure and a specific method are clearly superior selec
tions for treating the problem at hand" (Anderberg, 1973). On any given problem, 
a large group of different methods will give practically the same results, while 
perhaps a few other methods will give distinctively different results. A theoretic 
explanation of the behavior of different methods does not exist, however. 

Finally, looking back at the literature on software clustering, we see that some 
cluster analysis techniques have indeed been used by software researchers. 
Hutchens and Basili (1985) used a hierarchical agglomerative method in order 
to perform their clustering. Schwanke and Platoff (1989) defined binary features 
in the same way as defined earlier in this section. Mancoridis et al. (1998) used a 
hill-climbing optimization approach similar to the one presented in Section 8.3.3. 

It remains to be seen whether the software community will adopt more cluster 
analysis techniques. The next section explains why we think this would be a 
good idea. 

8.4 Classic Techniques for Software Clustering 

We believe that the software community can benefit from the cluster analysis 
techniques available. As explained at the end of the previous section, many soft
ware researchers are reinventing these techniques. It would be beneficial if the 
software community adopted and adapted the already well-studied algorithms of 
cluster analysis. 

One of the main reasons why we think this would be a good idea, is that the 
peculiarities of software as a clustering domain could be used to alleviate a lot of 
the problems facing classic clustering techniques. For example, with software we 
already have a rather good idea of what a cluster should look like. Software En
gineering principles such as information hiding (Parnas, 1972), or few interfaces 
could guide the clustering process toward a desirable solution. Also, since our 
goal is usually to understand a software system, we can cluster to different levels 
of proximity6 depending on our perspective. Therefore, specifying the number 

6Proximity, in the cluster analysis literature, refers to how close to the data we look, 



www.manaraa.com

170 Tzerpos and Holt 

of clusters is not a big problem for software clustering. Furthermore, a software 
system can have more than one valid view, which is what different clustering al
gorithms can give us. 

Another interesting issue in the cluster analysis literature is that of clustering 
tendency. Most clustering algorithms can be accused of imposing a structure on a 
set of data, even if no structure exists. In this case, it is possible that the structure 
presented as the final solution is an artifact of the algorithm used, rather than a 
natural grouping of the objects in question. With legacy software however, this 
need not be a problem. As it has been noted (Wiggerts, 1997), any structure is 
better than no structure, since one needs to start somewhere. Besides, one would 
hope that even the most badly written piece of code would have some structure. 

In their classic text on Algorithms for Clustering Data, Jain and Dubes (1988) 
present a framework for a cluster analysis project, which is divided into seven 
steps. To demonstrate that it would also fit the software clustering problem, we 
present it in a software context (the titles are theirs, but the explanations ours): 

I. Data collection. This refers to extracting the relevant information from the 
source code. A critical issue here is what kind of information one needs to 
extract. 

2. Initial screening. The data extracted from the source code usually requires 
some massaging before it can be used. As noted in Hutchens and Basili 
(1985), certain information may have to be deleted as it might interfere with 
the clustering process, e.g., omnipresent nodes 7 (Muller and Uhl, 1990). 

3. Representation. This refers to choosing the appropriate similarity measure. 
It is usually based on the type of information available, the experience of 
the investigator, and the insight of system experts. In the case of software 
clustering, there exists a wealth of different software metrics (Adamov and 
Baumann, 1987; Kontogiannis, 1997) that could be used for this purpose. 

4. Clustering tendency. This step checks if the available data have a natural 
tendency to cluster or not. As explained before, this is not a problem in a 
software context. 

5. Clustering strategy. The algorithm to be used and the value of any param
eters in it are chosen during this step. It is up to the investigator to decide 
on the most appropriate algorithm. Comparative studies between different 
existing algorithms would facilitate the process of choosing or developing 
effective algorithms. 

that is, are we trying to find a few or a lot of clusters? 
7This refers to nodes (typically procedures in the software case) with a large in- or out

degree. In the software case, this might correspond to library routines, the interactions with 
which are not necessary in order to decide on the structure of the rest of the system. 



www.manaraa.com

8. Automatic Architectural Clustering of Software 171 

6. Validation. Formal techniques for the validation of a partition exist, but in 
a software context there are usually alternative methods available. Devel
opers associated with the examined software project can compare the parti
tion obtained from the automatic clustering approach with their own mental 
model of the structure of a system. Also, in the case of legacy software, em
pirical studies could evaluate whether the clustering actually helped in the 
understanding of the system. 

7. Interpretation. This refers to comparing results with other studies, drawing 
conclusions, and getting ideas for improvements on any of the previous 
steps. 

In the next section, we will present open problems and research challenges a 
researcher in the field of software clustering might have to face. 

8.5 Research Challenges 

Throughout this chapter, we have mentioned various problems facing researchers 
in software clustering and presented the reasons that make these problems dif
ficult. In this section, we present an organized list of open problems that pose 
interesting challenges to the researchers in the area: 

• It is not clear which kinds of relations between software objects are ap
propriate from a clustering point of view. Procedure calls and data refer
ences are commonly used, but what about relations such as source inclusion 
(Carmichael et aI., 1995) or type references? Should they be used, and if so, 
with equal weight to other relations or not? The field is in need of a theory 
of dependencies that characterizes such relations. 

• Another interesting research issue is the selection of appropriate algorithms. 
A comparative study tested on a number of systems is long overdue. It 
is possible that certain algorithms are best suited for a particular type of 
software syste,,·. A categorization of algorithms and the types of software 
for which they work best would be beneficial to the software clustering 
field. 

• There exists a gap between the structures obtained by the software cluster
ing researchers and the ones presented by the software architecture com
munity (Garlan and Shaw, 1993; Shaw and Garlan, 1996). Closing this gap 
is not easy, as a compromise has to be found between the automatic ap
proaches of the clustering community, and the supervised ones of the soft
ware architecture community (Harris et aI., 1995). 



www.manaraa.com

172 Tzerpos and Holt 

• Clustering approaches need to be tested on large systems, as success on 
small systems does not guarantee effective scaling up to large systems. Ob
taining access to large systems is not easy, but it can be done, and it is 
crucial for the validation of candidate approaches. Many open source sys
tems appear to be promising candidates for the creation of a benchmark for 
different algorithms. An updated version of the proposed subject programs 
is needed (Lakhotia and Gravley, 1995). 

• Most software approaches currently present static views of the structure of 
a software system. However, most large systems are complex enough to 
require more elaborate views, such as dynamic views. This is certainly an 
important challenge for the software clustering community. 

• The issue of stability is also important. Minor changes to the software sys
tem should not drastically affect its generated structure. A study of the types 
of structures generated by different algorithms and their stability would be 
very interesting (such studies exist for graph theoretic approaches (Comeil 
and Woodward, 1978; Raghavan and Yu, 1981». 

• A related issue is that of incremental clustering. Assuming that a satisfac
tory partition of a software system exists, how do we update this structure 
when the software system changes, and how do we do it in a way that 
still reflects the actual structure of the system and causes the least possible 
modification? An approach to this problem has already been presented by 
Tzerpos and Holt (1996). 

• Software is a peculiar clustering domain since the developers that are asso
ciated with the system being examined can provide a lot of help. Integrating 
information obtained from the developers with the automatic approaches 
described in this paper is an important challenge (Tzerpos and Holt, 1996). 

The aforementioned problems pose interesting challenges to researchers, and 
suggest that the software clustering field is a fertile one for research. 

8.6 Conclusion 

The goal of this chapter was threefold: 

• to present the state of the art in the research of software clustering, 

• to survey classic clustering techniques and show that they can be utilized in 
a software context, and 

• to demonstrate that the software clustering field has research potential. 



www.manaraa.com

8. Automatic Architectural Clustering of Software 173 

In Section 8.2, we presented the most important approaches to the software 
clustering problem, and outlined their advantages and disadvantages. In Section 
8.3 we surveyed cluster analysis approaches that have been used in other dis
ciplines, and in Section 8.4, we argued that they could be used effectively in a 
software context. Finally, in Section 8.5 we presented a number of open problems 
in the area of software clustering. 

We believe that further research on the problem of decomposing a software sys
tem automatically is very important, and that it will benefit not only the research 
community, but also the people involved in the development of large software 
systems. 

©I998 IEEE. 
Reprinted, with permissionjrom the Proceedings of the Ninth International Work
shop on Database and Expert Systems Applications. 

8.7 References 
Adamov, R. and Baumann, P. (1987). Literature Review on Software Metrics. 

Institut fur Informatik der Universitat ZUrich. 

Anderberg, M. R. (1973). Cluster Analysis for Applications. New York: Aca
demic Press, Inc. 

Anquetil, N. and Lethbridge, T. (1997). File clustering using naming conventions 
for legacy systems. In Proceedings of CAS CON I997,pp. 184-195, Toronto, 
Canada. 

Botafogo, R. A. and Schneiderman, B. (1991). Identifying aggregates in hyper
text structures. In Proceedings of Hypertext 91, pp. 63-74, December, San 
Antonio, TX. 

Bowman, I. T. and Holt, R. C. (1999). Reconstructing ownership architectures to 
help understand software systems. In Proceedings of the Seventh Interna
tional Workshop on Program Comprehension, pp. 28-37, Pittsburgh, PA. 

Carmichael, I. H., Tzerpos, V., and Holt, R. (1995). Design maintenance: Un
expected architectural interactions. International Conference on Software 
Maintenance, pp. 134-137, Nice. 

Choi, S. C. and Scacchi, W. (1990). Extracting and restructuring the design of 
large systems. IEEE Software, January: 66-71. 

Comeil, D. G. and Woodward, M. E. (1978). A comparison and evaluation of 
graph theoretical clustering techniques. INFOR, The Canadian Journal of 
Operations Research and Information Processing, 16:74-89. 



www.manaraa.com

174 Tzerpos and Holt 

DeRemer, F. and Kron, H.H. (1976) Programming-in-the-Iarge versus 
programming-in-the-small. IEEE Transactions on Software Engineering, 
2(2):80-86. 

Everitt, B. S. (1993). Cluster Analysis. New York: John Wiley & Sons. 

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability. New York: 
W. H. Freeman and Co. 

Garlan, D. and Shaw, M. (1993). An introduction to software architecture. In 
Ambrola V. and Tortola, G. (eds.), Advances in Software Engineering and 
Knowledge Engineering, Series on Software Engineering and Knowledge 
Engineering, Vol. 2, pp. 1-39. Singapore: World Scientific. 

Harris, D. R., Reubenstein, H. B., and Yeh, A. S. (1995). Reverse engineering to 
the architectural level. In International Conference on Software Engineering, 
pp. 186-195, Seattle, WA. 

Hutchens, D. H. and Basili, V. R. (1985). System structure analysis: Clustering 
with data bindings. IEEE Transactions on Software Engineering, 11(8):749-
757. 

Jain, A. and Dubes, R. (1988). Algorithmsfor Clustering Data. Englewood Cliffs, 
NJ: Prentice-Hall. 

Kernighan, B. W. and Lin, S. (1970). An efficient heuristic procedure for parti
tioning graphs. Bell Systems Technical Journal, 49:291-307. 

Kontogiannis, K. (1997). Evaluation experiments on the detection of program
ming patterns using software metrics. In Proceedings of the Fourth Working 
Conference on Reverse Engineering, pp. 44-55, Amsterdam. 

Lakhotia, A. (1997). A unified framework for software subsystem classification 
techniques. Journal of Systems and Software, pp. 211-231. 

Lakhotia, A. and Gravley, J. M. (1995). Toward experimental evaluation of sub
system classification recovery techniques. In Proceedings of the Second 
Working Conference on Reverse Engineering, pp. 262-269. 

Lindig, C. and Snelting, G. (1997). Assessing modular structure of legacy code 
based on mathematical concept analysis. In Proceedings of the 19th Inter
national Conference on Software Engineering, pp. 349-359, Boston, MA. 

Mancoridis, S., Mitchell, B., Rorres, C., Chen, Y., and Gansner, E.R. (1998). 
Using automatic clustering to produce high-level system organizations of 
source code. In IWPC '98, IEEE Proceedings of the 1998 International 
Workshop on Program Comprehension, pp. 45-53, Ischia, Italy. 



www.manaraa.com

8. Automatic Architectural Clustering of Software 175 

MUlier, H. A., Orgun, M. A., Tilley, S. R., and Uhl, J. S. (1993). A reverse engi
neering approach to subsystem structure identification. Journal of Software 
Maintenance: Research and Practice, 5: 181-204. 

MUlier, H. A. and Uhl, J. S. (1990). Composing subsystem structures using (k,2)
partite graphs. In Conference on Software Maintenance, pp. 12-19,26-29 
November, San DiegO, CA. 

Neighbors, J. M. (1996). Finding reusable software components in large systems. 
In Proceedings of the Third Working Conference on Reverse Engineering, 
pp. 2-10, Monterrey, CA. 

Ng, R. T. and Han, J. (1994). Efficient and effective clustering methods for spatial 
data mining. In Proceedings of VLDB 94, pp. 144-155, September 12-15, 
Santiago de Chile. 

Pamas, D. (1972). On the criteria to be used in decomposing systems into mod
ules. Communications of the ACM, 15: 1053-1058. 

Raghavan, v. V. and Yu, C. T. (1981). A comparison of the stability characteristics 
of some graph theoretic clustering methods. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 3(4):393-402. 

Schwanke, R. W. (1991). An intelligent tool for re-engineering software mod
ularity. In Proceedings of the 13th International Conference on Software 
Engineering, pp. 83-92, Austin, TX. 

Schwanke, R. W., Altucher, R., and Platoff, M. A. (1989). Discovering, visualiz
ing, and controlling software structure. ACM SIGSOFT Software Engineer
ing Notes, 14(3):147-150. 

Schwanke, R. W. and Platoff, M. A. (1989). Cross references are features. In 
Second International Workshop on Software Configuration Management, pp. 
86-95. ACM Press. 

Shaw, M. and Garlan, D. (1996). Software Architecture: Perspectives of an 
Emerging Discipline. Englewood Cliffs, NJ: Prentice-Hall,. 

Silberschatz, A., Korth, H., and Sudarshan, S. (1997). Database Systems Con
cepts. New York: McGraw-Hill. 

Tsangaris, M. S. and Naughton, J. F. (1991). A stochastic approach for clustering 
in object bases. In Proceedings of SIGMOD 91, pp. 12-21, Denver, CO. 

Tzerpos, V. and Holt, R. C. (1996). A hybrid process for recovering software 
architecture. In CASCON 1996, pp. 1-6, November 12-14, Toronto, Canada. 



www.manaraa.com

176 Tzerpos and Holt 

Tzerpos, V. and Holt, R. C. (1997). The orphan adoption problem in architecture 
maintenance. In Proceedings of the Fourth Working Conference on Reverse 
Engineering, pp. 76-82, October 6-8, Amsterdam. 

van Deursen, A. and Kuipers, T. (1999). Identifuing objects using cluster and 
concept analysis. In Proceedings of the 21th International Conference on 
Software Engineering, pp. 246-255, May 16-12, Los Angeles, CA. 

Vaswani, P. K. T. (1968). A technique for cluster emphasis and its application to 
automatic indexing. Information Processing, 68(2): 1300-1303. 

von Laszewski, G. (1993). A collection of graph partitioning algorithms. Tech
nical Report SCCS 477, Northeast Parallel Architectures Center, Syracuse 
University, NY, April. 

Wiggerts, T. A. (1997). Using clustering algorithms in legacy systems remod
ularization. In Proceedings of the Fourth Working Conference on Reverse 
Engineering, pp. 33-43, Amsterdam. 

Zhang, T., Ramakrishnan, R., and Livny, M. (1996). Birch: An efficient data 
clustering method for very large databases. In Proceedings of SIGMOD 96, 
pp. 103-114, Montreal, Canada. 



www.manaraa.com

9 
Discovering Implicit 
Inheritance Relations in 
Non-Object-Oriented Code 

Johannes Martin 
Hausi MUller 

9.1 Introduction 

The evolution of the Internet and, in particular, electronic commerce on the Inter
net boosted the acceptance of Java as the programming language for the World 
Wide Web with the Java Virtual Machine (JVM) as the virtual hardware platform. 

In order to stay competitive in today's marketplace, many businesses have 
to move some of their mission critical legacy applications to web-based and 
network-centric platforms. Because of its wide acceptance as a programming lan
guage on these platforms, Java is the language of choice for the new systems. The 
size and complexity of the legacy applications to be moved to the new platform 
usually make it infeasible to redesign and rewrite the applications from the ground 
up, but require selected parts of the application to be incrementally migrated to 
the new platform and therefore to Java. 

A major obstacle in the migration of legacy systems written in C and similar 
programming languages to Java is the extensive use of pointers in their source 
code. Java supports pointers only in the very limited form of references. While 
almost no type checking of pointers is enforced by C compilers, Java implements 
strict type checking for references that allows conversion only between compati
ble reference types (such as classes that are related through inheritance). 

In this chapter, we examine a common usage pattern of pointers in C programs, 
show how it implicitly expresses inheritance relationships between structured data 
types, and present a formal approach to migrate such usage patterns to a program
ming language such as Java by creating an explicit class hierarchy. Section 9.5.3 
presents a tool that assists the software engineer in this task. 



www.manaraa.com

178 Martin and MUller 

9.2 Related Work 

Several researchers have addressed the problem of identifying classes during the 
migration of legacy systems to object-oriented platforms. A common approach 
is to use data structures in the legacy system as basic building blocks for classes 
and to add functions that operate on these structures as methods to those classes 
(Canfora et aI., 1996; Liu and Wilde, 1990; Livadas and Johnson, 1994; Yeh et aI., 
1995). Kontogiannis et al. (1998) apply this technique in the migration of the IBM 
compiler back end from a PLII derivative to c++. 

A different approach is to use design documents of the legacy systems such 
as structure charts and data-flow diagrams to recover a possible object-oriented 
architecture of the legacy system (Gall and Klosch, 1995; George and Carter, 
1996). 

Cimitile et al. (1997) center the identification of classes around persistent data 
stores, such as files or tables in a database, with functions as candidate methods 
for these classes. 

Object-oriented programming languages greatly facilitate reuse by providing 
generalization and specialization features, such as inheritance. While the above 
publications show how to identify distinct classes within a system, they do not 
take advantage of generalization or specialization features of the target program
ming languages. It is worthwhile to examine how commonalities and relationships 
of structures in a legacy system can be used to design class hierarchies in the target 
system. 

The considerations in this chapter are similar to some research done in the 
rejactoring community (Opdyke, 1992; Brown et aI., 1998; Fowler et aI., 1999). 
Opdyke (1992) defines refactorings as behavior preserving reorganization plans 
for source code. He discusses the foundations and applications of selected refac
torings in depth, but does not present techniques to identify sections of code that 
will benefit from refactoring. He explicitly excludes type casts from his consider
ations. 

9.3 Motivation 

Object-oriented programming became popular in the late eighties and early 
nineties with the availability of programming languages such as Smalltalk (Gold
berg and Robson, 1983), C++ (Stroustrup, 1986), and later Java (Gosling et aI., 
1996a). Some programmers adopted object-oriented ideas while still working 
with non-object-oriented languages, in fact, research continues on how to ex
press object-oriented features in procedural languages such as C (Di Mare, 1999). 
While implementations of these features in C may not look as elegant as in C++, 
they are possible. In fact, the original C++ front end cfront, written by Strous
trup (1986), transliterates C++ code into C code that emulates many C++ features 
using pointers. This C code is then compiled into object code. 



www.manaraa.com

9. Discovering Inheritance Relations in Non-Object-Oriented Code 179 

While comparing C source code automatically transliterated from C++ to C 
source code written by developers of procedural systems, we found similarities 
in the data and control structures used. Moreover, we could manually convert the 
procedural code to object-oriented code quite easily. From these experiments the 
question arose: As it is possible to transliterate C++ source code to C, is it also 
possible to discover intentional and even unintentional object-oriented structures 
in C code, using the inverses of some of the mappings used in the transliteration 
from C++ to C? If true, this would help immensely in the migration of procedu
rallegacy systems to object-oriented platforms. For our further experiments, we 
focused on one aspect of object-oriented languages: polymorphism. 

Object-oriented programming languages such as C++ provide a variety of 
means for expressing polymorphism. One way to express polymorphism in the 
procedural language C is to use pointers and type casts (type conversion oper
ators) between pointers to different data structures. In this chapter, we examine 
how type casts in C source code have been used to express polymorphism, show 
how the same kind of polymorphism can be better expressed in an object-oriented 
language, and show how software engineers can benefit from the implicit object
oriented structures during the migration of a legacy system from C to an object
oriented programming language. 

9.4 Migration Example 

9.4.1 Example Code 

Figure 9.1 shows a simple example of a C program using distinct data structures 
and type casts to express specializations of a data structure. The specialized data 
structures (Manager and Worker) contain all the fields of the base data struc
ture (Employee) as well as additional fields. Whenever pointers to variables of 
type Manager or Worker are allocated, their state variable employeeKind 
is initialized to identify the variables' runtime type. The program accesses the 
variables using pointers of type Employee for general processing. For compu
tations particular to the specialized data structures, the program determines the 
runtime type of the variable using the state variable, and casts it to a pointer of the 
specialized type (Manager or Worker). 

A large number of similar techniques have been used to express specializations 
and generalizations like this. In some cases, the specialized data structures contain 
the base data structure (rather than containing the same fields). Sometimes, data 
structures are padded with extra variables to ensure that all have the same size. In 
other cases, unions are used to group related data structures. Stroupstrup's cfront 
C++ front end transliterates a class hierarchy into data structures similar to the 
ones in our example. 



www.manaraa.com

180 Martin and MUlIer 

enum { WORKER, MANAGER }; 
struct Employee { 

int employeeKind; 
char name(20); 
char extension(4); 

} ; 
struct Manager { 

int employeeKind; 
char name [ 20 ) ; 
char extension(4); 
int numUnderlings; 
struct Employee* underlings; 

} ; 
struct Worker { 

}; 

int employeeKind; 
char name (20) ; 
char e!xtension(4); 
struct Manager* manager; 

void showEmployee(struct Employee *e) { 
printf("%s", e->name); 

} 

switch (e->employeeKind) { 

} 

case WORKER: 
{ 

struct Worker* w = (struct Worker*) e; 
printf(" is managed by %s.\n", 

w->manager->name); 
} break; 

case MANAGER: 
{ 

struct Manager* m = (struct Manager*) e; 
printf(" manages %d employees.\n", 

m->numUnderlings); 
} break; 

Figure 9.1. Example of related data structures and their use in a C program. 

9.4.2 Traditional Migration Approach 

When using data structures in the C source as basic building blocks for the Java 
classes and adding functions that operate on these data structures as member 
methods for these classes, a software engineer might convert the C data struc
tures into Java classes and add the showEmployee ( ) function as a member 
method show() to the Employee class. The signature of showEmployee() 
clearly indicates that it is an operation on the Employee class. 



www.manaraa.com

9. Discovering Inheritance Relations in Non-Object-Oriented Code 181 

This solution has two significant drawbacks: 

• The Employee, Manager, and Worker classes are very tightly coupled, 
since the show () member method of Employee directly accesses the 
fields of the other classes . 

• The type casts within the show ( ) member method of Employee are ille
gal in Java (they are possible in C++). 

To solve this problem, the software engineer would probably add show( ) 
member methods to the Manager and Worker classes containing partial copies 
of the original showEmployee () function. While this approach solves the 
problem by producing legal Java source code, the duplication of source code is 
an undesired feature. There might also be side effects on other parts of the pro
gram: for example, an array of Employee class objects cannot contain Worker 
objects. 

9.43 Migration Through Identification of Inheritance 

Clearly, we need to find a better solution for this migration problem. The similar
ity of the data structures in our examples and the type casts between them suggest 
that they are closely related. Our domain knowledge supports this observation: 
managers and workers are employees. This suggests that we should model our 
target classes in a way that explicitly states this relationship, namely by using 
inheritance. 

Figure 9.2 shows a transformation of the example from Figure 9.1 using classes 
related to each other by inheritance. Class Employee continues to contain the 
fields for the general data structure, but classes Manager and Worker inherit 
these fields from Employee rather than redefining them. Traditional rationale 
is used to transform the showEmployee( ) function into a show( ) member 
method ofthe Employee class. The program still uses type casts, but these casts 
are between classes that are explicitly related through inheritance and therefore 
legal in a Java program. 

Figure 9.3 shows a further transformation of the example from Figure 9.1, 
building on the basic transformation from Figure 9.2. To decrease coupling be
tween the classes and increase coherence within the classes, the show ( ) member 
method of Employee has been split; it now contains only the code common for 
all employees. The new show( ) member methods of Manager and Worker 
handle the specialized cases. 

Further analysis of the code revealed that the employeeKind variable is a 
constant for any given class, and its value has no meaning except for differentiat
ing the distinct classes. Therefore, the Java comparison operator instanceof 
(Gosling et aI., 1996b) can be used instead of the employeeKind variable (it is 
not needed at all in our example code, but it may be needed in other parts of the 
program). 



www.manaraa.com

182 Martin and MUlier 

class Employee { 

} 

static final int WORKER = 0; 
static final int MANAGER = 1; 

int employeeKind; 
String name; 
String extension; 

void show() { 
System.out.print(name); 
switch (employeeKind) { 

case WORKER: 

} 
} 

{ 
Worker w = (Worker) this; 
System.out.print(" is managed by"); 
System.out.print(w.manager.name); 
System.out.println("."); 

} 
break; 

case MANAGER: 
{ 

Manager m = (Manager) this; 
System.out.print(" manages "); 
System.out.print(m.numUnderlings); 
System.out.println(" employees."); 

} 
break; 

class Manager extends Employee { 
int numUnderlings; 
Employee[] underlings; 

} 
class Worker extends Employee { 

Manager manager; 
} 

Figure 9.2. Transformation of code from Figure 9.1. 

9.5 Formalization, Implementation, and Evaluation 

9.5 .1 Algorithm 

We formalized the transformation from Figure 9.1 to Figure 9.2 in an algorithm 
(Figure 9.5). In the notation of the algorithm, we use a number of abbreviations 
and primitive operations for artifacts in the subject system's source code; they are 



www.manaraa.com

9. Discovering Inheritance Relations in Non-Object-Oriented Code 183 

class Employee { 
String name; 
String extension; 

}; 

void show () { 
System.out.print(name); 

} 

class Manager extends Employee { 
int numunderlings; 

} 

Employee[] underlings; 

void show() { 

} 

super.show() ; 
system.out.print(" manages "); 
System.out.print(numUnderlings); 
System.out.println(" employees."); 

class Worker extends Employee { 
Manager manager; 

} 

void show() { 
super.show() ; 

} 

System.out.print(" is managed by"); 
System.out.print(manager.name); 
System.out.println("."); 

Figure 9.3. Further transformation of code from Figure 9.1 . 

explained in Figure 9.4. 
First, all type casts between nonprimitive data structures in the program have to 

be analyzed (Figure 9.5, Step 1). The algorithm iterates over all relevant type cast 
expressions and records the relations between source and target data structures. 

As mentioned in Section 9.4.1, in some cases extra variables are used to pad all 
data structures to have the same size. Therefore, the algorithm checks which fields 
in the data structures are actually referenced by the program (Figure 9.5, Step 2). 
Besides from such padding fields, the algorithm also identifies fields that are no 
longer used in the program, and can thereby help in the detection of errors in the 
code (if those fields really should be referenced) or the removal of dead code (if 
those fields are no longer needed). 

Finally, the groups of related structures as identified by the analysis of type 



www.manaraa.com

184 Martin and MUller 

casts are transformed to class hierarchies, with the base classes containing the 
common fields, and the subclasses containing the specialized fields. Only those 
fields that are actually used in the program are included in the classes built (Fig
ure 9.5, Step 3). In our experiments, we consider two fields common to two data 
structures, if they have the same type, name, and position in the data structures. 
Other definitions of common fields are possible: the fields' names could be pho
netically or semantically compared, or compatible rather than identical field types 
could be considered as criteria for commonality. 

Once the hierarchy has been built, candidate member methods for the classes 
can be found using traditional methods (see Section 9.2). The further transforma
tion from Figure 9.2 to Figure 9.3 cannot be automated as easily as the first trans
formation. A tool would have to follow the control and data flow of the program 

castSet 

typeSet 
fieldAccessSet 

ce.destType 
ce .source Type 
fe.field 
t.fieldSet 
t.fieldReferenced[ f] 
t.destTypeSet 

t.sourceTypeSet 

commonFields(S) 

relatedTypes(S) 

similarTypes(S, F) 

createClass(F, b) 

createClass(t, b) 

the set of all type cast expressions that involve only 
nonprimitive types. 

the set of all nonprimitive types defined. 
the set of all field access expressions (a field access 

expression in the algorithm refers to an expression 
that denotes a field of a structure, such as e. name 
or e-+name in C). 

the destination type of the cast expression ce. 
the source type of the cast expression ce. 
the field involved in the field access expressionfe. 
the set of all fields of type t. 
true, if fieldf of t is ever referenced. 
a set of types that is to contain, after completion of 

the algorithm, all nonprimitive types the type t is 
cast to. 

a set of types that is to contain, after completion of 
the algorithm, all nonprimitive types the type t is 
cast from. 

a function that returns the set of common fields of all 
types in set S. 

a function that returns a set of types in set S related 
through type casts (as determined in steps 1 and 2 
of the algorithm). 

a function that returns subsets of set S whose member 
types share fields other than the fields in set F. 

a function that creates a class containing the fields in 
set F, with base class b. 

a function that creates a class from type t (using the 
fields and name of the type), with base class b. 

Figure 9.4. Conventions for the notation of the algorithm. 



www.manaraa.com

9. Discovering Inheritance Relations in Non-Object-Oriented Code 185 

j* Step 1: Analyze type casts *j 
for t in typeSet do 

t.destTypeSet := 0 
t.sourceTypeSet := 0 

end for 
for ce in castSet do 

add ce.destType to ce.sourceType.destTypeSet 
add ce.sourceType ro ce.destType.sourceTypeSet 

end for 

j* Step 2: Check for use of fields within structures *j 
for t in typeSet do 

for f in t. fieldSet do 
t.fieldReferenced[f] := false 

end for 
end for 
for fe in fieldAccessSet do 

t. fieldReferenced[fe. field] := true 
end for 

j* Step 3: Build class hierarchy *j 
for s in relatedType(typeSet) do 

build level of class hierarchy(s, NULL) 
end for 

proc: build level of class hierarchy(S, base) 
F := commonFields(S) 
if ( :3 t: t.fields = F ) then 

newBase := createClass(t, base) 
else 

newBase := createClass(F, base) 
end if 
for s m similarTypes(S) do 

build level of class hierarchy(s, newBase) 
end for 

Figure 9.5. Algorithm for inheritance detection. 

to convert. Program slicing techniques could be used to achieve this. Opdyke's 
investigation and formalization of subclassing and simplifying conditionals pro
vides a good starting point for further work in this area (Opdyke, 1992). 

9.5.2 Efficiency Considerations 

When dealing with algorithms that are to be used on large software systems, it is 
important to consider the computational complexity of these algorithms to make 
sure they will perform adequately. We will examine the three algorithms we in-



www.manaraa.com

186 Martin and MUller 

troduced in this respect, using the following definitions: 

• Cn, complexity for algorithm n. 

• ncasts, number of type cast expressions between non primitive types. 

• naccess, number of field access expressions. 

• ntypes number of structured data types. 

• nrelated, maximum number of types in a set of related structured types. 

Step 1 This algorithm examines every type cast expression in a program exactly 
once. For every type cast between nonprimitive data types, a data type is 
added to two sets of data types. Assuming a complexity of logn for the 
insertion of an element into a set, we get 

C l = ncasts log nrelated 

Experience with legacy systems and examination of object-oriented class 
libraries suggest that the number of data types in a set of related data types is 
relatively small and does not rise significantly as the subject system grows. 
We can therefore replace the logarithmic expression by a constant: 

C l = ncasts 

Step 2 This algorithm sets a flag for every field access expression. 

Step 3 The recursive implementation of this algorithm suggests that it is rather 
inefficient. However, a closer look at the algorithm reveals that every data 
structure in the program is processed at most once: 

Overall, the complexity of our algorithms depends linearly on the size of the 
subject system. 



www.manaraa.com

9. Discovering Inheritance Relations in Non-abject-Oriented Code 187 

9.5.3 Tool Implementation 

In real applications, related classes, and the degree of their relationships may not 
be as easily identifiable as in our simplified example, for several reasons: 

• The related classes may be contained in different source files or even sub
systems. 

• The software engineer might not have sufficient domain knowledge to make 
an association between two different data structures. 

• The type casts that support the association of distinct data structures are 
typically spread across many source files and are hard to spot. Tools such 
as the grep utility can help to find explicit type casts. Since traditional C 
compilers do not enforce the use of type casts, many of these casts may be 
implicit and therefore extremely hard to find. 

Modem C compilers keep track of the type of pointers and warn the program
mer of implicit type conversions. This suggests that a C compiler can be used to 
identify all type casts between pointer types in a program and thus help in the 
identification of possible type hierarchies in the source code. Unfortunately, it is 
usually quite difficult to use an existing C compiler for tool development, since 
the C compilers' internal data structures and interfaces are rarely accessible and 
documented for tool writers. 

The IBM VisualAge-for-C++ product ships with two different C++ compilers: 
a traditional command line driven compiler that can be used with traditional build 
utilities such as make, and an incremental compiler that is built into the IBM 
VisualAge-for-C++ development environment (IDE, also referred to by its IBM 
project name Montana (Soroker et aI., 1997; Karasick, 1998; Martin, 1999). The 
IDE and its incremental compiler provide a novel means for tool writers to extend 
the environment. The compiler's internal data structures (the CodeStore) are very 
well documented and designed to be used by tool writers. By using these data 
structures and support routines, a tool writer can significantly reduce the com
plexity of the tools to develop while saving a great amount of time. 

IBM VisualAge-for-C++ provides for several ways to interface with the com
piler. Tools can extend the compiler by introducing code transformation or opti
mizations at compile time, or query the CodeStore for information on the program 
compiled once the compilation is finished. These tools can run either stand alone 
or be integrated into the IDE to provide new views and query facilities to the 
users. For our research, we wrote and tested a stand alone tool implementing the 
algorithms presented earlier by querying the CodeStore after completed compila
tion and then integrated it into the IDE. The complete tool consists of only about 
1500 lines of code, of which about 400 provide the integration into the IDE. 



www.manaraa.com

188 Martin and Muller 

is cest to the fC>il<Jw'N;l dot. types 

Ell ~ struct Worker ; 

E!I ~ struct Manager . 

B ~ slrucI Worker . 
Is c.st from the following dol. type. 
[!] ~ struct EmploJl1'e , 

B ~ strud Manager , 

is cest from the following dot. type. 

E!I ~ struct EmplOJl1'e ; 

oyee ( 
nt erJ1)1 oyeeKi nd j 

str1 no nome; 
str1 no ex tens 1 on i 

class worker extends ~loyee 
Mana.oer [] manager; 

Manager extends Emp 1 ayee 
1 nt nLl11Jnderl i nos j 

Employee [J underl 1 nQ' ; 

puQIIc : 
~ In! emplOJl1'eKind ; 
~ char extension ( 4 (; 
~ char n.me( 20(; 

Figure 9.6. Migration tool. Transliteration of data structures. 

9.5.4 Case Studies 

For a first case study and to verify the correct operation of our tool, we cre
ated a VisuaIAge-for-C++ project and compiled our example program within the 
VisuaIAge-for-C++ IDE. We then opened the migration page we implemented 
(Figure 9.6) . In the top left window, this page shows all data structures that have 
type cast relationships to other data structures. For each of these data structures, 
it also shows which data structures are directly related to it. Upon the selection of 
one of the data structures, the top right window displays the current C language 
implementation of that data structure, the bottom window displays the Java class 
hierarchy built using the type cast relationships.l 

Closer examination of the transliterated source shows a difference between the 
manual and the automatic transliteration: in the version produced by the tool, 
manager in the Worker class is an array. Our simple tool cannot determine 
whether the pointer in the original source is used as a reference to a Manager or 
as an array of Managers. The software engineer has to use his domain knowledge 
("every worker has exactly one manager"), or a more sophisticated tool needs to 

IThe algorithm we presented correctly identified the underlings field of the 
Manager data structure as unused and therefore removed it in the transliteration . Since a 
complete application would use this field, we added another function to our program that 
accesses this field. 



www.manaraa.com

9. Discovering Inheritance Relations in Non-Object-Oriented Code 189 

struct EmcJIo!Iee . 
Is ceo1 10 the loIowi"og dole types 
8 r=l struct Wo<k .... . 

.. tt"El:>ho<*:."CestItor"chYtest~ .c (49 . 28) 

.. 31 ' 28) 
8 r=l struct M nager . 

.. tt"El:>ho<*:e"Cestftor"chY1est~.c(56 . 29) 

.. tt"El:>ho<*:e"Cestftor"'chYl est'es..-.c(37 · 29) 
III ~ struct Worker . 
III ~ struct M noger . 

Ins .. rt 

>, 

struct Work .. r- • • (struct Work .. r-) .. ; 

emotoye Kind ; 
chor e>rtenslon (4 J; 
~·menger . 

chor name (20 J; 

printf(" is ""nag .. d by \s.\n" , W-)lIIiInager- >nallle); 

br .. ak; 
cas .. MAHAGER: 

( 
s truct Manager- • • (struct Manag .. r-) 1'; 
printf(" .anages \d .... ploy .... s.\n .. , III- )nu"'-lnderlings); 

Figure 9.7. Migration Tool. Analysis of type casts. 

be built that checks in what contexts the manager pointer is used . This is only 
one of the problems to be solved in the conversion of data types from C to Java, 
we won't discuss these further since they are beyond the scope of this chapter. 

The view can also be used to determine where in the source code type casts 
have been applied to data types (Figure 9.7). The software engineer can use this 
information to locate parts of the source code that can be coded more elegantly in 
Java by exploiting the class hierarchy that has been built (as in Figure 9.3). The 
standard set of views and search tools in the VisuaIAge-for-C++ IDE can be used 
to further explore the code and the usage of the data structures of interest. 

For a second case study, we examined a 30,000 line music notation program 
with a graphical user interface (GUI), written in a mix of C and C++. Since the 
program was usually built using a traditional compiler and makefiles, we first had 
to import the source files into the VisualAge IDE. Thanks to the relatively small 
size of the system (35 source files, only two link targets), this was not a problem. 
After successful compilation of the system in VisualAge, our tool identified two 
sets of related data structures by following the type casts between these data struc
tures. It determined the common fields of the data structures and proposed a class 
hierarchy. Moreover, it eliminated a number of fields that were not referenced by 
any routines of the program. The developers had named these fields "unused". 
This suggests that the findings of our tool were indeed correct. 

We presented our results to the developers of the system. They informed us that 
one of the sets of related data structures contained the central data structures of the 



www.manaraa.com

190 Martin and Miiller 

system. The developers mental model of the relationships of these data structures 
agreed with the hierarchy proposed by our tool. If the system was to be moved to 
Java, a conversion of the data structures as proposed by the tool would be likely. 

The second set of related data structures contained data structures of the aUI 
library, representing points and rectangles. The developers told us that the aUI 
library is not always consistent as to whether rectangular regions are specified as 
arrays of points or as rectangles. As an array of two points and a rectangle are 
stored identically in memory, type casts were used by the developers to convert 
these two data structures to each other. A class hierarchy for these classes is not 
appropriate. As the aUI library used in the system is not available for Java, the 
aUI part of the system will have to undergo major changes for a migration to 
Java. 

The small number of related data structures found in the program we stud
ied supports our assumption (see Section 9.5.1) that the number and depth of 
class hierarchies does not increase significantly-but more empirical evidence is 
desirable. 

9.5.5 Tool Usability 

For a tool to be usable on a large legacy system, it is important that the tool 
not only performs the automated tasks reasonably fast, but also visualizes the 
results adequately. If the results are voluminous, the tool has to support filtering 
and search facilities. The VisuaIAge-for-C++ IDE implements various kinds of 
search tools and a few filters. While the built-in filters are not powerful enough 
to simplify the complexity of a large project, the IDE's API enables the users to 
create their own advanced filters that can be targeted at the subject system. 

As our tool is based on the incremental C++ compiler of the VisualAge IDE, 
some work is required to import a make file based system into the IDE. If the 
system requires legacy libraries that are not supported by VisuaIAge-for-C++, 
it might be difficult or infeasible to import the system into the IDE. Efforts by 
other compiler writers to expose and document interfaces of their compilers would 
constitute a major advantage for tool developers. 

Our tool was designed to support the software engineer in the migration and 
restructuring of source code, not to magically transliterate all the code. The in
volvement of software engineers in the process is important: they will have to 
decide which of the restructurings proposed by the tool will improve the quality 
and maintainability of the code sufficiently to justify a change toward an object
oriented architecture. 

9.6 Research Challenges 

We showed how type conversion operators can be used to detect relations between 
data types in a C program. Another method to express relations of data types 



www.manaraa.com

9. Discovering Inheritance Relations in Non-Object-Oriented Code 191 

is to use unions. It should be possible to use considerations similar to the ones 
presented here to build inheritance hierarchies by examining these unions in C 
programs. Further research should combine both approaches. 

The examination of function pointers promises to be useful, too. Within data 
structures, they have often been used to work around the lack of virtual functions 
in non object-oriented languages. Once class hierarchies have been built, it should 
be possible to eliminate the need for function pointers by using virtual methods. 

Results gained from research into program slicing could be used for increasing 
coherence within the classes build by splitting functions operating on objects of 
several classes into specialized member methods for each of these classes (as in 
the conversion of show( ) in Figure 9.3). Program slicing tools should also be 
able to detect state variables and help in their replacement through type compari
son operators such as Java's instanceof operator. 

The tool presented only addresses the detection of inheritance in related 
data structures. Traditional techniques for identification of member methods for 
classes, as well as results from the research challenges should be integrated into 
the tool. Refactoring tools provide additional valuable features. 

9.7 Conclusions 

Migration of legacy systems written in procedural programming languages to 
object-oriented platforms is a problem many businesses currently face. In this 
chapter, we presented a migration strategy that not only allows legacy code to be 
ported to object-oriented platforms, but also exploits some of the object-oriented 
features of the target platform. We presented a tool that helps the software en
gineer in employing this strategy in the migration process. There are still many 
open questions and possibilities in both research and automation of migration to 
object-oriented technology. Our approach answers some of these questions in a 
way that can be automated and therefore proves feasible and valuable for mass 
software change. 

9.8 References 
Brown, W. J., Malveau, R. c., McCormick, H. W., and Mowbray, T. J. (1998). 

Antipatterns: Refactoring Software, Architectures, and Projects in Crisis. 
New York:John Wiley and Sons. 

Canfora, G., Cimitile, A., and Munro, M. (1996). An improved algorithm for 
identifying reusable objects in code. Software Practice and Experiences, 
26(1):24-48. 

Cimitile, A., Lucia, A. D., Di Lucca, G. A., and Fasolino, A. R. (1997). Identi
fying Objects in Legacy Systems. In Proceedings of 5th IEEE International 



www.manaraa.com

192 Martin and MUlier 

Workshop on Program Comprehension, pp. 138-147, May 28-30, Dearborn, 
MI. 

Di Mare, A. (1999). C Iterators. Technical Report, Universidad de Costa Rica. 
http://www.di-mare.com/adolfo/p/c-iter.htm. 

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. (1999). Refactor
ing: Improving the Design of Existing Code. New York: Addison-Wesley
Longman. 

Gall, H. and Klosch, R. (1995). Finding objects in procedural programs: an al
ternative approach. In Proceedings of 2nd IEEE Working Conference on 
Reverse Engineering, pp. 208-216, July 14-15, Toronto, Canada. 

George, J. and Carter, B. D. (1996). A strategy for mapping from function
oriented software models to object-oriented software models. ACM Software 
Engineering Notes, 21(2):56-63. 

Goldberg, A. and Robson, D. (1983). Smalltalk-80: The Language and Its Imple
mentation. Reading, MA: Addison-Wesley. 

Gosling, J., Joy, B., and Steele, G. (1996a). The Java Language Specification. 
Reading, MA: Addison-Wesley. 

Gosling, J., Joy, B., and Steele, G. (1996b). Type Comparison Operator "in
stanceof', In The Java Language Specification, Section 15.19.2, Reading, 
MA: Addison-Wesley. 

Karasick, M. (1998). The Architecture of Montana: An Open and Extensible Pro
gramming Environment with an Incremental C++ Compiler. In Proceedings 
of the Conference on Foundations of Software Engineering, November 3-5, 
Orlando, FL. 

Kontogiannis, K., Martin, J., Wong, K., Gregory, R., MUller, H., and Mylopoulos, 
J. (1998). Code Migration Through Transformations: An Experience Re
port. In Proceedings of CASCON '98, November 30-December I, Toronto, 
Canada. 

Liu, S. and Wilde, N. (1990). Identifying objects in a conventional procedural 
language: an example of data design recovery. In Proceedings of IEEE Con
ference on Software Maintenance, pp. 266-271, San Diego, CA. 

Livadas, P. E. and Johnson, T. (1994). A new approach to finding objects in 
programs. Journal of Software Maintenance: Research and Practice, 6:249-
290. 

Martin, J. (1999). Leveraging IBM VisualAge for C++ for Reverse Engineering 
Tasks. In Proceedings of CASCON '99, November 8-11, Toronto, Canada. 



www.manaraa.com

9. Discovering Inheritance Relations in Non-Object-Oriented Code 193 

Opdyke, W. F. (1992). Refactoring Object-oriented Frameworks. Ph.D. thesis, 
University of Illinois at Urbana-Champaign. 
http://st.cs.uiuc.edu/pub/papers/refactoring/opdyke-thesis.ps.z 

Soroker, D., Karasick, M., Barton, J., and Streeter, D. (1997). Extension Mech
anisms in Montana. In Proceedings of the 8th IEEE Israeli Conference on 
Computer Systems and Software Engineering, June 18-15, Herz1iya, Israel. 

Stroustrup, B. (1986). The C++ Programming Language. Reading, MA: 
Addison-Wesley. 

Yeh, A. S., Harris, D. R., and Rubenstein, H. B. (1995). Recovering abstract 
data types and object instances from a conventional procedural language. In 
Proceedings of Second IEEE Working Conference on Reverse Engineering, 
pp. 227-236, July 14-15, Toronto, Canada. 



www.manaraa.com

Part III 

Maintainability 



www.manaraa.com

10 
Design Properties and Evolvability of 
Object-Oriented Systems 

M. Ajmal Chaumun 
Hind Kabaili 
Rudolf K. Keller 
Franr;ois Lustman 

10.1 Introduction 

Over the years, cumulative data have shown that maintenance is a major cost 
concern---as a matter of fact, a growing cost concern (Pigoski, 1997). The 
maintainability of a system seems to have much influence on the ease or diffi
culty to implement changes. A consensus has emerged among the research 
community that the maintainability of a software system is dependent on its de
sign (Rombach, 1990), in the procedural paradigm as well as in the object
oriented paradigm. 

In ISO 9126, maintainability has four components, namely, analyzability, 
testability, stability, and changeability (ISO, 1992). In application areas such as 
telecommunications, software systems are evolving constantly at unprecedented 
rates. There are organizations that do not develop the software they operate, but 
purchase it. These organizations are not directly interested in testability or diag
nosis, but in the software's ability to sustain an on-going flow of changes. In this 
research, the focus will be on that single aspect of maintainability, i.e., change
ability. In the SPOOL project (cf. Chapters 6 and 13), we are investigating the 
dependency between the changeability of software systems and their design. 

One way of assessing changeability is to assess the impact of changes 
(change impact analysis). The approach we have taken is both analytical and 
experimental. It involves defining a systematic change impact model that is 
more complete and general than those presented in the literature, and applying it 
on industrial software systems to assess their changeability. 

In Section 10.2 of this chapter, we present work that is related to maintain
ability and changeability. The change impact model, and its application to C++, 
are described in Section 10.3. A first case study for testing the practicality of the 
model was carried out on a medium-sized C++ industrial software system, and is 



www.manaraa.com

198 Chaumun et al. 

presented in Section 10.4. The lessons learned from this case study led us to 
improve our experimental environment and to define and carry out a more ad
vanced experimentation. Thus, an attempt to find correlations between change 
impacts and design metrics was successfully performed on three large software 
systems. The experiment is detailed in Section 10.5, and its results are discussed 
in Section 10.6. Section 10.7 concludes the chapter and provides an outlook into 
future work. 

10.2 Software Maintenance and Design Properties 

Design characterization is mostly done through metrics. A conventional distinc
tion is made between architectural or high-level design and algorithmic or low
level design, and according to Rombach (1990), the former has more influence 
on maintainability than the latter. In the realm of object-oriented design, nu
merous design metrics have been published (Abreu, 1994; Chidamber and Ke
merer, 1994; Lorenz, 1993). One suite of object-oriented design metrics has 
been proposed by Chidamber and Kemerer (Chidamber et aI., 1998; Chidamber 
and Kemerer, 1994; Chidamber and Kemerer, 1994) and progressively refined. 
The suite (called C&K metrics later in this chapter), theoretically well-grounded, 
comprises of four interclass metrics---DIT (depth of inheritance tree), NOC 
(number of children), CBO (coupling between objects), and RFC (response for a 
class) and two intraclass metrics, WMC (weighted methods per class) and 
LCOM (lack of cohesion in methods). 

Several studies were conducted to validate the metrics and to relate them to 
some maintenance or some maintainability property. Li and Henry, took five of 
the above metrics (CBO was excluded), added three of their own (DAC, number 
of ADTs defined in a class; MPC, message-passing coupling; and NOM, num
ber of methods), and tested that set on two commercial object-oriented systems 
numbering 39 and 70 classes. They were able to conclude that there is a strong 
relationship between the metrics and maintenance effort (expressed in number of 
lines changed). Later on, they restricted themselves to the metrics available from 
design documents, and were able to draw the same conclusions (Li and Henry, 
1993). Basili et aI. (1996) were interested in a specific part of maintenance, i.e., 
fault detection and fault proneness. Experiments on eight systems developed by 
students showed that, individually, the C&K metrics were related to the prob
ability of fault detection and that, globally, they were also good indicators of 
faulty modules. 

Some studies on the relationship between design and maintainability were 
based on other design metrics. Hsia et aI. (1995) for example, studied the effect 
of architecture on maintainability. On two systems designed by students, the 
authors measured maintainability (adding new features) and its relationship to 
architecture, namely the broadness of the inheritance trees. It turned out that 
maintainability is better for systems with broader trees, i.e., shallower inheri-



www.manaraa.com

10. Design Properties and Evolvability of Object-Oriented Systems 199 

tance trees. Briand et al. (1997) defined 18 coupling measures between classes 
and studied their significance in predicting fault-proneness in several industrial 
systems on which they had gathered maintenance data. They were able to con
clude that some of the coupling metrics were significant predictors of fault
proneness. 

Less work has been conducted on the matter of change impact. Han (1997) 
developed an approach for computing the change impact on design and imple
mentation documents. Artifact dependencies involve inheritance, aggregation 
and association. Change impact is identified based on the value of a Boolean 
expression. However, software changeability is not really assessed. Kiran et al. 
(1997) compared the maintainability of software systems in the functional para
digm and in the object-oriented paradigm. They used programs developed by 
students and defined sets of changes, which were implemented by graduate stu
dents. Results suggest that the maintenance effort is less important in the object
oriented paradigm than in the functional paradigm. In particular, the impact of 
the set of changes considered is more localized in the object-oriented paradigm 
than in the functional paradigm. 

Kung et al. (1994) was interested in the system wide impact of changes for 
regression-testing purposes. They defined a classification of changes (broadly, 
data, method, class, and library) and impacts resulting from the changes and 
based on three links: inheritance, association, and aggregation. They defined 
formal algorithms to calculate all the impacted classes including ripple effects. 
Li and Offutt (1996) proposed also algorithms for calculating the complete im
pact of changes made in a given. They were interested in the effects of encap
sulation, inheritance, and polymorphism on the impact. 

This literature survey can be summarized as follows. Most of the results pre
sented above are derived from the study of small commercial systems or of sys
tems developed in course assignments. Based on these experiments, a growing 
body of evidence suggests that the design has an influence on the maintainabil
ity, and that the C&K metrics, for example, may be considered as maintainabil
ity indicators. 

Changeability has been studied less than both test detection and the overall 
maintenance effort. In particular, there is no evidence that design has an influ
ence on changeability. Moreover, most of the change impact studies in the lit
erature propose incomplete models. For example, Kiran et al. (1997) considered 
only inheritance, aggregation and association but not invocation and friendship. 
Li and Offutt (1996) did not consider changes in inheritance links, nor virtual 
methods. The association and aggregation links were not fully covered in their 
impact calculation algorithms either. Kung et al. (1994) did not consider the 
impact of data change and of method change because others had already covered 
it. 

In summary, most results on the influence of design on changeability come 
out of small systems, and the change impact models we found in the literature 
are incomplete or not systematic. 



www.manaraa.com

200 Chaumun et al. 

10.3 Change Impact Model 

Our goal in the SPOOL project was to define a list of changes and a change im
pact model as complete and systematic as possible. The model should be lan
guage-independent, i.e., be situated at the design level. Also, it should allow for 
the concise and systematic impact calculation by using a formal approach. Fi
nally, it should be applicable on industrial strength software systems with hun
dreds or even thousands of classes. 

10.3.1 Conceptual Model 

Model Overview 

The model considers a system at the design level. A software system is then 
viewed as composed of a set of classes. A class, in addition to being an artifact 
in its own right, includes a set of variables (the instance variables) and a set of 
methods. Also, classes are linked together by conceptual links. 

By definition, what is called a change is a unique change to a single compo
nent, class, variable, or method. It has been stated that interclass links seem to 
have more importance than intraclass links. It has therefore been decided to con
sider intraclass change impact as a whole, but to concentrate the investigation on 
the impact of a change on other classes. 

Once a change is applied to a class or to one of its constituents, other classes 
may be impacted if they have some link with the changed class. The impacted 
classes will be defined by their links with the changed class. It is worthy to note 
that only classes having a direct link with the changed class will be considered. 
This means that at this stage, our model will not take into account the ripple 
effect of a change. Finally, by definition, the impact of a change is the set of 
classes directly impacted by the change. The nature of the impact is not consid
ered, the main reason being that it is often impossible to define completely the 
nature of the impact. 

Changes 

We define a change to a system as one to any of the three components. Exam
ples are the addition of a variable, change in a method's scope from public to 
protected, or the removal of the relationship between a class and its parent. The 
main changes to object-oriented systems at the design level are identified. They 
are categorized according to the component they affect, and a total of 13 
changes are identified (see Table 10.1). 

As a matter of fact, some changes may be refined. One example is the case 
of the change in method scope, which may be refined into change in method 
scope from public to private, from public to protected, and so on. Another ex
ample is the method signature change that may be refined into seven different 



www.manaraa.com

10. Design Properties and Evolvability of Object-Oriented Systems 2D I 

Table I D.I. Changes to an object-oriented system at the design level. 

Component 

Variable 

Method 

Class 

Change definition 

Change variable type 
Change variable scope 
Add variable 
Delete variable 

Change method return type 
Change method implementation 
Change method signature 
Change method scope 
Add method 
Delete method 

Change inheritance structure 
Add class 
Delete class 

changes. But for the sake of simplicity, these refined changes are not reported in 
Table 10.1. 

Links 

Once a change is applied to a class or to one of its components, other classes 
may be affected if they have some link with the changed class. A link is of any 
of the following types: association (S), aggregation (G), inheritance (D), and 
invocation (I). 

• Association means that one class is referencing data variables of another 
class. 

• Aggregation between two classes is established when a class definition is 
based on objects of the other class. 

• Inheritance between two classes means that the derived class can benefit 
from whatever has already been defined in the base class. 

• When methods defined in one class are being invoked by methods in an
other class, this is referred to as invocation. 

The links are unidirectional. The class at the origin of the link is dependent 
on the class at the end. In our model, the changed class is always at the end of 
the link. For example, the inheritance link means that the changed class is the 
base class and the impacted class is the derived class, or in the association class, 
that the impacted class makes reference to the changed class. 

The links are independent from each other, and any number and types of 
links may be found between two classes. 

In addition to the impact on other classes, a change may create some impact 
within the changed class itself. For example, a change in the type of a variable 



www.manaraa.com

202 Chaumun et al. 

of one class leads to an impact in all the methods in the same class that use that 
variable. An artificial link called local (L) is introduced to denote such impact. 

Impact 

The impact of a change, i.e., the set of classes directly impacted, depends on two 
main factors. First, different types of change lead to different sets of impacted 
classes. For example, the change in the type of a variable has an impact in all the 
classes referencing this variable, whereas the addition of a parent to a class may 
cause impact in at least all derived classes. 

Given a type of change, the type of link between classes is the second main 
factor to influence the impact result. Consider a change in the scope of a method 
from public to protected. Classes that invoke this method will be impacted, but 
classes that are derived from the changed class will not. Note that more than one 
type of link between the changed class and an impacted class can be involved in 
the calculation. 

Thus, for a given change chi in class Clj' the set of impacted classes is de
fined by a set expression, written with Boolean operators, in which the variables 
stand for the links. For example, the impact formula for such a hypothetical 
change may be given by 

Impact (Clj , Chi) = SH' + G, 

meaning that classes that are in association (S) with, and not derived (H-) from, 
the changed class Clj , or classes that are in aggregation (G) with Clj are im
pacted. As examples, the change impact formulae for a change to each of the 
three component types are as follows: 

1. Impact (variable deletion) = S + L 
2. Impact (method scope change from public to protected) = H-IF-
3. Impact (deletion of nonabstract class) = S + G + H + I 

10.3.2 Application to C++ 

Design documents, if available, are often not consistent and do not reflect the 
reality of the system. In fact, the only document we can be sure to truly corre
spond to the running system is the source code. The industrial systems targeted 
for experimentation and provided by our project partner are written in the C++ 
language. For these reasons, it was decided to map the conceptual model into the 
C++ language. 

In C++, a software system is viewed (e.g., at the conceptual level) as a set of 
classes, each class including a set of variables and a set of methods. Changes are 
also considered one at a time and only direct impact will be considered, not any 
ripple effect. 



www.manaraa.com

10. Design Properties and Evolvability of Object-Oriented Systems 203 

Changes 

Only syntactic, static changes are considered. If a change is made to a class, the 
system has to be recompiled. If it compiles successfully, it means that there is no 
impact. This means that only static properties of the source code are considered. 
Impact arising at run-time due to polymorphism is not addressed. Neither are 
semantic issues that may arise from the change. This is because it might be dif
ficult to assess them by an automatic processing of the source code. 

The following illustrate some changes considered: 

I. The code change from "class c2: public c1" to "class c2: protected cl" cor
responds to a change in inheritance derivation for class c2. 

2. The code change from "void m (void)" to "void m (int a)" represents a sig
nature change in method m. 

3. The code change from "int v;" to "double v;" represents a change in the 
type of variable v. 

The list of 13 changes identified at the design level (see Table 10.1) was ex
tended to address the code level and the specificity of C++. For instance, the 
change "variable change from static to nonstatic" was introduced. Another ex
ample of a refined change is the "variable scope change" which may be sub
classified as six changes: 

I. From public to private 
2. From public to protected 
3. From protected to private 
4. From protected to public 
5. From private to public 
6. From private to protected. 

Changes are handled one at a time. For example, for the code transformation 
"class c2: c1, cO { ... }" to "class c2 { ... }", we say that c2 has deleted parent c1 
followed by c2 has deleted parent cO instead of c2 has deleted parents c1 and cO. 
We also consider the changes to be non-overlapping, i.e., a change to a method 
or to a variable component is not also a change to the class component that 
comprises the method or variable under consideration. 

The final list, presented in Table 10.3, contains a total of 66 changes, com
prising 12 changes for variable, 35 for method, and 19 for class components. 

Links 

The next step is to establish which links are represented in C++ and how to 
identify them. The four links (S, G, H, and I) in the conceptual model are en
countered in C++. In addition, a fifth link, friendship (F), which does not exist at 
the design level but is an integral part of the language, was introduced. These 
five links are described below with examples. We consider Cl as the class to be 



www.manaraa.com

204 Chaumun et al. 

changed and look for potential impact in class C2, with C2 being linked to CI. 
Comments in the source text are inserted using the double slash (1/). Note that 
the "local" link (L) is considered conceptual and occurs, when the changed class 
coincides with the impacted class. 

(5) Association 

class C2 { 

C2_m1 ( ) 

} 

I I C1_v1 is a var. of Cl. 
II 01 is a global object 
II or global object 
II reference of C1. 

... C2_v1 = ol.Cl_vl; 

II olptr is a global 
II object pointer of C1. 
... C2_vl = olptr->Cl_vl; 

II C1_v1 is used in 
II parameter list. 
C2_m2 ( ... , ol.Cl_vl, ... ); 
C2_m3 ( ... , olptr->Cl_vl, ... ); 

} ; 

(H) Inheritance 

II private inheritance. 
II (protected, public: 
II similarly) 
class C2: private Cl { ... }; 

(F) Friendship 

class C1 { 

II C2 can access any member 
Ilof C1. 
friend class C2; 

} ; 

Impact 

(G) Aggregation 

(i) by reference: 

class C2 { 

II b is a declared 
II variable of type 
II pointer to C1 . 
Cl * b; 
II In constructor, 
C2: :C2 () ( 

II b is dynamically 
II created . 
b = new C1(); 

} 

} ; 

(ii) by value: 

class C2 { 

II An instance of C1 is 
II part of C2. 
Cl b; 

} ; 

(I) Method Invocation 

Class C2 { 

II 01 is either a global 
II object or an object 
II reference of C1. 
o1.Cl_m ( ... ); 
II 01 is a global object 
II pointer of C1. 
ol->Cl_m ( ... ); 

}; 

To calculate the impact of a change, a truth table is set up for that change with 
the five links appearing in the top (see Table 10.2). Each row represents one 
configuration of these five links (present or not). Depending on the combination 



www.manaraa.com

10. Design Properties and Evolvability of Object-Oriented Systems 205 

Table 10.2. Top part of truth table for variable scope change from public to private. 

Links of Class C2 with Cl Impact on class C2 

S G H F (I: impact, X: no impact) 

y y y y y X 
Y Y Y Y N I 
Y Y Y N Y X 
Y Y Y N N I 
Y Y N Y Y X 
Y Y N Y N I 
Y Y N N Y X 
Y Y N N N I 
Y Y Y Y Y X 

of links corresponding to the row, there is impact (I) or not (X), and the row is 
marked accordingly in the "Impact" column. It is worth mentioning that in some 
cases, it is not known whether there is impact or not (uncertain impact) until the 
corresponding piece of code is closely examined. For example, consider the 
change in the return type of a pure virtual method. Derived classes mayor may 
not define the method. If the method is not defined in a derived class, there is no 
impact. But, if the method is being defined in a derived class then, there is im
pact in that method definition. Only by looking at the derived class definition 
can one determine whether there is impact or not. This type of impact (uncertain 
impact) has been treated as certain impact for the purpose of impact calculation. 

In some cases, it may happen that the state underlying a row cannot exist, 
and the row is marked with ".". For example, when there is a change in the re
turn type of a pure virtual method, the rows in which G appears cannot be in
vestigated since the abstract class can be instantiated as an object (G). For each 
row, the appropriate Boolean expression is derived and reduced, if possible, and 
the term "L" is appended if there is local impact. For example, for a deletion of a 
nonabstract class in the class inheritance structure (code change from "class c2: 
c J, cO { ... }" to "class c2: cO { ... } "), the corresponding expression is H + F + L, 
which implies there is impact in derived classes (H), in friend classes (F), and 
locally (L), too. It may also happen that a change triggers another change (trig
gered change) to occur. For example, addition of a pure virtual method in a 
nonabstract class results in a triggered change since the class is now turned ab
stract. To indicate a triggered change, a note to the final expression is added, in 
the form ie (change id}--"ie" stands for impact expression and "change id" re
fers to the triggered change). 

For each of the 66 identified changes, its impact has been calculated (see Ta
ble I 0.3). For illustration, consider the change in variable scope from public to 
private (code change from "public: int v;" to "private: int v;"). From the 
change's truth table (Table 10.2), the respective canonical expression is derived, 
for example: 



www.manaraa.com

206 Chaumun et al. 

Table 10.3. Impact result for all changes (C++). 

Change Id 

v.1.I 

v.1.2 

v.I.3 

v.IA 

v.I.S 

v.I.S.1 

v.I.S.2 

v.I.S.3 

v.I.SA 

v.I.S.S 

v.I.S.6 

v.1.6 

v.1.6.1 

v.1.6.2 

m.2.1 

m.2.1.1 

m.2.1.2 

m.2.2 

m.2.2.1 

m.2.2.2 

m.2.2.3 

m.2.2A 

m.2.2.S 

m.2.2.6 

m.2.3 

m.2.3.1 

m.2.3.2 

m.2A 

m.2.S 

m.2.5.1 

m.2.S.2 

m.2.6 

m.2.6.1 

m.2.6.1.1 

m.2.6.1.2 

m.2.6.1.3 

m.2.6.2 

m.2.6.2.1 

m.2.6.2.2 

m.2.6.2.3 

m.2.6.3 

m.2.6.3.1 

m.2.6.3.2 

Change description 

Variable value change 

Variable type change 

Variable addition 

Variable deletion 

Variable scope change 

Public -> Private 

Public -> Protected 

Protected -> Pri vate 

Protected -> Public 

Private -> Public 

Private -> Protected 

Variable change ( StaticlNon .watic ) 
Static -> Non static 

Non static -> Static 

Method change ( StaticlNon static) 
Static -> Non static 

Non static -> Static 

Method change (PurlNon virtual) 

Virtual-> Non virtual 

Non virtual -> Virtual 

Virtual -> Pure virtual 

Non virtual -> Pure virtual 

Pure virtual -> Virtual 

Pure virtual -> Non virtual 

Method return type change 

Non pure virtual method 

Pure virtual method 

Method implementation change 

Method signature change 

Non pure virtual method 

Pure virtual method 

Method scope change 

Public -> Private 

Non virtual method 

Virtual method 

Pure virtual method 

Public -> Protected 

Non virtual method 

Virtual method 

Pure virtual method 

Protected -> Private 

Non virtual method 

Virtual method 

Impact expression 

S 

S 

SF' 

SH'F' 

SHF' 

S 

S+G+H+I 

H + ie(3.1.I) 

H + ie(3.1.2) 

H + ie(3.1.2) 

1+ ie(3.1.2) 

H 

H 

IF' 

IF' 

H'IF' 

H'IF' 

HIF' 

HIF' 

Local impact 

L 

L 

L 

L 

L 

L 

L 

L 

L 

L 

L 

L 

L 

L 



www.manaraa.com

10. Design Properties and Evolvability of Object-Oriented Systems 207 

Table 10.3. (continued) 

m.2.6.3.3 Pure virtual method 

m.2.6.4 Protected -> Public 

m.2.6.4.1 Non virtual method 

m.2.6.4.2 Virtual method 

m.2.6.4.3 Pure virtual method 

m.2.6.5 Private .> Public 

m.2.6.5.1 Non virtual method 

m.2.6.5.2 Virtual method 

m.2.6.5.3 Pure virtual method 

m.2.6.6 Private -> Protected 

m.2.6.6.1 Non virtual method 

m.2.6.6.2 Virtual method 

m.2.6.6.3 Pure virtual method 

m.2.7 Method addition 
m.2.7.1 Pure virtual method S+G+H+I+F 

m.2.7.2 Virtual and non virtual method 1+ ie(3.1.2) L 

m.2.8 Method deletion 

m.2.8.1 Pure virtual method ie(3.1.2) 

m.2.8.2 Virtual and non virtual method 1+ ie(3.1.I) L 

c.3.1 Class change ( AbstractINon-abstract ) 
c.3.1.1 Non abstract -> Abstract G+H+I L 

c.3.1.2 Abstract -> Non abstract H L 

c.3.2 Class friendship relation change 
c.3.2.1 Add friend 

c.3.2.2 Delete friend F(S+G+ H+ I) 

c.3.3 Class deletion 
c.3.3.1 Non-abstract class S+G+H+I 

c.3.3.2 Abstract class S+H+I 

c.3.4 Class inheritance derivation 
c.3.4.1 Public -> Private P(S+I) 

c.3.4.2 Public -> Protected H'P(S+I) 

c.3.4.3 Protected -> Private HP (S + S'G + S'I) 

c.3.4.4 Protected -> Public 

c.3.4.5 Private -> Public 

c.3.4.6 Private -> Protected 

c.3.5 Class inheritance ( VirtuaVNon virtual) 
c.3.5.l Virtual -> Non virtual L 

c.3.5.2 Non virtual -> Virtual L 

c.3.6 Class addition 

c.3.7 Class inheritance structure 
c.3.7.l Add abstract class S + G + H + I + ie(3.1.I) L 

c.3.7.2 Add non abstract class H L 

c.3.7.3 Delete abstract class H + F+ ie(3.1.2) L 

c.3.7.4 Delete nonabstract class H+F L 



www.manaraa.com

208 Chaumun et al. 

SGHIF' + SGHI'F' + SGH'IF' + SGH'I'F' + 

SG'HIF' + SG'HI'F' + SG'H'IF' + SG'H'I'F'. 

Reducing this expression yields SF', meaning there is impact in classes that 
are in association (S) with the changed class, i.e., referencing the variable, but 
which are not friends (F') of the changed class. 

For 25 of the 66 changes there is no impact whatsoever (neither in other 
classes nor locally), for 4 changes there is only local impact, for 37 changes 
there is impact in other classes, and for 11 changes there is a triggered change. 

10.4 Proof of Concept Implementation 

10.4.1 Rationale 

There were three reasons for performing this implementation: 

• to see if the change impact model could be implemented and applied to an 
industrial-strength software system; 

• to explore the architecture of such a change impact calculator; 
• to make on attempt to find some relations between impact of changes and 

some design property. 

Because it was meant to be mostly a proof of feasibility experiment, it was 
decided to limit its scope. The architectural environment should require the 
minimum amount of work to be set up, only one change would be considered, 
and only one design property would be probed for relationship with impact. 

10.4.2 Definition of Experiment 

The test system provided by our project partner is a decision support system for 
telecommunications. For confidentiality reasons, it is called System-B in this 
chapter. It is written in C++ and comprises 1420 classes. However, it could not 
be analyzed in its entirety in a single parse due to lack of memory. The work 
was performed on 85% of the system. 

The change considered was the method signature change; the Boolean ex
pression of its impact is I, meaning there is impact in classes where the method 
is invoked. The size of the impact set was calculated for the method signature 
change on every method defined in a targeted class, summed for all the methods 
defined in that class, and divided by the number of methods of that class. In the 
rest of the chapter, this average value will be called "change impact." The im
pact results were twofold: the number of classes impacted, and the number of 
lines impacted. These results were used in further calculations to estimate the 
mean and standard deviation of the change impact for the whole system. The 



www.manaraa.com

10. Design Properties and Evolvability of Object-Oriented Systems 209 

design property considered for relationship with the impact was the number of 
methods of a class. More specifically, it was the WMC metric, which in our ex
periment is equal to the number of methods defined in a class. The relationship 
tested was defined by the following hypothesis: 

For the test system, there is a relationship between the WMC metric 
and the change impact of the method signature change as defined 
above. 

The prototype environment is illustrated in Figure 10.1. Queries are defined 
to calculate the impact expressions. These queries are themselves contained in 
scripts, i.e., high-level specifications written in GEN++, the c++ implementa
tion of GENOA (Devanbu, 1992). Analyzers are generated from the scripts. The 
change type and the changed component are specified as input to a front-end 
application written in C++. Once the input is validated, the front-end determines 
which analyzers are to be invoked, based on the type of the given change. The 
test system is compiled into an abstract semantics graph, a language
independent view of the source code, using the AT&T C++ front-end. The ab
stract semantics graph consists of nodes that represent program elements such as 

Informati on 

Sy tern Source 
Code 

........ .......... .. (··,..---C-L
fr

-
o
-
nt
----,····\ 

(AT&T) 

Abstract 

................... .. 

SCripts 
(GEN++) 

GE OA 

Format 

on change 
: ................ ................................................. .... - ............. , .......................... .. . . ......................... . 

(changed 
component : 
and type of ~ 

Formatted 
Results 

change) L. .................................................................................................................................................. ; 

Figure 10.1. Prototype of change impact model (C++). 



www.manaraa.com

210 Chaumun et al. 

expressions, statement, and the like. The analyzer runs over the abstract seman
tics graph gathering the information specified in the script. The output comprises 
the line number, class name and file name of the impact, which is sent back to 
the front-end application. 

After performing intermediary calculations on all results received, the front
end application stores the final results in ASCII format. The front-end applica
tion can be invoked interactively or in batch mode via a shell script. 

10.4.3 Tests and Results 

Experimental approach 

At first, during the experimentation stage of the work, some descriptive statistics 
on the test system were produced. They are presented in Table 10.4. The system 
has quite a flat inheritance hierarchies (refer to DIT column in Table 10.4) and a 
majority of classes with a small number (less than 20) of methods. These results 
are similar to the observations of others (Basili et aI., 1996; Chidamber and Ke
merer, 1994; Li and Henry, 1993). But there exist a few outlier classes with a 
large number (more than 100) of methods including the one with 172 methods. 
This seems to be a sign of poor object-oriented practice, and we contend that 
these classes should have been further decomposed into smaller units. 

The second step consisted in calculating the impact for the method signature 
change. This could not, however be carried out as planned. The time required to 
parse the system amounted to about 14 minutes per change impact computation 
for each method signature change. Given that there were over 14,000 methods in 
the system, computing the impact for all of them was realistically impossible. 
Instead of obtaining results for the whole population of classes, a more modest 
approach, based on sampling, had to be taken. The population of the 1044 sys
tem classes may be considered heterogeneous since their number of methods 
varies from 1 to 172! So, the stratified sampling approach (Alalouf et aI., 1990) 
was applied. This caused the breaking up of the system into three groups based 
on the WMC criterion: 
• Group I (lowest WMC values) contains those classes with 1 or 2 methods. 

Table 10.4. Summary of metrics for test system. 

WMC DIP NOC CBO RFC LCOM 
Min. I 0 0 0 0 0 
Max. 172 8 29 437 541 3587 
Mean 13.50 2.87 0.88 11.71 24.10 27.61 
Median 8 2 0 7 10 0 
Std Dev. 17.82 2.27 2.41 20.57 40.26 216.20 

a DIT refers to the maximum path length from a class to the root class of the inheritance 
tree. 



www.manaraa.com

10. Design Properties and Evolvability of Object-Oriented Systems 211 

• Classes in Group II (middle-range WMC values) have no less than 3 and no 
more than 29 methods. 

• The remaining classes, that is, those with at least 30 methods, were found in 
Group III (highest WMC values). 

There were 109,837, and 98 classes in Groups I, II, and III, respectively. For 
Group I, the experiment was carried out on all the 109 classes. However, for 
Group II and III, we focussed on 30 randomly selected classes in each group. In 
Group II, the selected classes were split equally among those with 12, 13, and 14 
methods (classes with mean number of methods in the whole system are those 
with 13 methods). In Group III, the class with the maximum number of methods 
was also included in the test sample. 

The hypothesis (relationship between WMC and impact of method signature 
change) was tested twice on the stratified samples, first by correlation analysis 
and, second, by the analysis of variance (ANOV A) (Matel and Nadeau, 1988). 
In the ANOV A test, a null hypothesis Ho was formulated, stating that the mean 
change impact is equal in all three samples. The hypothesis would either be ac
cepted or rejected. In case of rejection, the alternative hypothesis HI (which im
plies that for at least two samples, the mean change impact differs) would be 
accepted. 

Results 

Descriptive statistics of the impact results for both classes and lines are summa
rized in Table 10.5 below. In Group III, there is no class with null impact. In 
both Groups I and III, one single class yields the maximum values for class and 
line impact; in Group II, however, these values result from two different classes. 
The mean value for class and line impact increases through Group I to III. 

The estimate variance of each sample (the three groups) was calculated by 
using the stratified sampling approach. The three estimate variances were then 
used to compute the estimate mean of the whole system. With 95% confidence, 
the mean value lies between 0.54 and 0.99. The standard deviation of the change 
impact was also estimated for the whole system by combining the three samples 
into one, and the value was found to be between 1.52 and 1.89. The sample cor-

Table 10.5. Descriptive statistics of the impact results for the three groups. 

Group I Group II Group III 
(1-2 methods) (3-29 methods) (30+ methods) 

Classes: Total (Tested) 109 (109) 837 (30) 98 (30) 
Impact Class Line Class Line Class Line 
Min 0.00 0.00 0.00 0.00 0.04 0.17 
Max 19.50 125.50 3.54 11.54 7.12 8.24 
Mean 0.30 1.35 0.77 1.86 1.31 2.75 
Median 0.00 0.00 0.48 0.72 1.24 2.49 
Std Dev. 1.90 12.03 0.79 2.61 1.27 1.94 



www.manaraa.com

212 Chaumun et al. 

relation coefficient between the two variables, the WMC metric, and the meas
ured change impact was also calculated, and found to be somewhat weak, 0.2l. 
A scatterplot revealed two outlier classes. Once the outliers were removed, the 
correlation coefficient rose to 0.55. 

In the variance analysis approach (ANOY A), the null hypothesis we wanted 
to test was 

Ill' ~ and 113 represent the mean values of the change impact for the three 
groups. The variance within each group and between different groups was 
computed. The calculated Fo (4.607) was found to be greater than the Fisher 
value, Fa (3.050). Details of the intermediate results may be found in Chaumun 
et al. (1999). 

Interpretation 

The estimate mean of the change impact (less than I) provides an interesting 
result. It can be said that a method signature change to the system implies, on 
the average, not more than one class being impacted. In other words, this system 
can readily absorb a method signature change. However, two outliers classes are 
pinpointed as classes that should be of concern for the method signature change 
because of their high impact value. 

From the impact results, two anomalies are noted. Surprisingly enough, there 
were classes with 14 methods, but with null impact. Those classes were closely 
examined and found to contain mostly virtual methods. Since we perform static 
analysis of the source code, invocation of these methods may have been "re
routed" elsewhere. The second anomaly is the excessive impact (7.12 and 
19.50), which are well above the mean value of 0.56 for the 3 samples com
bined) associated with two classes, one of which has only two methods. 

The correlation analysis shows a very weak (0.21) correlation between the 
WMC metric and the change impact. When the two outliers classes (with exces
sive impact) were omitted, the correlation went up to a somewhat stronger level 
of 0.55. But we should be cautious because only a sample of the test system has 
been used. 

The ANOY A test confirmed that correlation result. We obtain a value 
(4.607) greater than the Fischer value (3.050). This means that we have to reject 
the null hypothesis Ho and accept the alternative hypothesis HI which, implies 
that the mean of the change impact differs for at least two samples. We conclude 
that there is indeed a relationship between the WMC metric and the change im
pact of the method signature change for the test system. 

The calculation of the estimate of the mean value of the change impact and 
the correlation analysis were performed again with impacted lines replacing 
impacted classes. Our findings based on the class impact results were confirmed 
by the line impact result. 



www.manaraa.com

10. Design Properties and Evolvability of Object-Oriented Systems 213 

10.4.4 Lessons Learned 

There were positive results in the validation. 

• The impact model can be implemented and is a useful tool to investigate 
change impact. 

• The descriptive analysis of the impact has brought out interesting results on 
the system. It has, for example, shown that on the average, the considered 
software may easily absorb a method signature change. 

• It has also enabled us to find those classes that would potentially create 
problems if a method signature change would have to be carried out. 

• It has shown that a relationship, although a tenuous one, seems to exist be
tween WMC and the impact of a method signature change. This result was 
considered as a stimulus to investigate further and broader. 

On the negative side, mainly system size and the computation approach 
caused problems. 

• First and foremost, system size is a problem in empirical studies of software 
systems. As mentioned above, there was not enough memory to store the 
whole of the system. 

• The number of classes, an indicator of size, had an impact not only on com
puting time, but also on statistical methodology. As reported in Section 
10.4.3, the time required to compute one change impact was so high that we 
could not apply the change to all classes. As a result, the statistical analysis 
could not be performed on the complete population, but only on a sample, 
and the statistical methodology had to be adjusted accordingly. 

• The prototype system also posed some problems. Each change impact had 
to be programmed by a separate script that would be processed by GENOA 
to generate an analyzer (see Figure 10.1). That analyzer would parse the 
whole system each time it was called upon to look up information. 

• Finally, when performing the post-mortem of the experiment, it was real
ized that some methodological aspects were specific to the change consid
ered and could not be carried over to other changes. The case in point was 
the definition of how to measure impact. In our case, it was decided that for 
each class, the impact would be the average number of impacted classes by 
a change to each method's signature. But, for another change such as 
change to a class structure, this definition might be inappropriate. 

The lessons learned can be summarized as follows: 

• The system under study should be parsed only once to capture and store the 
abstract data representation for possible retrieval later. 



www.manaraa.com

214 Chaumun et al. 

• The experimentation environment should be able to handle and process ef
ficiently large software systems. 

• For any change, what is called impact and how to calculate this impact must 
be defined beforehand. 

• The change impact computation should require little programming effort 
and should be efficient even for large systems. 

10.5. Experiment 

10.5.1 Objectives 

The lessons, positive and negative, drawn from the validation test were put to 
good use, and more ambitious objectives could be set for the experiment. They 
can be summarized in one word: generality. The experiment was directed at 
finding results that could be more general than just one change or one system or 
one design property. More specifically, the objectives included the following: 

• to find results that would apply to more than one change; 
• to find results applicable to more than one software system, and if possible, 

applicable to all systems; 
• to find relationships with several design properties defined by metrics. 

10.5.2 Software Environment 

The new environment, depicted in Figure 10.2 was designed to address the 
problems encountered in the validation test. It provides a repository-based solu
tion (see Chapter 13). The test system source code is parsed by a parsing tool, 

Design 
repository 

r-T------,..., 
Result 

r--------------

,--------------

Figure 10.2. Environment for change imoact calculation. 



www.manaraa.com

10. Design Properties and Evolvability of Object-Oriented Systems 215 

e.g., a compiler. GEN++, the C++ implementation of GENOA [II], was used in 
this extraction process. The parsed information contains data about all the 
classes and links in the system. This information is captured and fed into a de
sign repository. The schema of the design repository is based on our extended 
UML (Unified Modeling Language) metamodel 1.1 (Rumbaugh et ai., 1999). 
The object-oriented database management system POET 5.1 (Poet, 1999) serves 
as the repository backend, with the schema being represented as a Java 1.1 class 
hierarchy. Change requests are batch-processed using a flexible report generator 
mechanism. They typically contain information on the change type as well as on 
the target class, methods, and variables. This triggers a set of queries corre
sponding to the specified change. The code in these queries uses the change re
quest information as parameters to interrogate the repository. Raw results are 
fetched and processed into ASCII files. The ASCII files obey a specific format 
that can readily be transferred into spreadsheet programs such as Excel for fur
ther statistical processing. 

10.5.3 Definition of Study 

Test Systems 

In order to broaden the scope of the expected results, the changeability of three 
different systems was assessed. These systems vary in class size and application 
domain. The first test system is XForms, which can be freely downloaded from 
the web (Xforms, 1998). It is a graphical user interface toolkit for X window 
systems. It is the smallest of the test systems (see Table 10.6). ET ++, the second 
test system, is a well-known application framework (Weinand et ai., 1989). The 
version used in the experiment is the one included in the SNiFF+ development 
environment (TakeFive, 1999). The third and largest test system is System-B 
from Bell Canada (see Section 10.4.2). It is used for decision making in tele
communications. Table 10.6 provides some size metrics for these systems. Note 
that header files from the compiler are included in the numbers shown in the 

Table 10.6. Size metrics of test systems. 

Lines of code 
Lines of pure comments 
Blank lines 
# of effective classes 
# of classes 
# of files (.Ct.h) 
# of generalizations 
# of methods 
# of variables 
Size in repository 

XForms 
7,117 

764 
1,009 

83 
221 
143 
75 

450 
1,928 

2.9MB 

ET++ 
70,796 

3,494 
12,892 

584 
722 
485 
466 

6,255 
4,460 

19.3 MB 

System-B 
291,619 

71,209 
90,426 

1,226 
1,420 
1,153 

941 
8,594 

13,624 
41.0MB 



www.manaraa.com

216 Chaumun et al. 

lower part of the table (last six rows), whereas the numbers in the upper part 
(first four rows) represent the system that was effectively investigated in the 
study. 

Changes and Impacts 

There are 37 changes that generate some impact in other classes. Testing all of 
them would have been complete but time and effort consuming, and a staged 
approach was decided upon. The first step, presented here, involved the selec
tion of a set of changes as representative as possible. Six changes were selected, 
according to the following criteria: 

1. There should be at least one change for each component (variable, 
method, and class). 

2. A selected change should have an impact in at least one other class (ac
cording to our model, there are 29 changes with no such impact). 

3. The impact expression should be different for any pair of changes; 
since otherwise, we would have obtained duplicate results. 

4. The selected changes should be of practical relevance, that is, they 
should be able to be exercised in practice. 

Table 10.7 lists the six changes considered and their corresponding impact 
expression. 

Table 10.7. Investigated changes with impact expressions. 

Change 

Variable type change 

Variable scope change from 
public to protected 

Method signature change 

Method scope change from 
public to protected 
Class derivation change from 
public to protected 
Addition of abstract class in 
class inheritance structure 

Methodology 

Impact 
expression 

S+L 

SH'F' 

I+L 

H'IF' 

H'F' (S + I) 

Impact definition 

Average of impact for each 
variable change 
Average of impact for each 
variable change 
Average of impact for each 
method change 
Average of impact for each 
method 

Impact 

Impact 

The aim of the experiment was to find design properties that would be indicators 
of a system's changeability. More precisely, the objectives were to find correla
tion between the size of the impact sets and some design property described by a 
metric. The metrics in the C&K suite were considered prime candidates. How
ever, due to the specificity of the changeability property, four additional metrics, 



www.manaraa.com

10. Design Properties and Evolvability of Object-Oriented Systems 217 

derived from the NOC and CBO metrics, were considered. NOC the number of 
direct descendants of a class and CBO is "approximately equal to the number of 
couples with other classes (where calling a method or instance variable from 
another class constitutes coupling)" (Chaumun et aI., 1999). Below, we present 
the four metrics, together with the rationale for their consideration. 

• NOC* (Number of Children in sub tree): when some component of a class 
is changed, it may affect not only its children, but also the whole sub tree of 
which the changed class is the root. 

• CBO_NA (CBO No Ancestors: same as CBO, but the coupling between the 
target class and its ancestors is not taken into consideration): the coupling 
between the target class and its ancestors, taken into consideration by CBO, 
is irrelevant for change impact, since the ancestors of the target class will 
never be impacted. To eliminate such "noise," ancestors are excluded in 
CBO_NA. 

• CBOjUB (CBO Is Used By: the part of CBO that consists of the classes 
using the target class): the definition of CBO merges two coupling direc
tions: classes using the target class and classes used by the target class. For 
changeability purposes, the former seems more relevant than the latter one, 
hence the split. 

• CBO_U (CBO Using: the part of CBO that consists of the classes used by 
the target class): introduced as a consequence of CBO_IUB, to cover the 
part of CBO not considered by CBO_IUB. 

In summary, nine metrics were considered--five C&K metrics (WMC, DIT, 
NOC, CBO, RFC) and four changeability-oriented refinements of the C&K met
rics (NOC*, CBO_NA, CBO_IUB, CBO_U). 

Experimental Procedure 

The nine design metrics, as introduced in the previous section, were extracted 
from the test systems. Next, for each of the six changes considered and each of 
the test systems, its test set, that is, the set of classes for which the change is 
applicable, was computed. For example, when considering the method scope 
change from public to protected, only classes with at least one public method 
were included in the test set. Then, for each class in each test set, the change 
impact for the given change was calculated, i.e., the number of classes that 
would be impacted. Once the metrics and impact data were collected, the corre
lation between each change impact and each design metric was investigated for 
all the classes involved in the test sets. In each case, the correlation coefficient 
was calculated, and scatter plots were produced. Outlier points were removed 
and the correlation coefficient was computed again. 



www.manaraa.com

218 Chaumun et al. 

10.6 Results 

10.6.1 Observations on the Test Systems 

Table 10.8 presents the statistics for the nine metrics considered in this study. 
For all metrics except those related to inheritance, there is wide variation 

from one system to another. This is not true of DIT, NOC, and NOC*: all sys
tems have the same median values, 2 for DIT, and 0 for NOC and for NOC*. A 
median of 0 for NOC and for NOC* means that for the three systems, half the 
classes are leaves. Based on this and on the mean values of NOC (around 0.8), it 
can be stated that the classes that do have children have on the average less than 
two children. Furthermore, a median of 2 in the three systems for the depth of 
inheritance tree means that half the classes have 2 or fewer ancestors. Because 
our results are across three widely different systems, we advance the hypothesis 
that, in general, inheritance is used in a limited way, much less than its potential 
benefits would suggest. Note that Chidamber et al. (1998) found the same lim
ited use of inheritance and guessed that programmers traded reuse potential for 
simplicity of understanding. 

Each of the six changes was applied to each test system. The impact values 
are presented in Table 10.9. 

The values vary from one system to another, from one change to another, 
and no general conclusion can be drawn on the impact of a given change. Com
parison between changes, however, yields some results. Based on both mean 
values and median values, a classification of changes by impact comes out. 
Among the six changes investigated, the most expensive one, across systems, is 
the addition of an abstract class in the inheritance structure of a class. On the 
other hand, the least expensive one is to change the scope of a method from 

Table 10.8. Descriptive statistics of the three test systems. 

System WMC DIT NOC NOC* CBO 
CBO_ CBO CBO RFC 

NA IUB U 
Min. 0 0 0 0 0 0 0 0 0 

XForms Max. 23 4 14 60 20 20 19 9 45 
(83 Mean 4.48 2.39 0.82 2.57 4.13 3.16 0.98 3.16 6.52 
classes) Median 2 2 0 0 4 3 0 4 2 

Std. Dey. 5.27 1.55 2.35 9.63 3.18 3.18 3.07 1.97 9.90 
Min. 0 0 0 0 0 0 0 0 0 

ET++ Max. 105 8 56 361 301 301 293 76 746 
(584 Mean 10.04 2.09 0.78 2.09 24.48 22.5 5.01 19.80 90.65 
classes) Median 6 2 0 0 24 21.5 0 21 36.5 

Std. Dey. 12.94 1.78 3.40 16.79 25.37 24.56 20.96 16.01 128 
Min. 0 0 0 0 0 0 0 0 0 

System-B Max. 166 9 29 266 707 707 707 93 2735 
(1226 Mean 11.98 3.02 0.88 3.42 32.49 29.36 7.06 25.77 171.0 
classes) Median 7 2 0 0 21 18 I 17 47 

Std. Dey. 15.75 2.46 2.53 18.52 36.15 34.97 29.49 23.96 290.0 



www.manaraa.com

10. Design Properties and Evolvability of Object-Oriented Systems 219 

public to protected. This might have been expected, considering their impact 
expressions (see Table 10.7). 

10.6.2 Relationships between Impact and Design Metrics 

The correlation coefficients are presented in Table 10.10. Note that numbers 
in parentheses represent coefficients that were obtained after removing some 
outliers. In the case of CBO_IUB, the biggest ratios of outliers/data points were 
2/37 (Change #1, XForms), followed by 4/502 (Change #3, ET++), and 611052 
(Change #5, System-B). From these correlation results or lack thereof, the fol
lowing conclusions were drawn. 

A General Design-Level Changeability Indicator 

For all systems, and for all changes but one, CBO_IUB is strongly or very 
strongly correlated with the change impact. Given the broadness of this result 
(six changes, three systems of small, medium, and large size), it may be con
cluded that CBO_IUB is a good indicator of changeability in a system. In fact, 
our experimentation confirms the common-sense property, which to our knowl
edge has not been proved: the more a class is used through invocation of its 
methods and outside references to its variables, the larger the impact of a change 
to such a class. Note, however, that the values of CBO_IUB vary considerably 
from one system to another (see Table 10.8). 

Table 10.9. Change impact results for the three test systems. 

# of 
Std. 

Change System classes in Min. Max. Mean Median 
Dev. 

test set 
XFonns 37 20 1.78 3.17 

Variable type change ET++ 416 81 2.02 5.97 
System-B 707 32 1.46 1.85 

Variable scope change XFonns I 
ET++ 65 0 80 3.78 0.67' 12 

from public to protected 
System-B 72 0 52 1.84 I 6.21 

Method signature XFonns 70 I 3.67 1.19 I 0.49 
ET++ 502 I 17.64 1.46 I 1.26 

change 
System-B 1221 I 38.60 1.77 I 2.06 

Method scope change XFonns 70 0 267 0.18 0 0.48 
ET++ 496 0 16.64 0.40 0 1.19 from public to protected 
System-B 1174 0 37.39 0.60 0 1.79 

Class deriv. change from XFonns 65 0 4 0.32 0 0.89 
ET++ 458 0 281 3.71 0 16.46 public to protected 
System-B 1052 0 291 4.42 0 20.03 

Add. of abstract class in XFonns 65 0 4 0.32 0 0.89 

inherit. structure ET++ 458 0 281 3.71 0 16.46 
S~stem-B 1052 0 291 4.42 0 20.03 , 

Note that the impact values are calculated as averages (see Section 10.5.2), and hence medians need 

not be an integer. 



www.manaraa.com

220 Chaumun et al. 

Table 10.10. Correlation coefficients for the three test systems. 

Change System WMC DIT NOC NOC· CBO CBO_ CBO_ CBO_ RFC NA IUB U 

XFonns 0.31 -0.04 0.97 0.96 0.56 0.60 
0.71 

0.15 0.10 
Variable (0.94) 

type ET++ 0.21 -0.12 0.47 
0.55 

0.55 0.57 
0.71 

0.09 0.01 
(0.91) (0.85) change System-

B 0.03 -0.01 0.48 0.22 0.12 0.13 0.13 0.01 0.02 

Variable Xfonnsh NA NA NA NA NA NA NA NA NA 
scope 

ET++ 0.18 -0.22 0.09 0.09 0.55 0.55 0.61 -0.22 0.04 change (0.87) 
from 
public to System-

.07 -0.12 -0.06 0.01 0.21 0.22 0.31 
0.00 0.Q7 

Erotected B (0.73) 

XFonns 0.22 -0.47 0.16 0.33 0.44 0.48 0.54 -0.30 0.10 
Method (0.69) (0.72) 

signature ET++ 0.30 -0.24 0.43 
0.35 

0.56 0.59 
0.76 -0.16 0.02 

(0.41) (0.85) change System- 0.34 0.74 
B 0.23 -0.24 0.32 (0.40) 

0.48 0.52 
(0.81) 

-0.17 0.02 

Method XFonns 0.21 -0.46 0.14 0.31 0.39 0.43 
0.49 -0.29 0.09 scope (0.78) 

change ET++ 0.21 -0.24 0.22 0.06 0.43 0.46 
0.63 -0.19 -0.03 from (0.82) 

public to System-
0.23 -0.24 0.09 0.Q7 0.46 0.50 

0.72 -0.18 0.02 protected B (0.75) 

Class XFonns 0.32 -0.43 0.06 0.23 0.24 0.28 0.34 -0.24 0.17 
deriv. (0.89) 

change ET++ 0.42 -0.11 0.53 0.30 0.70 0.73 0.96 -0.01 0.12 

from 
0.81 public to System- 0.52 -0.11 0.10 0.08 0.40 0.44 -0.05 0.16 protected B (0.93) 

Add. of XFonns 0.23 -0.28 0.57 0.91 0.57 0.63 
0.74 

-0.24 0.09 
abstract (0.91) 

class in ET++ 0.38 -0.14 0.62 0.63 0.64 0.67 0.85 
-0.05 0.09 

inherit. (0.79) ~0.98) 

structure System-
0.39 -0.16 0.22 0.55 

0.68 0.72 0.92 -0.08 0.12 B (0.70) 
• Corresponds to the correlation coefficient after removal of outliers. 
b Only one class had public variables in XFonns, and no statistics were calculated. 

The original CBO metric is not a changeability indicator, which can easily 
be explained: it puts together the classes using the changed class and those used 
by the changed class. That second component introduces noise with respect to 
change impact. 

Impact and Inheritance 

Hsia et al. (1995) found that systems with deeper inheritance trees required more 
maintenance work than those with shallower ones, based on systems developed 
by students in class assignments. If the result were valid for industrial systems, 



www.manaraa.com

10. Design Properties and Evolvability of Object-Oriented Systems 221 

one could have expected that some correlation would be found between DIT and 
the impact of all changes or at least of some changes. As can be seen in Table 
10.10, such is not the case. Based on the changes tested here, the hypothesis that 
DIT influences changeability cannot be sustained. One explanation might be that 
even if such a correlation exists, industrial systems are too shallow for the DIT 
property to show enough variability. 

10.7 Conclusion 

The SPOOL project deals with the many aspects of changeability and design. In 
the work presented here, the goal was to find relationships between changeabil
ity and design properties described by metrics. The findings had to be applicable 
to industrial-strength software. The approach taken was both theoretical and 
empirical. First, a model of software changes and change impacts was defined at 
the conceptual level, and subsequently adapted to the C++ language. Then a 
proof of feasibility attempt, conducted on an industrial-strength system, yielded 
several useful lessons. The most important lesson is that system size is a major 
problem in empirical studies, and that has a major impact on experimental pro
tocols. Based on these learned lessons, an experiment was set up for relating 
design metrics to change impact size. Three software systems of increasing sizes 
were experimented upon. The metrics defined by Chidamber & Kemerer were 
tested as candidate changeability indicators as were several refinements of these 
metrics, specifically geared towards changeability detection. The experiment 
was successful. It showed a high correlation, across systems and across changes, 
between changeability and the access to a class by others through method invo
cation or variable access. On the other hand, our results could not support the 
hypothesis that the depth of the inheritance tree has some influence on change
ability. Note that this lack of correlation is counter to the results found by Hsia 
et al. (1995). Furthermore, earlier results on the morphology of industrial sys
tems (Chidamber and Kemerer, 1994) were confirmed: the use of inheritance is 
rather limited, which may explain the negative result. 

The hypothesis that design properties are related to the size of the impact set 
has received a first confirmation and encourages us to pursue this matter further. 
In a first step, we will try to consolidate the results obtained so far. More evi
dence will be sought by increasing the batch of changes and the set of test sys
tems. Also, an attempt will be made to give practical value to the results found 
here, that is, to design a procedure for estimating the changeability of a system, 
based on the value of CBO_IUB. This would enable the potential buyer of a 
software system to assess its evolvability or to locate those parts of the system, 
which will be more difficult to change. A further step will involve the attempt to 
upgrade the concept of change, from atomic programming change as defined 
presently, to the more realistic one of change request, involving several changes 
to several classes, and to define the impact set of a change request. Relationships 



www.manaraa.com

222 Chaumun et al. 

between design properties and the impact set of a change request will be sought 
by experiments on industrial-strength systems. If they are successful, the hy
pothesis that design properties have an influence on evolvability will be closer to 
confirmation. 

10.8 References 

Abreu, F. B. (1994). Object-oriented software engineering: measuring and con
trolling the development process. In Proceedings of the 4th International 
Conference on Software Quality, Washington DC, USA. 

Alalouf, S., Labelle D., and Menard J. (1990). Introduction a la statistique 
appliquee. Addison-Wesley. 

Basili, V. R, Briand L. c., and Melo W. L. (1996). A validation of object
oriented design metrics as quality indicators. IEEE Transactions on Soft
ware Engineering, 22(10): 751-761. 

Briand, L. c., Devanbu P., and Melo W. (1997). An investigation into coupling 
measures for C++. In ICSE97, Boston, MA, pp. 412-421. 

Chaumun, M. A. (1998). Change Impact Analysis in Object-Oriented Systems: 
Conceptual Model and Application to C++. Master's thesis, Universite de 
Montreal, Canada, November 1998. 

Chaumun, M. A., Kabaili, H., Keller R K., and Lustman, F. (1999). A change 
impact model for changeability assessment in object-oriented software sys
tems. CSMR99, Proc. Third European conference on Software Mainte
nance and Reingineering, Amsterdam, The Netherland, pages 130-138, 
March,,1999. 

Chaumun, M. A., Kabaili, H., Keller, R K., Lustman, F., and St-Denis, G. 
(2000). Design properties and object-oriented software changeability. Ac
cepted, CSMR2000, Fourth European Conference on Software Mainte
nance and Reingineering, Zurich, Switzerland, pages 45-54, February, 
2000. 

Chidamber, S. R, Darcy D. P., and Kemerer C. F. (1998). Managerial use of 
metrics for object-oriented software. In IEEE Transactions on Software 
Engineering, 24(8): 629-639. 

Chidamber, S. R and Kemerer C. F. (1991). Towards a metrics suite for object
oriented design. In Proceedings OOPSLA, Phoenix, AZ, pp. 197-211. 

Chidamber, S. R. and Kemerer C. F. (1994). A metrics suite for object-oriented 
design. In IEEE Transactions on Software Engineering, 20(6): 476-493. 

Devanbu, P. T. (1992). GENOA - a customizable, language- and front-end inde
pendent code analyzer. In Proceedings of the 14th International Conference 
on Software Engineering, pp. 307-317, Melbourne, Australia. 



www.manaraa.com

10. Design Properties and Evolvability of Object-Oriented Systems 223 

Han, J. (1997). Supporting impact analysis and change propagation in software 
engineering environments. In STEP97, London, England, pp. 172-182. 

Hsia, P., Gupta, A, Kung, c., Peng, 1., Liu, S. (1995). A study of the effect of 
architecture on maintainability of object-oriented systems. In ICSM95, 
Nice, France, pp. 4-11. 

ISO 9126 Information Technology (1992). Software product evaluation: quality 
characteristics and guidelines for their use, International Organization for 
Standardization, Geneva, 1992. 

Kazman, R, Abowd, G., Bass, L., and Clements, P. (1996). Scenario-based 
analysis of software architecture. In IEEE Software, Vol. 13, No.6, pages 
47-55, November 1996. 

Kiran, G. A, Haripriya S., and Jalote P. (1995). Effect of object orientation on 
maintainability of software. In ICSM97, Bari, Italy, pp. 114-121. 

Kung, D. c., Gao, J., Hsia, P., Lin, J., Toyoshima, Y. (1995). Class firewall, test 
order, and regression testing of object-oriented programs. In Journal of 
Object-Oriented Programming, Vol. 8, No.2, pages 51-65, May 1995. 

Kung, D., Gao, J., Hsia, P., Wen, F., Toyoshima, Y., and Chen, C. (1994). 
Change impact identification in object oriented software maintenance. In 
ICSM94, Victoria, B.C., Canada, pages 202-211, September 1994. 

Li, W. and Henry S. (1993), Object-oriented metrics that predict maintainability. 
Journal of Systems and Software, 23: 111-122. 

Li ,W., Henry, S., Kafura, D., Schulman, R (1995). Measuring object-oriented 
design. In Journal of Object-Oriented Programming, Vol. 8, No.4, pages 
48-55, July/August 1995. 

Li, Li (1998). Change Impact Analysis for Object-Oriented Software. Ph.D. the
sis, George Mason University, Virginia, USA, 1998. 

Li ,Li and Offutt J. A (1996). Algorithmic analysis of the impact of changes to 
object-oriented software. In ICSM96, pp. 171-184. 

Lindvall, M. (1997). An Empirical Study of Requirements-Driven Impact Analy
sis in Object-Oriented Software Evolution. Ph.D. thesis, Linkoping Univer
sity, Sweden, 1997. 

Lorenz, M. (1993). Object-Oriented Software Development: A Practical Guide. 
Englewood Cliffs, NJ: Prentice-Hall. 

Matel, J-M. and Nadeau R (1998). Statistique en gestion et en economie. 
Gaetan Morin Editeur, Montreal, Canada. 

Munson, J. C. and Elbaum S. G. (1998). Code chum: A measure for estimating 
the impact of code change. In Proceedings of the International Conference 
on Software Maintenance (ICSM'98), Bethesda, MD, pp. 24-31. 



www.manaraa.com

224 Chaumun et al. 

Pigoski, T. M. (1997). Practical Software Maintenance. New York: John Wiley 
& Sons. 

Poet Software Corporation (1999). POET Java ODMG Binding. On-line docu
mentation, San Mateo, CA, 1999. Available at http::llwww.poet.com. 

Rombach, H. D. (1990). Design measurement: some lessons learned. In IEEE 
Software,7(2): 17-25. 

Rumbaugh, J., Jacobson I., and Booch G. (1999). The Unified Modeling Lan
guage Reference Manual. New York: Addison-Wesley. 

TakeFive GESMBH (1999). SNiFF+ documentation set. Salzburg, Austria. 
1999. Available on-line at: http://www.takefive.com. 

Weinand, A., Gamma E., and Marty R. (1989). Design and implementation of 
ET ++, a seamless object-oriented application framework. In Structured 
Programming, 10(2): 63-87. 

Xforms (1998). Graphical user interface toolkit for X. 1998. Available on-line at 
http://bragg.phys.uwm.edu/xforms. 



www.manaraa.com

11 
Using Textual Redundancy to Study 
the Maintainability of Source Code 

J. Howard Johnson 

11.1 Introduction 

Reverse engineering and design recovery attempt to reconstruct abstractions from 
legacy program sources (Biggerstaff, 1989; Chikofsky and Cross, 1990) as a pre
lude to migrating systems to new platforms or in support of maintenance activities 
for software evolution. Many of the techniques employed for this purpose take the 
source for the system as a whole, and, after a large analysis stage, provide a view 
of the structure to help with understanding, navigation, or assessing the impact of 
change. 

One particular technique looks for parts that are the same with the hope that 
the structure revealed will provide useful insight. Large bodies of source code, 
documentation, and data often have long repeated sections of content as a result of 
maintaining multiple variants for different platforms or multiple versions across 
time. By analyzing the structure of these repetitions, useful information can be 
gleaned about the maintenance history and prospects for future maintainability. 

One approach to this problem involves looking at the system as a compiler 
would by parsing it and constructing abstract syntax trees that capture the surface 
semantics of the code (Buss and Henshaw, 1991; Buss and Henshaw, 1992; Whit
ney et aI., 1995). This approach has the advantage of being able to look under 
the surface of the code and analyze its meaning as a programmer would see it; 
however, much of the surface structure of the code has been lost since comments, 
indentation structure, manifest constants, macro calls, and inclusion structures 
disappear before compilers attempt lexical analysis. Furthermore, for legacy sys
tems, parsers often do not exist in a form that can be used for constructing these 
abstract syntax trees. 

By recognizing that text processing algorithms can be applied in these situ
ations, a large body of existing technology can be brought to bear. These ap
proaches have a different set of tradeoffs and have strengths likely to complement 
the parsing-based ones. For example, they tend to be much lighter weight and 
often scale up better since they spend less time pondering over each byte. They 
also treat the body of source directly in the form expressed by the authors with 



www.manaraa.com

226 Johnson 

comments, fonnatting, and the manifest constants, macro calls, and inclusions 
that are present before preprocessing. They also can handle multiple versions and 
variants in a graceful way without requiring knowledge of the build process or 
having access to special header files. 

Between 1993 and 1998 work was done in the Software Engineering Group at 
the Institute for Infonnation Technology on an approach to understand the struc
ture of the large bodies of text that make up a large software system. The goal 
of the work was to find all exact matches occurring in a body of source and use 
data analysis to extract meaning from the results. This approach guarantees that it 
finds all matches having particular characteristics. It is often the lack of a match 
that is most infonnative. The collection of matches is re-expressed in a fonn that 
allows quite flexible summarization of their structure. This structure is especially 
important when very large sources are studied. 

Looking for all short matches can be a problem. In this study, the minimum 
line length is set to ten. Experimentation with different values has demonstrated 
that this number is small enough to find the kinds of matches that are interesting 
without causing an explosion of fine-level detail that can be distracting for a high
level study of a body of source. 

Of course, it is possible to preprocess the text or postprocess the matches, and 
aim for approximate matches rather than exact matches. However, there is a sur
prising amount of utility in discovering all exact matches of the rather short length 
of ten lines. 

The following sections provide an outline of the methods and their application 
to problems in software maintenance. Section 11.2 discusses the issue of textual 
redundancy in source and what it signifies from a software maintenance point of 
view. Section 11.3 provides a summary of the approach. In Section 11.4 an ex
ample based on gcc is used to show a small-scale application of the approach. 
Section 11.5 considers the case of analyzing a gigabyte of source associated with 
13 versions of Mozilla to demonstrate a large-scale analysis. Section 11.6 pro
vides a summary and concludes the chapter. 

11.2 Redundancy in Source 

Text in different files can be similar for several reasons. Two of these are of par
ticular interest from a software maintenance point of view: software cloning and 
change (or lack of change) between versions of a system. A particular example 
of software cloning occurs in some approaches to the management of multiple 
configurations. 

11.2.1 Software Cloning 

Maintenance of large software systems under pressure often leads to a phe
nomenon referred to as software cloning. It is often easier to copy and modify 



www.manaraa.com

II. Using Textual Redundancy to Study the Maintainability of Source Code 227 

an existing piece of code rather than making the original code handle the new 
function as well as all previous functions. This cut-and-paste activity can happen 
for code fragments of a few lines or for modules of thousands of lines. It can 
happen in procedural code or in declarations. It can happen in documentation. 

Software cloning has a number of negative effects on software maintenance: 

• Red herrings and dead code can be created. 

• If the component that was copied is subsequently discovered to have a 
defect, the defect probably should be repaired in the other clones. These 
clones must be found and the impact of the correction assessed in each 
context. 

• Errors in the systematic renaming can lead to unintended aliasing, resulting 
in latent bugs. 

• The bulk of the code grows much faster than it would by extending the 
functionality of the existing module to meet the new requirement. 

Software cloning is not all bad. It addresses quite well a short-term goal of 
quicker and more reliable change. It is also sometimes necessary because the 
programming language employed lacks an appropriate abstraction mechanism. 
Whether cloning is good or bad, the understanding of a large source depends on 
the discovery and analysis of copied and modified code. This is the motivation for 
tools for clone detection. 

Since a common approach to understanding source is to perform lexical anal
ysis on it, followed by some semantic analysis, it is natural to look for clones as 
subtrees of the syntax or semantic trees that match in all or in part. This approach 
has the advantages that it can be combined easily with other semantic analysis 
and that it also identifies common recurring code fragments or cliches. Buss et al. 
(1994) used this approach in their work. A number of software metrics are cal
culated for each subtree and a clone is signaled if the metrics all agree or differ 
from one another by less than a given threshold. Such a metric-based approach is 
discussed in Chapter 5. 

Another approach similar to that discussed here is that of Baker (1992). She 
calculates a position tree for the whole of the source and uses the information con
tained in it to identify large matches. The approach described here has a slightly 
different view about matches and is designed to scale up to much larger sources 
than can likely be handled using position trees. 

11.2.2 Change in Large Systems 

In the natural evolution of large systems, the content of individual files changes, 
large files split into smaller ones, files are renamed, and directories are reorga
nized. These introduce confusion for the maintainer, since things are not where 



www.manaraa.com

228 Johnson 

they were before. The maintainer needs to be able to visualize how the present 
system relates to his or her understanding of a previous version. 

Change also shows where activity is going on to remove bugs or enhance func
tionality. To identify the important parts of the system for maintenance purposes 
it is useful to consider what has been changed previously. 

Identifying change for both of these reasons can be supported usefully by tools, 
especially in large systems. 

11.2.3 Support for Multiple Configurations 

Large systems are usually expected to run in more than one environment. There 
are several strategies for maintaining a number of similar but different versions of 
modules. One such strategy involves maintaining separate files for each variant, 
only one of which is used in any specific system build. 

Understanding the structure of these multiple configurations can be impor
tant for maintenance since modifications may affect the environments in different 
ways. 

11.3 Overview of Method 

The basic form of the method considers the source as a collection of files each 
made up of a sequence of lines. The files are identified by name and version and 
the lines within each file are identified by line numbers. The name and version 
tags may have further structure provided by a file system hierarchy or source 
management system but are considered as sufficient for identifying and locating 
the content for browsing or maintenance. 

A snip is a sequence of lines occurring within a file and are said to match an
other snip if it agrees byte for byte with it. The task is then to find all informative 
matches within the body of text, organize this information, and extract informa
tion that is useful for further study of the source. To improve the efficiency of 
finding all matches, a method (Johnson, 1993) based on the string searching algo
rithm of Karp (1986) and Rabin (1987) is employed. 

Matches that are very short can happen by chance and are unlikely to be infor
mative, so it is useful to put a lower limit on the size of the match to be detected. 
For the purpose of the following discussion this bound has been set to ten lines. 
We then have a very good chance of obtaining almost all informative matches 
while eliminating the bulk of accidental matches. It is also low enough that many 
situations where text has been modified during cloning are also found since ten 
identical lines often occur in the neighborhood. 

The situation is made more complicated because matches can involve more 
than two locations in the text. In such cases, it often happens that the matches are 
not all the same length. It is harder to manage and analyze the data if this problem 



www.manaraa.com

II. Using Textual Redundancy to Study the Maintainability of Source Code 229 

is not properly addressed. The solution undertaken in this research employs two 
processes: combining and splitting. 

Combining allows adjacent matches to merge into a larger match if they are 
incident on exactly the same files. We can then combine matches often lines into 
larger ones when appropriate. 

Splitting occurs when a collection of overlapping matches has a more compli
cated pattern of file incidence. The match is broken up into smaller matches each 
of which has a consistent pattern of file incidence. 

After application of these processes, raw matches are resolved into an equiva
lent set of snips and matches such that the following conditions hold: 

I. No two snips overlap. 

2. The collection of snips covers the text. 

3. Matches can be identified as a collection of two or more snips with identical 
content. 

4. If we extend the concept of match to include collections with a single un
matched snip, then the collection of matches covers the text. 

The result of this analysis is a form of data that is much easier to record and to 
use for further study. 

11.3.l Data Model 

The data model, illustrated in Figure 11.1, provides a framework for match in
formation. Boxes indicate entity types and arrows indicate relationships. A solid 
arrow indicates an aggregation relationship and points from the element to the 
aggregate. If the arrow is single, the element belongs to exactly one aggregate 
and we have a functional (many-to-one) relationship. If the arrow is double, the 
element can belong to more than one aggregate and the relationship is many-to
many. A dotted arrow is a one-to-one relationship that identifies an element in the 
class pointed to, with each element from the class at the tail of the arrow. 

The two main entity types of interest are snips and matches, shown at the bot
tom of the diagram. The entity type file is used to collect together snips that con
stitute a file. Each snip is associated with exactly one file and participates in ex
actly one match. In addition files and matches can be considered as aggregations 
of snips because of the way they are defined. Because snips do not overlap and 
collectively cover the files, a file may be viewed as the aggregation of snips that 
belong to it. Similarly, because matches are defined as one or more snips sharing 
the same content, a match may be viewed as an alternative aggregation of snips. 

On the left side of the diagram is the file system view of files. Each file is 
in a unique directory, and each directory has a unique parent, indicated by the 
arrow pointing from the directory type to itself. The unique root of the directory 
is signaled by the incoming arrow to the directory type. This model does not 



www.manaraa.com

230 Johnson 

Figure 11 .1. Combined data model. 

handle hard links, symbolic links, or aliases directly. For simplicity, structurally 
identical files are treated the same as files that result from copying . 

In order to collect together matches in a sensible manner, the concept of cluster 
is introduced. A cluster is the collection of files that have snips participating in 
a match. Thus each match uniquely identifies a cluster that has exactly the files 
touched by that match. This cluster aggregates all of the matches that touch ex
actly this set of files. 

Clusters are also aggregations of files although files can belong to more than 
one. The dotted arrow identifies the singleton cluster with the file it contains . 

A component is a collection of clusters with the following property: For any two 
clusters in the collection , either the clusters overlap or they belong to a sequence 
of clusters such that each consecutive pair of clusters in the sequence overlap. 
The strength of this concept is that the set of components partitions files in such 
a way that files in separate components are totally unrelated as far as matches are 
concerned. The dotted arrow from component to cluster identifies the component 
with the cluster containing all of the files in that component. 

The aggregation relation from cluster to itself recognizes that each cluster is a 
collection of files and therefore the clustered are related by set containment. In 
other words, the aggregate cluster contains all the clusters that form subsets of it. 

Because the subsets relation on clusters is quite large in typical cases, it is 
often useful to calculate the transitive reduction of it. The transitive reduction of 
a transitive relation is the smallest subset of the relation whose transitive closure 
equals the original relation. In simpler words, if C1 c C2 and C2 C C3 , then a 
transitive relation also contains C1 C C3 . The transitive reduction removes the 
C1 C C3 . Reduction can lead to a substantially smaller dataset as is shown later. 

A Hasse diagram of a transitive relation is one that shows only arcs in the 
transitive reduction and is commonly used for visualizing small partial orders. An 
example of a Hasse diagram appears in the next section . 



www.manaraa.com

11. Using Textual Redundancy to Study the Maintainability of Source Code 231 

11 .3 .2 Using the Data 

The preceding analysis yields a database conforming to the given data model and 
providing detailed information about the source. There are several ways that this 
information can be used. 

The most obvious is an alternative method for navigating the source. If a cursor 
is located at some line in the source, the containing snip is identified. From the 
snip, we can move up in the match hierarchy to the match set. From there we can 
move up to the cluster for that match or down to another snip in the same match 
set. At each point the local environment can be shown. 

A prototype system based on this idea was built (Johnson, 1996) and proved 
to be a useful first step in studying how matches occur in a file context. In par
ticular, this system could display, for each cluster, all of the content of a file in 
that cluster that participated in matches associated with that file or higher in the 
cluster hierarchy. Basically, it showed a skeleton of the file that was in common 
with all of the files in the cluster. It was possible to go up to superclusters or down 
to subclusters to explore the structure of the match. 

Figure 11.2 shows the beginning of an example cluster page from this pro
totype. The cluster is named "O.C" and represents a singleton cluster for the 
file "Alfx80.h." It is located in component "0" and has immediate super-clusters 
"O.CI" and "O.CE." After some summary statistics about this cluster, the snips 
of the file are shown. The first four lines are in common with the cluster "O.CI" 
which is immediately above "O.C" in the cluster graph. Lines 5-17 constitute the 
boilerplate shared by cluster "O.A-KM-Q;' which is three levels up in the cluster 
containment graph. 

This idea can be further developed as a tool that generalizes the Unix tool diff. 
Another approach is to classify the clusters in some way and compute summary 

statistics for metric purposes or focus in on clusters with particular properties to 
study cloning. One particular method involves comparing the cluster containment 
relation with the file system hierarchy by encoding the cluster to the lowest com
mon ancestor directory in the file system. The match size measures associated 
with the directory nodes then indicate how much matching is occurring among 
subtrees as opposed to how much is within specific subtrees. Matching among 
subtrees suggests either a coupling such as cloning between subsystems or the 
result of a reorganization where a subtree has been moved from one subsystem to 
another. Work on this method is underway (Johnson, 1995), and there are inter
esting variations yet to explore. 

An extreme form of classifying clusters is by component. When the analysis 
yields many components, it is possible to study the components by the type of 
structure they exhibit. In a multiversion system, components that span only dif
ferent versions of the same file can be easily summarized with a few statistics. 
Energy can be focused on those components that have more complex structure 
and probably exhibit more interesting behavior. 

The next section shows the re-analysis of such a component obtained as part of 



www.manaraa.com

232 Johnson 

Cluster 2: O.C=>Alfx80.h 

Previous Next 

Content of File Alfx80.h 

View Snip Summary for File A/fx80.h 

Directory: 
/x/talA 

File size: 
54909 

File size (without internal matches): 
54907 

Log (base 2) of file size (without internal matches): 
15.74 

Super Clusters (by decrease in log match size): 
o 

on 
-1.53 

O.CE 
Component: 

Component 0 

(Hash 189) on (up 1 level) 

1 /* Definitions of target machine for GNU compiler. Alliant FX version. 
2 Copyright (C) 1989 Free Software Foundation, Inc. 
3 Adapted from m68k.h by Paul Petersen (petersen@uicsrd.csrd.uiuc.edu) 

and Joe Weening (weening@gang-of-four. stanford. edu) . 

(Hash 103) O.A-KM-Q (up 3 levels) 

This file is part of GNU ce. 
7 
8 GNU CC is free software; you can redistribute it and/or modify 
9 it under the terms of the GNU General Public License as published by 

10 the Free Software Foundation; either version 2, or (at your option) 
11 any later version. 
12 
13 GNU CC is distributed in the hope that it will be useful, 
14 but WITHOUT ANY WARRANTY; without even the implied warranty of 
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
16 GNU General Public License for more details. 
17 

Figure 11.2. Example cluster summary and navigation page. 



www.manaraa.com

II. Using Textual Redundancy to Study the Maintainability of Source Code 233 

an earlier study (Johnson, 1994a; Johnson, 1994b). 
When many versions or variants are available, significant matching is expected 

to occur. Modelling may predict certain kinds of patterns that should occur. By 
comparison with the data, anomalies can be detected and studied. If, for example, 
snapshots of a system are taken periodically, the changes can be easily made to 
stand out from the bulk of unchanging content. Similarly, multi platform systems 
can be studied as variations on a common theme with the differences highlighted. 

There are also opportunities for visualization. For example, showing part of 
a Hasse diagram of clusters can provide easily understandable information about 
the structure of a match. Some preliminary work has been done (Johnson, 1 994b ), 
but there are still many new ways of showing structure in a visual form that can 
be explored. 

11.4 A Small Example from Gee 
A small example demonstrates how analysis can be done. A collection of eight 
files from gcc 2.3.3 and nine files from gcc 2.5.8 have been selected and are listed 
in Table 11.1. These exhibit significant cloning and renaming with a complex 
match structure. Each name is abbreviated using a two-character alias in which 
the first character identifies the file name and the second distinguishes the ver
sion. Thus, the alias 3 identifies the 3bl.h files, c identifies the crds.h files,j the 
fx80.h files and so on. The alias 3A indicates the 3bl.h file from gcc 2.3.3 and 3B 
indicates the 3bl.h file from gcc 2.5.8, and so on for the others. 

This system is a collection of configuration files that tailor the GNU C compiler 
for a number of platforms based on the Motorola 68000 architecture. The config
uration directory has a large collection of configuration files since gcc has been 
ported to many platforms during its long history. Cloning is quite common among 
configuration files since platforms often are extremely similar with small differ
ences. The usual approach to configuring a new platform is to take an existing 
working configuration, copy it, and make the necessary enhancements. 

This collection of files arose as part of a larger study (Johnson, 1 994b ) as one 
of many components, but have been reanalyzed here. 

The following summary statistics were calculated: 

• The 17 files made up of 14,891 lines and 545,953 characters. 

• After analysis, 849 snips were identified in 345 match sets. 

• These matches formed 70 clusters in 1 component. 

Table 11.2 shows how large these files are and how much they participate in the 
matches of the full set. The size column indicates the true size measured in bytes. 
Unique size gives the size in bytes after internal matches have been removed. 

The other two columns summarize the extent to which each file participates in 
matches with other files. The private part occurs only in the given file, whereas the 



www.manaraa.com

234 Johnson 

Table 11.1. A collection of files from gee 2.3.3 and gee 2.5.8. 

Alias Full path 
3A gcc2.3.3/config/3bl.h 
cA gcc2.3.3/config/crds.h 
fA gcc2.3.3/config/fxSO.h 
hA gcc2.3.3/config/hp320.h 
6A gcc2.3.3/config/m6Sk.h 
rnA gcc2.3 .3/config/mot3300.h 
nA gcc2.3.3/config/news.h 
tA gcc2.3.3/config/tower-as.h 
fB gcc2.S.S/config/fxSO/fxSO.h 
3B gcc2.5.S/config/m6Skl3bl.h 
cB gcc2.5.S/config/m6Sklcrds.h 
dB gcc2.5.S/config/m6Skldpx2.h 
hB gcc2.5.S/config/m6Sk/hp320.h 
6B gcc2.5.S/config/m6Sklm6Sk.h 
mB gcc2.5 .S/config/m6Sklmot3300.h 
nB gcc2.5.S/config/m6Sklnews.h 
tB gcc2.5 .S/config/m6Skltower-as.h 

shared part occurs also in at least one other file. The large values for the shared 
part signal a large amount of internal matching. These two columns have internal 
matches removed. As a result, they sum to the unique size column. 

The largest part of the matches is, of course, between similarly named files from 
the two versions. Table 11.3 measures the extent of these matches. The aliases 
shown have the version qualifier removed for brevity. Thus, 3 is used to indicate 
the collection containing versions 3A and 3B, and similarly for the others. Since d 
has only one version dB, the data in this case is the same as for the previous table. 

In Table 11.3, size indicates the number of bytes that occur in matches that 
include all versions. The private part of the size occurs only in these versions and 
not in files with different names, whereas the shared part occurs in each of the 
versions and also in a differently named file. Again, all of these numbers represent 
the size after internal duplicates have been removed, and again private plus shared 
equals the total size. 

All of the sizes in Table 11.3 for two-version files are less than or equal to the 
corresponding shared values from Table 11.2 since all of the bytes must occur in 
all versions. The reason that the two values need not be equal is that matches can 
occur between single versions as we will see later. 

Table 11.4 shows the remaining 45 clusters with their sizes and private and 
shared parts defined analogously. The aliases for these clusters are formed by 
combining the aliases of all of the elements. If a file has all versions included, the 
alias contains the single-letter alias representing all versions. 



www.manaraa.com

II. Using Textual Redundancy to Study the Maintainability of Source Code 235 

Table 11.2. File sizes and measure of sharing. 

Alias Size Unique size Private Shared 
3A 16933 16933 596 16337 
cA 22062 22062 1442 20620 
fA 54909 54907 217 54690 
hA 22413 22413 2395 20018 
6A 65837 65538 3945 61593 
mA 28185 28185 2669 25516 
nA 16253 16253 2112 14141 
tA 23581 23581 2010 21571 
jB 55053 55051 223 54828 
3B 17682 17681 686 16995 
cB 22465 22465 1704 20761 
dB 34232 34232 30162 4070 
hB 22876 22876 2858 20018 
6B 72169 71868 10508 61360 
mB 29764 29763 3762 26001 
nB 17443 17443 3302 14141 
tB 24096 24096 1963 22133 

Table 11.3. Sharing of content between versions. 

Alias Name Size Private Shared 
3 3b1.h 16,337 6,790 9,547 
c crds.h 20,566 13,869 6,697 
d dpx2.h 34,232 30,162 4,070 
f fx80.h 54,644 32,670 22,974 
h hp320.h 20,018 12,727 7,291 
6 m68k.h 61,161 40,972 20,189 
m mot3300.h 25,296 11,712 13,584 
n news.h 14,141 9,254 4,887 
t tower-as.h 21,571 11,553 10,018 



www.manaraa.com

236 Johnson 

Table 11.4. Clusters sorted by private size. 

Alias Size Private Shared Alias Size Private Shared 

f,6 18,596 17,915 681 3B,cB 4,331 195 4,136 
3,cf,h,m,n,t,d 2,129 2129 0 jB,6B 18,795 184 18,611 
3,m,t 6,206 1,924 4,282 mB,tB 8,982 175 8,807 
3,m 8,396 1,824 6,572 h,m,t 4,861 148 4,713 
m,t 8,353 1,538 6,815 h,m,n 4,410 115 4,295 
c,6,m 1,975 1,295 680 3B,mB 8,900 76 8,824 
h,t 6,031 1145 4,886 c,6 2,044 69 1,975 
h,m 5,700 724 4,976 h,6A 739 59 680 
3,cf,h,6,m,n,t 680 680 0 3,cA,m 3,688 54 3,634 
c,m 5,636 678 4,958 n,d 3,622 53 3,569 
3,h,m,n,t,d 3,184 542 2,642 jA,6A 18,969 46 18,923 
3,c,h,m,n,t,d 2,642 513 2,129 3,t,mB 6,247 41 6,206 
3,c 4,136 502 3,634 n,t 4,358 38 4,320 

c! 3,298 489 2,809 c,m,t,d 2,671 29 2,642 
h,m,n,t 4,295 431 3,864 t,mB 8,420 26 8,394 
3f,h,m,t,d 2,547 418 2,129 h,n,t,d 3,209 25 3,184 
3,t 6,636 389 6,247 f,6B 18,611 15 18,596 
3B,mB,tB 6,634 387 6,247 f,6,t 681 680 
h,n,d 3,569 360 3,209 3,h,n 3,865 3,864 
f,6A 18,923 327 18,596 m,t,d 3,632 3,631 
3,c,m 3,634 312 3,322 c,mA 5,637 5,636 
6,m 2,204 229 1,975 h,mA 5,701 5,700 
3,mA 8,614 218 8,396 

In terms of the discussion in the previous section, the totals are calculated for 
the clusters and then summed for all clusters meeting a particular criterion. The 
shared part of t is the sum of the private parts of clusters that contain t and some
thing else. There are 18 of these listed in Table 11.4. 

Table 11.4 is listed in descending order by the size of the private part. Clearly 
the most interesting cluster in this table is f,c with a private part of 17,915 bytes. 
By itself it accounts for almost all of the shared parts for both f and 6 and pro
vides strong evidence that extensive cloning has been done. It is likely that one 
of these files is a clone of the other or they are both clones of a file that as since 
disappeared. 

If we look at the source forf, line 3 acknowledges that it is based on 6 (see Fig
ure 11.2). However, we can get more information about the nature of the cloning 
from the clusters themselves. Table 11.5 collects all of the clusters that involve a 
version off and a version of 6. 

There is also information about the direction of cloning. Notice that there is 
private content in common between both copies of f and each individual copy 
of 6. There is no private content in common between both copies of 6 and each 
separate copy of f. This suggests that f is cloned from 6 since 327 bytes of 6 



www.manaraa.com

II. Using Textual Redundancy to Study the Maintainability of Source Code 237 

Table 11.5. Sharing between fxSO.h and m6Sk.h. 

Alias Size Private Shared 
f,6 18,596 17,915 681 
3,c.f,h,6,m,n,t 680 680 0 
f,6A 18,923 327 18,596 
[B,6B 18,795 184 18,611 
fA,6A 18,969 46 18,923 
f,6B 18,611 15 18,596 
f,6,t 681 680 

removed or changed between versions of 6 were preserved in f. The absence of 
this phenomenon in the other direction strongly supports this conclusion. 

Upon inspection of the files it is observed that the 327 bytes of 6 removed 
correspond to five separate changes made that weren't reflected info The 15 bytes 
that occur in the later version of 6 and not the earlier are an artifact resulting from 
other maintenance activity on 6. This kind of inconsistent updating of clones is 
exactly the problem with this strategy for code maintenance. 

The information in Table 11.3 has a rather complex structure. Figure 11.3 
shows a Hasse diagram with the seven biggest clusters. Since 3,c.f,h,m,n,t,d is 
everything except dB, this long name is abbreviated as 6. In addition to the large 
matches involving f and 6, there are a number of other interesting matches that 
interact in a complex manner. 

What is the significance of 680 bytes occurring in 3,c.f,h,6,m,n,t but not in dB? 
After further inspection of the source, it is quickly discovered to be 17 lines of 
boilerplate at the beginning of each file but erroneously omitted from d. The first 
13 of these lines are shown in Figure F2 as lines 5-17 off. The other clusters of 
Figure 11.3 show other obvious sharing of code. 

11.5 A Large Example: Mozilla 

In early 1998, Netscape decided to make its proprietary code Open Source 
(Stanek, 1999). Now a large commercial body of source is available for study. 
Since Mozilla continues to be developed, the open source community needs to be 
coordinated, and does so through the web site at http://www.mozilla.org/. In their 
words they describe what Mozilla is: 

Mozilla is an open-source web browser, designed for standards com
pliance, performance, and portability. 

Mozilla is large. The Milestone 12 release of December 21, 1999 has 18,611 
files and a total size of 113,488,492 bytes. There are 1,246,683 lines of C++ code 



www.manaraa.com

238 Johnson 

Figure 11.3. Hasse diagram for the seven largest clusters. 

in 2,467 files, 491,024 lines of C code in 921 files, and 504,647 lines of C/C++ 
headers in 3,355 files. The remaining 11,868 files composed of code , make files, 
project files, graphics , documentation , test data, and other text and binary files 
split into 697,845 lines. 

For this exercise, we look at Milestones 3-15 available from the Mozilla web 
site. The following results were obtained: 

• There are 200,738 files composed of 33,614,023 lines and 1,258,288,054 
characters. 

• If only one snip from each matched set is counted, the size reduces to 
4,400,126 lines and 213,567,578 characters. 

• There are 4,450,928 snips that make up 373,569 match sets . 

• There are 119,487 clusters in 19,874 components. 

• The cluster containment graph has 1,856,746 arcs; this reduces to 212,054 
after transitive reduction. 

• 35% of the lines and 26% of the characters first appear in Milestone 3. 

• 22% of the lines and 28% of the characters appear in only one Milestone; 
17% of the lines and 11 % of the characters appear in all 13 Milestones . 

• 83% of the lines and 88% of the characters appear in clusters with a file path 
across all Milestones; 15% of the lines and 10% of the characters appear in 
clusters with exactly two file paths. 

• Of the clusters having one path, 26% of the lines and 31 % of the characters 
occur in one Milestone; 11 % of the lines and 21 % of the characters appear 
in two Milestones; 12% of the lines and 7% of the characters appear in all 
13 Milestones. 



www.manaraa.com

II. Using Textual Redundancy to Study the Maintainability of Source Code 239 

Table 11.6. Components of redundancy for major Mozilla subdirectories. 

Subdirectory Among Within Ratio 
xpcom 92,772 13,1133 0.707 
include 8,865 29,516 0.300 
jpeg 1,310 34,481 0.038 
mailnews 11,688 483,022 0.024 
xpfe 4,256 203,812 0.021 
config 503 27,516 Om8 
netwerk 1,908 118,026 0.016 
nsprpub 599 40,123 Om5 
lib 740 52,677 0.014 
xpinstall 1,109 79,402 0.014 
db 117 8,974 0.013 
network 1,418 120,767 0.012 
rdf 1,465 142,333 0.010 

• Of the clusters that participate in Milestone 15, 11 % of the lines and 12% 
of the characters occur in a singleton cluster; 65% of the lines and 68% 
of the characters belong to files that have not changed their file path; 7% 
of the lines and 6% of the lines have been moved in the directory tree be
tween Milestones without apparent cloning; 10% of the lines and 8% of the 
characters showed matches in previous Milestones but not in Milestone 15. 
This leaves 7% of the lines and 6% of the characters that have some kind of 
matches occurring in Milestone 15. 

There is a lot more exploration to be done on a source tree as large as Mozilla, 
but one more example shows the kinds of things that are possible with this ap
proach. Table 11.6 shows a comparison of matches (measured as number of lines) 
that occur among the subdirectories of first-level MoziIIa directories with matches 
that occur within these subdirectories by identifying the least common ancestor 
of all of the paths for each cluster. If this least common ancestor path is, for ex
ample " .. .lmozilla/xpcornlio," then all of the matching in this cluster is within a 
subdirectory of "xpcom." On the other hand, if the answer is " .. .lmozilla/xpcom" 
then the matching in this cluster involves different files or subdirectories directly 
under "xpcom." The ratio of of these values gives a strong indication of move
ment or cloning among these subdirectories, suggesting areas worthy of further 
investigation. 

Table 11.6 shows the subdirectories with a ratio over 0.01. Each of these is 
worthy of more detailed study using the same techniques recursively or using 
techniques described in the previous section. 



www.manaraa.com

240 Johnson 

11.6 Conclusions 

The analysis of textual redundancy is a promising tool for understanding the struc
ture of cloning and reorganization in large bodies of source code. It can handle 
mUltiple versions and variants easily. It is language independent and insensitive 
to parsing errors or lack of knowledge of the build structure. With the power of 
modem computers, it appears to scale up well enough and provides an interesting 
overall view of redundant structure. 

An alternative to the textual approach is described in Chapter 5. This apprach is 
suitable under different situations, and promises to be effective for clone detection 
in contemporary systems. 

There is much that needs to be done. More work on data analysis techniques are 
likely to yield real benefits. Work on new visualization techniques for the masses 
of information obtained also will be quite useful. Integrating this exact-match
based approach with parsing-based and approximate-match-based approaches 
should be able to provide a better view of source code than can any of them 
alone. 

11.7 References 
Baker, B. S. (1992). A program for identifying duplicated code. In Proceedings of 

Computing Science and Statistics." 24th Symposium on the Interface, College 
Station, TX, March 18-21. 

Biggerstaff, T. J. (1989). Design recovery for maintenance and reuse. Computer, 
22(7):36-49. 

Buss, E., De Mori, R., Gentleman, M., Henshaw, J., Johnson, H., Kontogiannis, 
K., MUller, H., Mylopoulos, J., Paul, S., Prakash, A., Stanley, M., Tilley, S., 
Troster, J., and Wong, K. (1994). Investigating reverse engineering tech
nologies: The CAS program understanding project. IBM Syst. Journal, 
33(3):477-500. 

Buss, E. and Henshaw, J. (1991). A software reverse engineering experience. In 
Gawman, A., Pachl, J., Slonim, J., and Stilman, A., editors, Proceedings of 
the 1991 Centre for Advanced Studies Conference (CASCON '91), pp. 55-73, 
IBM, Toronto, October 28-30. 

Buss, E. and Henshaw, J. (1992). Experiences in program understanding. In 
Botsford, J., Ryman, A., Slonim, J., and Taylor, D., editors, Proceedings of 
the 1992 Centre for Advanced Studies Conference (CASCON '92), pp. 157-
189, IBM, Toronto, November 9-12. 

Chikofsky, E. J. and Cross II, J. H. (1990). Reverse engineering and design re
covery: A taxonomy. IEEE Software, 7(1):13-17. 



www.manaraa.com

11. Using Textual Redundancy to Study the Maintainability of Source Code 241 

Johnson, J. H. (1993). Identifying redundancy in source code using fingerprints. 
In Gawman, A., Gentleman, W. M., Kidd, E., Larson, p.-A., and Slonim, J., 
editors, Proceedings of the 1993 Centre for Advanced Studies Conference 
(CASCON '93), pp. 171-183, IBM and NRC, Toronto, October 24-28. 

Johnson, J. H. (1994a). Substring matching for clone detection and change track
ing. In Proceedings of the Internation Conference on Software Maintenance 
(ICSM), pp. 120-126, Victoria, British Columbia, September 19-23. 

Johnson, J. H. (1994b). Visualizing textual redundancy in legacy source. In Bots
ford, J., Gawman, A., Gentleman, M., Kidd, E., Lyons, K., and Slonim, J., 
editors, Proceedings of the 1994 Centre for Advanced Studies Conference 
(CASCON '94), pp. 9-18, IBM and NRC, Toronto, October 31-November 3. 

Johnson, J. H. (1995). Using textual redundancy to understand change. In Ben
net, K., Bockus, D., Gentleman, M., Johnson, H., Kidd, E., Slonim, J., and 
Stilman, A., editors, Proceedings of the 1995 Centre for Advanced Studies 
Conference (CASCON '95), CD-ROM, IBM and NRC, Toronto, November 
7-9). 

Johnson,J. H. (1996). Navigating the textual redundancy web in legacy source. In 
Bauer, M., Bennet, K., Gentleman, M., Bockus, D., Burnside, P., Hoffman, 
E., James, A., Krmpotic, J., Rintjema, L., Stilman, A., Johnson, H., Lyons, 
K., and Slonim, J., editors, Proceedings of the 1996 Centre for Advanced 
Studies Conference (CASCON '96), CD-ROM, IBM and NRC, Toronto, 
November 12-14. 

Karp, R. M. (1986). Combinatorics, complexity, and randomness. CACM, 
22(2):98-109. 

Karp, R. M. and Rabin, M. O. (1987). Efficient randomized pattern-matching 
algorithms. IBM J. Res. Develop., 31(2):249-260. 

Stanek, W. R. (1999). Netscape Mozilla Source Code Guide. Netscape Press. 

Whitney, M., Kontogiannis, K., Johnson, J. H., Bernstein, M., Corrie, B., Merlo, 
E., McDaniel, J. G., Mori, R. D., MUller, H. A., Mylopoulos, J., Stanley, 
M., Tilley, S. R., and Wong, K. (1995). Using an integrating toolset for 
program understanding. In Bennet, K., Bockus, D., Gentleman, M., Johnson, 
H., Kidd, E., Slonim, J., and Stilman, A., editors, Proceedings of the 1995 
Centre for Advanced Studies Conference (CASCON '95), pp. 262-274, IBM 
and NRC, Toronto, November 7-9. 



www.manaraa.com

12 
Building Parallel Applications 
U sing Design Patterns 

Dhrubajyoti Goswami 
Ajit Singh 
Bruno R. Preiss 

12.1 Introduction 

Parallel application design and development is a major area of interest in the do
main of high-perfonnance scientific and industrial computing. In fact, parallel 
computing is becoming an integral part in several major application domains such 
as space, medicine, cancer and genetic research, graphics and animation, image 
processing, to name a few. With the advent of fast interconnecting networks of 
workstations and PCs, it is now becoming increasingly possible to develop high
perfonnance parallel applications using the combined computing powers of these 
networked resources, at no extra cost. Contrast this to the situation until the early 
90s, where parallel computing was mostly confined only to special-purpose par
allel computers that were un affordable by small research institutions. Nowadays, 
high-speed networks and fast general-purpose computers are aiding in the main
stream adoption of parallel computing at a much more affordable cost. 

However, parallel computing is not simple. The complexity arises due to the 
accumulation of many intricate details related to low-level parallelism, on top 
of the sequential code. As an aid to handling some of these complexities, this 
research proposes a generic model for designing and developing parallel applica
tions through the employment of reusable parallel computation patterns. 

The concept of design patterns has been extensively studied and used in 
the context of object-oriented software design. Patterns in this context describe 
strategies for solving recurring design problems in systematic and general ways 
(Gamma et ai., 1994). Similar ideas are being explored in other disciplines of 
computing as well. For instance, ACE (the Adaptive Communication Environ
ment) is an object-oriented toolkit that implements various network-level pat
terns to simplify the development of concurrent, event-driven communication 
software (Schmidt, 1994). 

In the parallel computing domain, design patterns describe recurring parallel 



www.manaraa.com

244 Goswami et al. 

computational problems of similar structure and communication-synchronization 
behavior, and their solution strategies. Examples of such recurring patterns are: 
static and dynamic replication, divide and conquer, data parallel pattern with 
various topologies, compositional framework for irregularly structured control
parallel computation, systolic array, singleton pattern for single-process single
or multi-threaded computation. 

12.1.1 Pattern-Based Approaches in Parallel Computing 

The exploration of design pattern concepts in the parallel programming domain 
is not new. Starting with the late 80s, several pattern-based systems have been 
built with the intention of facilitating parallel application development through 
the use of some of these ready-made, reusable components. These earlier systems 
include Code (Browne et aI., 1989) and Frameworks (Singh et aI., 1991). Some 
of the recent systems based on similar ideas that are worth mentioning are: En
terprise (Schaeffer et aI., 1993), Code2 (Browne et aI., 1995), HeNCE (Browne 
et aI., 1995), Tracs (Bartoli et aI., 1995), and DPnDP (Siu and Singh, 1997). 

Frameworks was one of the earliest systems specifically designed to restruc
ture existing sequential programs to exploit parallelism on workstation clusters. 
Patterns in Frameworks are called templates, which are at a different level of ab
straction than the parallel patterns mentioned previously in this section. In Frame
works, an application consists of modules which interact with one another via 
mechanisms similar to remote procedure calls (RPCs). A module's interconnec
tions with other modules are specified by an input template, an output template, 
and a body template. Developers create modules by selecting appropriate tem
plates and application procedures. Arbitrary process graphs could be created by 
interconnecting resulting modules. 

Enterprise was an improvement over Frameworks in several aspects. Patterns 
in Enterprise are at a much higher level of abstraction than in Frameworks. The 
three-part templates in Frameworks are combined into single units in Enterprise 
and are called assets, which are named to resemble operations in a human organi
zation. For example, the asset named department represents a master-slave pattern 
in the traditional parallel programming terminology. A fixed collection of assets 
is provided by the system which can be combined to create an asset diagram to 
represent the parallel program structure. 

Code, Code2 and HeNCE are all based on visual programming techniques to 
aid the programmer develop his parallel structure graphically through the use of 
nodes and arcs that represent computations and interactions respectively. Code is 
one of the pioneers of the idea of a two-step development process. During the first 
step, programmers design the various sequential components, and then, during 
the second step, compose them into a parallel structure. The graphs in Code de
pict data-flow pattern of computation. Each node in Code could itself be another 
data-flow graph. Thus it supports reuse of other data-flow graphs by allowing re
cursive embedding of graphs. As a major distinction between Code and HeNCE, 



www.manaraa.com

12. Building Parallel Applications Using Design Patterns 245 

graphs in HeNCE depict control flow. In addition, HenNCE supports patterns 
with replication, pipeline, loop and conditional constructs. 

Tracs is another graphical development system, however with some new con
cepts. Application development in Tracs consists of two distinct phases: the def
inition phase and the configuration phase. During the definition phase, the user 
defines the three basic components of an application: the message model, the task 
model and the architecture model. The architecture model defines the software 
architecture of the parallel application in terms of message and task models. An 
architecture model defined during this phase can be saved in a user-defined library 
for later use. During the configuration phase, the programmer constructs the com
plete application from the basic components, either defined during the definition 
phase or selected from the system libraries or both. Evidently, Tracs is one of the 
first systems known to us that is based on the idea of extensibility by providing 
support for an extensible library of user-defined architecture models. 

Unlike the design-level patterns in the object-oriented domain (Gamma et aI., 
1994), the previous systems in parallel computing support patterns not only at 
the design level but also at the implementation level. In other words, the design
level patterns are also pre-implemented, similar in concept to frameworks in the 
conventional software engineering terminology. 

12.1.2 Limitations of the Previous Approaches 

Though the idea of design- and implementation-level patterns hold significant 
promise, in practice, most of the pattern-based approaches mentioned previously 
suffer from severe limitations. Some of these limitations include: limited usability, 
lack of flexibility, and limited extensibility. 

Most systems support only a limited set of patterns in ad hoc ways. There is 
no generic or canonical model of a pattern, which in tum substantially hampers 
the usability ofthe approach. Usability is also hampered by the lack of a clear-cut 
methodology for composing various patterns in a single application. Besides us
ability, there are two other important aspects: flexibility and extensibility. Most of 
the systems are hard-coded with a limited and fixed set of patterns, and often there 
is no clear way to add new patterns to the system when required (leading to lack 
of extensibility). Furthermore, if a certain desired parallel pattern is not supported 
by a system, often there is no alternative but to abandon the system (leading to 
lack of flexibility). The interested reader can refer to the comprehensive paper 
by Singh et al. for a detailed look at the desirable characteristics and the short
comings of different pattern-based approaches in parallel computing (Singh et aI., 
1998). 

Tracs (Bartoli et aI., 1995) is one earlier system that addresses the issue of ex
tensibility. However, the type of extensibility realized inside Tracs is restrictive. 
For example, in Tracs a user can graphically create a 5-slave master-slave pat
tern and save it inside the library for future use. However, a generic master-slave 
pattern could have been more useful for this purpose. 



www.manaraa.com

246 Goswami et al. 

Complete graphical representation of parallel applications, as in many of the 
previously mentioned approaches, also has its limitations. As one of these limita
tions, graphs alone may not be enough to convey the behavior of an application. 
For instance, the graphical representation of a 2-D data-parallel mesh and a sys
tolic array pattern might look structurally identical. But these two patterns differ 
significantly in their behavioral aspects, which may not be conveyed in a graph. 

DPnDP (Siu and Singh, 1997) is the first system known to us that addresses 
both the issues of flexibility and extensibility. Unfortunately it concentrates only 
on the structural aspects of a pattern and ignores the behavioral aspects (such as 
the parallel computation model and the communication-synchronization behavior 
inside a pattern) altogether. Despite its limitations, DPnDP was a good learning 
experience and it set up the initial stage for this research. 

12.1.3 Approach 

This research proposes a generic (pattern- and application-independent) model 
for realizing and using parallel design patterns, useful for solving network
oriented parallel applications. The model is based on the popular message-passing 
paradigm, which makes it suitable for a cluster of interconnected workstations or 
PCs. The structural and behavioral attributes associated with a parallel design 
pattern are abstracted in an application-independent manner. These application
independent abstractions hide most of the low-level details that are commonly 
encountered in any parallel application development (problem decomposition and 
distribution, process/thread creation, process-processor mapping, communication 
and synchronization, data packing and unpacking, load balancing, etc). The set of 
abstracted attributes is generic for all patterns. 

The term parallel architectural skeleton is used to imply an pattern's physical 
realization that is application independent. A parallel architectural skeleton can 
be regarded as a building block that contains the necessary ingredients for con
structing application-specific virtual architectures, suitable for solving problems 
that conform to a specific parallel computing pattern or a collection of patterns. 

In the rest of the discussion, the term parallel architectural skeleton is abbrevi
ated to architectural skeleton, or simply skeleton. 

Each architectural skeleton is a reusable component that hides the low-level, 
application-independent details related to the implementation of a particular par
allel design pattern. Separating and pre-packaging those application-independent 
details from application code enables a user to reuse the same skeleton again and 
again for different applications that follow similar patterns. Furthermore, it lib
erates the user from the additional burden of many of the low-level details and 
instead enables him to concentrate more on application-specific issues. 

In contrast to the other pattern-based approaches in parallel computing, this ap
proach is based on a generic model which guides a user to systematically compose 
his application in a hierarchical fashion. The model is generic because it can be 



www.manaraa.com

12. Building Parallel Applications Using Design Patterns 247 

described in a way independent of patterns and applications. Genericity enhances 
usability. 

The model turns out to be an ideal candidate for object-oriented style of de
sign and implementation. It is currently implemented as a C++ template library 
without necessitating any language extension. The C++-implementation enables a 
user to design and develop his parallel applications using a mainstream program
ming language, without the extra burden associated with the learning of a new 
language or a new methodology. As discussed later, the object-oriented and the 
library-based approach has an extra benefit towards extensibility. 

The library of skeletons supplies the reusable building blocks which encapsu
late the structural and behavioral attributes associated with the network-oriented 
patterns in parallel computing. The hierarchical compositional model, discussed 
in the next section, enables a user to systematically compose his application using 
the desired patterns which can interact with one another via standard interfaces 
and using both low- and high-level communication-synchronization protocols. 
The inherent presence of a hierarchy and standard interfaces for patterns make 
it possible to refine parts of an application without affecting the rest (hierarchical 
refinement is discussed in a later section of the chapter). Most of the attributes 
associated with the skeletons are parameterized where the parameters depend on 
the needs of an application. Consequently, they enable the same skeleton or a set 
of skeletons to be reused in different applications that follow identical patterns 
but are not necessarily similar in other aspects. All these of issues make the ar
chitectural skeleton approach unique in comparison with the other pattern-based 
approaches in parallel computing. 

12.2 The Architectural Skeleton Model 

A parallel architectural skeleton is a set of attributes that encapsulate the struc
ture and behavior of a pattern in parallel computing in an application-independent 
manner. The attributes are parameterized, where the parameters depend on the 
needs of an application. The user extends a skeleton by specifying the parameters 
associated with the attributes, as needed by the application at hand. Figure 12.1 
illustrates the various phases of application development using parallel architec
tural skeletons. As shown in the figure, different extensions of the same skeleton 
can result in somewhat different abstract parallel computing modules (abbrevi
ated to abstract module). An abstract module is yet to be filled in with application 
code. Once an abstract module is supplied with application code, it results in a 
concrete parallel computing module (abbreviated to concrete module, or simply, 
module). A parallel application is a systematic collection of mutually interacting, 
instantiated modules. 

An abstract module inherits all the properties associated with a skeleton. More
over, it has additional components that depend on the application. In object
oriented terminology, an architectural skeleton can be described as the gener-



www.manaraa.com

248 Goswami et al. 

Step I 

Ami (fj)Am2 

Instantiation of Concrete Modules as 
collection of processes 

Step I: Extend 
Step 2: Add Application Code 
Step 3: Instantiate 

As: An Architectural Skeleton 
Am: An Abstract Module 
Cm: A Concrete Module 

Figure 12.1. Relationships between a parallel architectural skeleton, an abstract module 
and a module. 

alization of the structural and behavioral properties associated with a particular 
parallel pattern. An abstract module is an application-specific specialization of a 
skeleton. 

Figure 12.2 illustrates the anatomy of an abstract module (in this case, the mod
ule extends the data-parallel architectural skeleton designed for 2-D mesh topol
ogy). An architectural skeleton is formally defined as follows: 

Definition . A parallel architectural skeleton, As, is an application-independent 
abstraction comprised of the set of generic attributes {Rep, BE, Topology, PInt, 
PExt}. An abstract module is an application-specific extension of a skeleton . Let 
Am be such an abstract module that extends the skeleton As. The various at
tributes inherited by Am (from As) are described as follows: 

• Rep is the representative of Am. When filled in with application code, Rep 
represents the module in its action and interaction with other modules. 

• BE is the back-end of Am. Formally, BE = {Am!, Am2, .. . , Amn }, where 
each Ami is itself an abstract module. The notion of modules inside another 
module results in a tree-structured hierarchy. Am, at the root of this tree, is 
the parent and each Ami is its child. Modules Ami and Amj belonging to 
the same back-end are peers of one another. 

• Topology is the interconnection-topology specification of the modules in-



www.manaraa.com

12. Building Parallel Applications Using Design Patterns 249 

Interaction using P.I Interaction using P.E 

,:~ xt 

, . 

Other ab tract modules 
in ide back-end 

An Abstract Module Am 

- - - - A communication link o Enclosure of a module 

o Representative of a module 

D Enclosure of the back-end 

Figure 12.2. Diagrammatic representation of an abstract module. 

side the back-end (BE), and their connectivity specification with Rep . 

• PInt is the internal communication-synchronization protocol of Am and 
its associated skeleton, As. The internal protocol is an inherent property 
of the skeleton, and it captures both the parallel computing model of the 
corresponding pattern and the topology. Formally, PInt is defined as a set 
of primitive commands. Using the primitives inside PInt, the representative 
of Am can interact with the modules in its back-end, and a module in the 
back-end can interact with its peers. 

• P Ext is the external communication-synchronization protocol of Am and is 
defined as a set of primitive commands. Using the primitives inside P Ext , 

Am can interact with its parent and the peers. Unlike PInt. which is an 
inherent property of the skeleton, P Ext is adaptable. In other words, Am 
adapts to the context of its parent by using the internal protocol of its parent 
as its external protocol. 

Though an abstract module is an application-specific specialization of an archi
tectural skeleton, it is still devoid of any application code. User writes application 
code for an abstract module using its communication and synchronization proto
cols, PInt and P Ext . A code-complete abstract module is called a concrete paral
lel computing module, or simply a module. A parallel application is a hierarchical 
collection of instances of such modules. 

Parent-child relationships among modules result in a tree-structured hierarchy. 
A parallel application can be viewed as a hierarchical collection of modules, con
sisting of a root module and its children forming the sub-trees. This tree is called 
the HTree of the application. For example, in a Master-Slave application, the 
Master module forms the root of the hierarchy, and the dynamically replicated 
children Slave modules form the sub-trees. In another application consisting of 
the three modules Producer, Worker and Consumer, a composite module 
that extends the composite skeleton forms the root of the hierarchy, and its three 
children (Producer, Worker and Consumer) form the sub-trees. 



www.manaraa.com

250 Goswami et al. 

The concept of HTree is important, because the object-oriented implementa
tion dynamically constructs the hierarchy associated with an application, while 
completely hiding it from the user. A singleton module, which resembles a sin
gle process in conventional parallel computing and consequently has no children, 
forms a leaf in the hierarchy. HTrees are diagrammatically illustrated for the ex
amples discussed in Section 12.5. 

Examples in Section 12.5 illustrate the various concepts associated with the 
model and its implementation, including examples of some of the protocols and 
an illustration of hierarchical refinement. A more formal description of the model 
can be found in the Goswami (2000). 

12.3 An Object-Oriented Implementation 

This section discusses some key issues related to the present object-oriented im
plementation of the model. Goswami et al. (l999b) provide additional details re
garding the object-oriented features of the implementation. 

The model has been currently implemented using an industry standard C++ 
compiler (SunCC, V 4.1) without any language extension. MPI (Gropp et aI., 
1994), the proposed standard message passing interface, is used as the underly
ing communication-synchronization library. There are several vendors who are 
currently working toward an implementation of the MPI standard (presently at re
lease 2.0) as proposed by the MPI forum (MPIF). The current implementation of 
the model uses LAM 6.1 , initially developed at the Ohio Supercomputing Center 
and now maintained and extended at the University of Notre Dame, USA. LAM 
(Local Area Multicomputer) is an MPI programming, development, and debug
ging environment for heterogeneous computers on a network. It implements the 
complete MPI -1 standard and many of the MPI -2 features. 

A textual interface based on a specification language whose parser is imple
mented in Perl (Wall et al., 1996) helps the user in the various stages of application 
development. The textual interface is parsed to produce the front-end C++ code 
which is subsequently compiled and linked with the skeleton library to generate 
the executable. However it must be emphasized here that the use of a specification 
language is not a language extension. It merely helps the user to bypass certain 
laborious C++-related details that can easily be handled by Perl scripts. An expert 
in C++, for example, may want to directly develop his application in the language 
of his expertise without going through the specification-language phase. 

Other important features of the implementation include: (1) the use of C++ 
operator-overloading to implement certain primitive operations inside protocol 
classes; and (2) the use of marshaling and unmarshaling mechanisms whereby 
the data attributes of an entire object can be marshaled, shipped over a communi
cation link, and then unmarshaled, without the usual hassles of data packing and 
unpacking. These features will be discussed in Section 12.5. 

Figure 12.3 illustrates the high-level class diagram behind the design of the 



www.manaraa.com

12. Building Parallel Applications Using Design Patterns 251 

CQmpositionolSkeleron 

Figure 12.3. High level class diagram of the skeleton library. 

skeleton library. It uses the standard UML (Booch et al., 1999) notation. For sim
plicity, the figure does not illustrate the relationships between the skeleton classes 
and the various protocols. The various attributes and the methods associated with 
each class, and the formal parameters, in the form of templates, associated with 
each inherited skeleton class are not shown. 

It is worth mentioning here that the library of architectural skeletons exhibits 
the characteristics of a framework in the conventional software engineering ter
minology. In that context, the skeleton-library could also be called a framework 
for developing network-based parallel applications. 

12.4 Selected Patterns in Parallel Computing 

Before demonstrating the model and its implementation, we present two of the 
patterns that are used in the examples. These two patterns are frequently en
countered in parallel computing. They are the dynamic replication pattern and 
the composite pattern. The description of the patterns is general, that is, they are 
not discussed exclusively from the perspective of the model. The subsequent sec
tion will illustrate the physical realization of these patterns within the boundaries 
of our approach. 

In what follows, we use a commonly accepted pattern format (Meszaros and 
Doble, 1997). 

12.4.1 Dynamic Replication of Modules 

Context: Your design and development of a parallel application has to deal with 
a situation where a sequential computing module has to work collectively with a 
group of other modules. The sequential module may not be in pace with the other 
modules. This will definitely slow down the entire application ifthe other modules 



www.manaraa.com

252 Goswami et al. 

need to rely on its outcome. Accordingly, it might be necessary to replicate the 
workload of the sequential module to speed-up its performance. 

Problem: Find a convenient methodology to replicate the workload of the out
of-pace sequential module so that the other modules in the application are not 
affected in any significant respect. 

Forces: 

• Speed-up is the biggest consideration here. 

• Some parts of the application are likely to be developed by others. You need 
to handle your part of the bottleneck without affecting their work. 

• Not all applications are suitable for replication. For example, the workload 
of a module can be easily replicated if (1) it performs some repeated compu
tation, say inside a loop; (2) each iteration is independent; and (3) commu
nication does not occur in the middle of a computation phase. Replication is 
achieved by assigning the workload of each iteration to a separate module, 
thus overlapping their executions in time. This situation is most frequently 
encountered when the modules in question form a pipeline. Each pipeline 
stage performs some repeated computation which can easily be replicated, 
at least theoretically. 

• Automatic replication is not easy to implement. An efficient implementa
tion has to deal with issues like dynamic distribution of workload and bal
ancing of system load without compromising performance. For example, 
if the CPUs are already overloaded, further replication will in fact degrade 
performance. 

Solution: The solution will depend on the particular context. For the user of the 
architectural skeleton library, the solution will be to use the replication skeleton 
that implements a dynamic replication pattern. The user replaces the out-of-pace 
sequential computing module with a replication module that extends the replica
tion skeleton, and then distributes the work load of the original sequential module 
to dynamically replicated Worker modules, where each Worker is a child of the 
replication module. A Worker can be a sequential module (also called a single
ton module in the context of this model). Since each Worker exclusively deals 
with its parent, the replication module, and the interface of the replication module 
with the rest of the modules remain unchanged from before (in the context of this 
model), the other modules are unaffected by this change. An example is provided 
in the next section. 

12.4.2 Supportfor Hierarchical Pattern Composition 

Context: A parallel application module that you are developing involves several 
patterns in parallel computing. The patterns must be interconnected in a particular 



www.manaraa.com

12. Building Parallel Applications Using Design Patterns 253 

fashion to produce a desired topology. The interconnected patterns need to interact 
with one another; they may engage in interaction behaviors, including collective 
communication (scatter, gather, and reduce types of operations) and peer-to-peer 
broadcasting. The application module that you are developing will itself be a part 
of a bigger, more complex parallel application. 

Problem: How do you achieve hierarchical pattern composition? 

Forces: The following issues need consideration while choosing a solution: 

• Flexibility is one of the mandatory requirements of all pattern-based ap
proaches in parallel computing. The approach should be flexible enough to 
enable a user to intermix patterns as desired, or enable him to bypass pat
terns in order to build applications from scratch. Flexibility often enhances 
usability. 

• An efficient implementation of hierarchical pattern composition is a fairly 
complicated issue. One of the factors that need consideration is the dynamic 
load-balancing of the composed modules in the processor-cluster, where 
each module might contain other modules as well. Dynamic load balancing 
is itself a major research interest. Note that a load imbalance might cause 
severe performance degradation, which may mask off any possible gain. 

Solution: Again, the solution depends on the precise context. For instance, for 
the user of an architectural skeleton library, the solution will be to take advantage 
of the composite skeleton that implements a composite pattern. The user extends 
the skeleton appropriately to create an abstract module, or the composite module. 
Each of the patterns to be composed is realized as a module in this model's con
text, and it becomes a child of the composite module. By default, the composed 
children modules inside the composite module form an all-to-all interconnection 
topology. The internal protocol, PROT ~et, of the composite skeleton supports 
the desired communication-synchronization requirements of the composed mod
ules. Note that the composite module can itself be a part of another module. Each 
abstract module becomes concrete as soon as it is code-complete. An example is 
provided in the next section. 

12.5 Examples 

The following examples illustrate the concepts behind the architectural skeleton 
model, discussed in Section 12.2 as well as the various issues related to its imple
mentation and use. The examples will be revisited in a later section while analyz
ing the software engineering related aspects of the model and its implementation. 



www.manaraa.com

254 Goswami et al. 

12.5.1 Hello World 

This first example simply prints the string "Hello World." A single process struc
ture is suitable for this purpose, which can be realized using the singleton skele
ton. As a property of this skeleton, any module that extends it contains only the 
representative, and the back end of the module (BE) is empty. Consequently, the 
internal protocol, PInt, is not required and hence it is an empty set. For the same 
reason, the topology attribute is also void. 

The following code segments illustrate the user's portion of the code in the 
specification language: 

II My simple sequential program. 
MyModule EXTENDS SingletonSkeleton 
{ 

Rep { 
printf (" Hello world\n"); 

} 
} 

Though it looks quite trivial, the example demonstrates many important aspects 
of the model and its implementation. MyModule is a parallel computing mod
ule that extends the singleton skeleton. Rep corresponds to the representative of 
the module. When Rep is empty, what we have is an abstract module. Filling 
in of Rep with application code (in this case, inserting the code for printing the 
string "Hello World") results in the concrete module, MyModule. Recall that an 
abstract module is a module without application code. 

The back end of MyModule is empty (that is, the module exclusively contains 
the representative) and hence its internal protocol, PInt, is undefined. The module 
resembles a single process in the conventional parallel computing terminology. As 
a standalone module, MyModule has no parent and hence its adaptable external 
protocol, PExt, is also void in this case. The module is both the root and the leaf 
of the single-node HTree. 

The specification language parser, implemented in Perl, translates the previous 
code to the following C++ code, inserted in the file Pmain. cc: 

II Automatically generated file: Pmain.cc. 
#include "BasicDef.h" 
#include "VoidClass.h" 
#include "SingletonSkeleton.h" 
II Global definitions will go below: 
11--------------------------------------11--------------------------------------II Generated code for module: "MyModule" 
class MyModule : public SingletonSkeleton <void> 
{ 
public: 

MyModule () {}; 
virtual void Rep() { 

printf ("Hello world\n"); 
} 

II Miscellaneous local definitions go below: 
11-----------------------------------------



www.manaraa.com

} ; 
void Prnain ( ) 
{ 

12. Building Parallel Applications Using Design Patterns 255 

MyModule TopLevel_524; 
TopLevel_524.RUn(); 

} 

The automatically generated file, Pmain. cc, is subsequently compiled and 
linked with the skeleton library to produce the executable, which finally runs on a 
cluster of workstations or PCs. 

The specification language and its parser merely reduce some of the laborious 
and monotonous coding, and implicit details (for instance, choosing the right pro
tocols) on the part of the user. If desired, the user can simply write his application 
in pure C++ syntax, thus bypassing the specification language phase. 

As the generated code segments suggest, C++ templates are used to realize cer
tain statically configurable parameters associated with the attributes. For instance, 
in the previous code, the sole template parameter associated with the singleton 
skeleton corresponds to its adaptable external protocol, PExt ' The value Void of 
the parameter implies that the external protocol is undefined. 

12.5.2 A Graphics Animation Application 

The following example further elaborates the model and its implementation. It il
lustrates an irregular composition of modules using the composite skeleton. More
over, it emphasizes on issues like refinement and also illustrates some of the use
ful features of its present object-oriented implementation (such as automatic data 
marshaling and unmarshaling mechanisms; use of operator overloading in C++ to 
implement certain primitive operations inside protocol classes). 

Let us consider the graphics animation program (Singh et ai., 1998) consisting 
of three modules: Generate, Geometry and Display. The program takes 
a sequence of graphics images, called frames, and animates them. Generate 
computes the location and motion of each object for a frame. It then passes the 
frame to Geometry, which performs actions such as viewing transformation, 
projection and clipping. Finally, the frame is passed to Display, which performs 
hidden surface removal and anti-aliasing. Then it stores the frame onto the disk. 
After this, Generate continues with the processing of the next frame and the 
whole process repeats. 

One way of implementing this application is as follows. The implementation 
uses the composite skeleton and the singleton skeleton. The composite skeleton 
implements the composite pattern, discussed in the previous section. Here, the 
Root composite module (that is, Root extends the composite skeleton) forms 
the root of the hierarchy. The three children of Root are Generate,Geometry 
and Display, and they form the subtrees. Initially each of the three children is 
a singleton module, and hence is a leaf of the hierarchy (refer to Figure 12.4(a)). 
By default, the three child modules form an all-to-all interconnection topology. 



www.manaraa.com

256 Goswami et a!. 

The internal protocol, PInt. associated with the composite skeleton is /break 
PROT -.Net = {Send( ... ), Receive( ... ), Broadcast( ... ), Spawn( ... ), ... }. PROT -.Net be
comes the external protocol (that is, PExt ) for each of the three children (refer to 
Section 12.2). 

GenerateGeometry and GeometryDisplay are user-defined classes 
whose data attributes can be marshaled, shipped over a communication link and 
then unmarshaled, without the usual hassles of data packing and unpacking. Their 
constituent data members are either system defined wrappers of standard data 
types or other user defined types. The example also illustrates the use of C++ 
operator overloading as an alternative way for implementing and using certain 
primitive operations inside PROT -.Net (for instance: Send( ... ), Receive( ... ». 
II ****************************************************** 
GLOBAL { 
II Any global definition may go here. 

#include "geom.h" 
#define MAXlMAGES 120 

II The following defines a marshal-able class. 
class GenerateGeometry : public UType { 

Int imageNumberi II "Int" is a System defined 
II marshalable wrapper for "int" 

ObjTable tablei II "ObjTable" is a marshalable 
II class defined in "geom.h" 

public: 
II Marshal() "this" object 
virtual void Marshal() 

II {imageNumber.Marshal()i table.Marshal()i}i 
II Unmarshal "this" object 
virtual void UnMarshal() 

II {imageNumber.UnMarshal()i table.UnMarshal()i}i 
II Constructor(s) etc ... 

}i 

II Another marshalable class definition. 
class GeometryDisplay : public UType { 

Int imageNumberi 
Int nPolYi 
PolyTable tablei /1 "PolyTable" is another marshalable 

II class defined in "geom.h" 
public: 

} 
} 

virtual void Marshal() {imageNumber.Marshal()i 
nPoly.Marshal()i table.Marshal()i}i 

virtual void UnMarshal() {imageNumber.UnMarshal()i 
nPoly.UnMarshal()i table.UnMarshal()i}i 

II Constructor(s) etc ••• 

II ****************************************************** 
II The "Root" module (root of the hierarchy). 
II Has three children: Generate, Geometry and Display. 
Root EXTENDS CompositionalSkeleton 
{ 



www.manaraa.com

} 

12. Building Parallel Applications Using Design Patterns 257 

CHILDREN = Generate, Geometry, Display; 
Rep { 
II Representative code goes here. In this case, the 
II representative has no functionality (it is empty). 
II If needed, Rep can interact with the three children 
II using primitives inside internal protocol PROT_Net. 
} 

II ****************************************************** 
II The "Generate" module extends the singleton skeleton. 
Generate EXTENDS SingletonSkeleton 
{ 

} 

II A singleton module can have no children. 
Rep { 

} 

II The representative code goes here. 
int image; 
GenerateGeometry Work; 
for (image = 0; image < MAXIMAGES image++){ 

ComputeObjects (Work); 
Geometry « Work; 

II The above operation is a member primitive of the 
II external protocol: PROT_Net. An alternative 
II option is to use: Send(Geometry, Work, context). 

} 

II All local definitions go below: 
LOCAL { 

} 

void ComputeObjects(GenerateGeometry& Work) 
{ 
II User code for "ComputeObjects" goes here. 
} 

II ****************************************************** 
II The "Geometry" module. 
Geometry EXTENDS SingletonSkeleton 
{ 

} 

Rep { 

} 

int image = 0; 
GenerateGeometry Work; 
GeOmetryDisplay Frame; 
for (image = 0; image < MAXIMAGES ; image++){ 

} 

Generate » Work; 
II The above operation is a member primitive of the 
II external protocol: PROT_Net. An alternative option 
II is to use: Receive (Generate , Work, context). 

DoConversion(Work, Frame); 
Display « Frame; 

LOCAL { 
II local definition of DoConversion( •.• ) goes here. 

} 

II ****************************************************** 
II The "Display" module. 
Display EXTENDS SingletonSkeleton 
{ 



www.manaraa.com

258 Goswami et al. 

} 

Rep { 

} 

int image; 
GeOmetryDisplay Frame; 
for (image = 0; image < MAXIMAGES 

Geometry» Frame; 
DoHidden(Frame); 
WriteImage(Frame); 

} 

image++) { 

LOCAL { 

} 

II Local definitions of DoHidden( ... ) and 
II writeImage( ••. ) go here. 

II ****************************************************** 

As in the previous example, the specification language parser automatically gen
erates the front-end C++ file Pmain. cc, which is subsequently compiled and 
linked with the skeleton-library to generate the executable. 

12.5.3 Hierarchical Refinement 

It is generally the case that Display module, which performs actions such as 
hidden surface removal and anti-aliasing, is the most time intensive of the three 
children modules. Consequently, the singleton Display module is replaced with 
another module, of identical name, that extends the replication skeleton. The repli
cation skeleton implements the replication pattern (refer to the previous section). 

The work load of the new Display module is now distributed among dynam
ically replicated Worker modules, each of which is a child of Display. The 
internal protocol, PInt, for the replication skeleton is PROT ~epl. Consequently 
PROT ~epl becomes the external protocol for each replicated child Worker. 

Note that none of the other modules is affected by this change. This type of 
localized replacement, whereby a subtree of the original HTree is replaced with 
another without affecting the rest, is called a refinement. The change in the imple
mentation is illustrated next. 

II The refined "Display" module. 
Display EXTENDS ReplicationSkeleton 
{ 

liThe dynamically replicated children of "Display" 
CHILDREN = worker; 
Rep { 

int image = 0; 
int success; 
GeometryDisplay Frame; 
while (True){ 

success = True; 
while ((image < MAXIMAGES) && success){ 

Geometry» Frame; 
II The above operation is a member primitive 
II of the external protocol, PROT Net. 
image++; 
success = SendWork(Frame); 



www.manaraa.com

12. Building Parallel Applications Using Design Patterns 259 /1 Roo, 

• 
A Root 

/ ~eometry 
Generate Geometry Di play Generate 

} 

(a) 

• Worker Worker Worker 
Worker 

_ Representative of a module 

- Parent-child relationship in the HTree (b) 

} 
} 
LOCAL { 

} 

Figure 12.4. HTree before and after refinement. 

II The above operation is a member primitive 
II of the internal protocol PROT_Repl. 

if (!success) {II Do it myself, if unsuccessful 
II in assigning it to a worker. 

} 

DoHidden(Frame); 
Writelmage(Frame); 

if (image == MAXlMAGES) break; 

II Local definitions of DoHidden() and Writelmage() 
II go here. They can also be defined globally 
II since these methods are used in more than one module 
II one module. 
} 

II Each replicated "Worker" module 
Worker EXTENDS SingletonSkeleton 
{ 

} 

Rep { 

} 

GeometryDisplay Frame; 
ReceiveWork(Frame); 
II The above operation is a member primitive of 
II the external protocol, PROT_Repl. 
DoHidden(Frame); 
Writelmage(Frame); 

LOCAL { 

} 

II Local definitions of DoHidden( ••• ) and 
II Writelmage( .•• ) go here. 

Figure l2 .4(a) illustrates the HTree before refinement. Figure l2.4(b) illustrates 
the modified HTree after refinement. Note that only the subtree with Display at 
its root is affected by this change. 



www.manaraa.com

260 Goswami et al. 

12.6 Software Engineering Issues 

This section focuses on the various software engineering related aspects of the 
model. 

12.6.1 Reuse 

There are two types of reuse we can talk about: (a) reuse of code for patterns, and 
(b) reuse of application code. The first one is quite evident in this model, since 
each architectural skeleton extracts and implements the structural and the behav
ioral attributes associated with a pattern in an application-independent manner. 
The various parameters associated with these attributes (dimensions of a mesh, 
width of a divide-conquer tree, and selection of appropriate protocols) enable the 
same skeleton to be configured to the needs different applications as abstract par
allel computing modules. The abstract modules become concrete with the inser
tion of application code. 

Regarding the reuse of application code, it is a known fact that parallel appli
cation code is nothing but sequential code with embedded parallelism constructs 
(calls to primitive methods belonging to various protocol classes). In fact, a par
allel application can be viewed as a restructuring of the original sequential code 
with embedded parallelism constructs. A smart restructuring enables chunks of 
the original sequential code to be reused. In the graphics animation example, 
the procedures DoHidden( ... ), DoConversion( ... ) and Writelmage( ... ) are 
reused, except for minor changes related to the passed parameter type(s), from 
the original sequential code. Moreover, these reused procedures constitute the 
majority of the overall application code. 

12.6.2 Genericity 

Rather than being ad hoc, each architectural skeleton is defined in a generic fash
ion that is, in a pattern- and application-independent manner with its universal 
set of attributes. Many useful patterns in parallel computing are realized within 
the generic model (see Figure 12.3). Each parallel computing module can inter
act with other modules via standard interfaces (i.e., the representatives), a well
defined set of protocols and using a universal set of rules. The generic approach 
enhances usability. 

12.6.3 Composition Using Patterns 

A parallel computing module can contain other modules inside its back end, and 
thus pattern composition is an inherent property of the model. The composite 
skeleton supports irregular composition of patterns inside the back end, with no 
restriction on the types of patterns that can be composed (refer to Section 12.4). 



www.manaraa.com

12. Building Parallel Applications Using Design Patterns 261 

Thus, a composite module, which is an extension of the composite skeleton, can 
contain other composite modules as well. Standard interfaces for all modules and 
a well-defined adaptation rule make pattern composition feasible. 

12.6.4 Hierarchical Refinement 

The same set of characteristics of the model that facilitates pattern composition 
also supports hierarchical refinements of an application. A parallel computing 
module can be viewed as a black box, where the only part visibile from the out
side world is the action of the module, its interface, and its interaction with other 
modules. As long as these three factors remain unaffected, the module can always 
be replaced by another module without affecting the rest ofthe application. 

Hierarchical refinement is already illustrated for the graphics animation ex
ample in Section 12.5.2, where the singleton Display module is refined to a 
dynamically-replicated module of identical name. Figure 12.4 illustrates the af
fect of refinement on the hierarchy. 

12.6.5 Separation of Concerns 

Also known as separation of specifications, separation of concerns is a desir
able characteristic of all pattern-based approaches. Extracting those components 
of patterns that are application independent into architectural skeletons leads to 
a clear separation between application code and application-independent issues. 
The application-independent components hide most of the low-level details re
lated to process and topology creation, process-processor mapping, communica
tion and synchronization, load balancing, data marshaling and unmarshaling, and 
numerous other issues. These pre-packaged components are tested to be reliable, 
provided they are used correctly. Thus, separating these low-level concerns en
ables the user to concentrate on application-related issues. 

12 .6.6 Flexibility 

Flexibility is one of the major concerns associated with all pattern-based ap
proaches (Singh et aI., 1998). 

MPI (Gropp et aI., 1994) is known to be extremely flexible because of its proven 
applicability in solving a vast majority of parallel applications known to us at 
this moment. Often, different solution strategies can be combined in solving an 
application using MPI. Within the framework of our model, flexibility can be 
achieved if many of the features of MPI could be supported. This is the main 
idea behind the composite skeleton and its associated protocol, PROT ~et. The 
composite skeleton, with the help of its internal protocol PROT ~et, can support 
many of the useful features of the MPI programming model, and can be used to 
substitute patterns if an application demands so. Moreover, a composite module 



www.manaraa.com

262 Goswami et al. 

is like any other module from the model's perspective, and thus can be used in 
conjunction with the other patterns supported by the model. This could provide 
added flexibility to the user. 

12.6.7 Extensibility 

As mentioned previously, lack of extensibility is another major concern associated 
with most pattern-based approaches (Singh et aI., 1998). Most of these systems 
are hard-coded with a limited and fixed set of patterns, and often there is no clear 
way to add new patterns to the system when required. 

In contrast, the architectural skeleton approach is intended to be extensible. A 
couple of factors favor extensibility: (l) the generic approach helps in setting the 
standard for the various components of a skeleton and their individual function
ality. It also sets the standard for pattern composition, interface and interaction. 
Contrast this with an ad hoc set of skeletons, where adding anything new will 
only be through sheer brute force technique. (2) The object-oriented and library
based approach favor extensibility. Object-oriented features like polymorphism 
enable new skeleton classes to be extended from the skeleton base class or from 
the existing skeleton classes. While designing and implementing a new skeleton, 
the implementer need to systematically fill in a pre-specified collection of virtual 
methods. 

12.7 Proof of Concept: Experiments and Results 

A set of experiments were conducted to assess the system. The set of experiments 
can be sub-divided into two main categories: performance measurement and soft
ware quality measurement. 

12.7.1 Performance Measurement 

A collection of non-trivial and useful parallel applications were implemented, us
ing both the architectural skeleton approach and direct implementation in MPI. 
In each case, the speed-up ratio was measured with respect to the best possi
ble sequential application. The underlying hardware was a cluster of Sun Sparc 
workstations connected with a low-speed Ethernet network. Theoretically, speed
up depends on the granularity (that is, the ratio of computation time to com
munication overhead) of an application. Significant speed-up was observed for 
high-granularity applications. For instance, using a cluster of 10 processors, an 
improvement factor of 6.5 was achieved for a certain image processing algo
rithm. The observed performance difference with MPI is within 5%, which can 
be mainly attributed to the fact that the skeleton library is implemented as an ex
tremely thin layer on top of MPI. A detailed discussion about the experiments 



www.manaraa.com

12. Building Parallel Applications Using Design Patterns 263 

and the results is beyond the scope of this paper. The interested reader can refer 
to Goswami et al. (1999a,1999b) and Goswami (2000). 

12.7.2 Software Quality Measurement 

A comprehensive study was performed to assess the software quality related as
pects of the system. The concept of software metrics is well established and a 
variety of software metrics have been used over time to measure the qualities of 
software products. In this study, some candidate metrics for measuring software 
qualities, especially complexity, were collected (e.g., Halstead software science 
metrics (Halstead, 1977), McCabe's cyclomatic complexity metrics (McCabe and 
Butler, 1989». The experiments involved architectural skeletons, Frameworks 
(Singh et aI., 1991), Enterprise (Schaeffer et aI., 1993) and direct implementations 
using MPI. The study suggests that the use of skeletons significantly lowers soft
ware complexity as compared to code written from scratch using MPI. Again, a 
detailed discussion of the study is beyond the scope of this chapter. The interested 
reader can refer to the works of Ladan and Singh (Tahvildari, 1998; Tahvildari 
and Singh, 2000). 

12.8 Conclusion and Future Directions 

The paper presents a generic model for designing and developing parallel appli
cations, and is based on the idea of design patterns. The model is an ideal can
didate for implementation using object-oriented techniques. The object-oriented 
approach has been used to build an application-independent library of skeletons, 
while keeping in mind extensibility as one of the major issues. Other issues of 
equal importance were flexibility, reusability, separation of concerns, inherent 
support for hierarchical pattern composition, and hierarchical refinement. 

The present set of architectural skeletons supports those patterns for coarse
grain message-passing computation. They can yield good performance in a net
worked MIMD environment. Research is in progress to incorporate new skeletons 
to this environment. 

12.9 References 
Bartoli, A., Corsini, P., Dini, G., and Prete, C. (1995). Graphical design of dis

tributed applications through reusable components. IEEE Parallel and Dis
tributed Technology, 3(1):37-50. 

Booch, G., Rumbaugh, J., and Jacobson, I. (1999). The Unified Modeling Lan
guage User Guide. Addison-Wesley, Reading, MA. 



www.manaraa.com

264 Goswami et al. 

Browne, J., Azam, M., and Sobek, S. (1989). Code: A unified approach to parallel 
programming. IEEE Software, 6(4):10-18. 

Browne, J., Hyder, S., Dongarra, J., Moore, K., and Newton, P. (1995). Visual 
programming and debugging for parallel computing. IEEE Parallel and Dis
tributed Technology, 3( 1):75-83. 

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns: 
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, 
MA. 

Goswami, D. (2000). Parallel Architectural Skeletons: The Re-Usable Building 
Blocks in Parallel Applications. PhD thesis, Department of Electrical and 
Computer Engineering, University of Waterloo. In preparation. 

Goswami, D., Singh, A., and Preiss, B. (I 999a). Architectural skeletons: The re
usable building-blocks for parallel applications. In 1999 International Con
ference on Parallel and Distributed Processing Techniques and Applications 
(PDPTA'99), Las Vegas, NY. 

Goswami, D., Singh, A., and Preiss, B. (I 999b). Using object-oriented tech
niques for realizing parallel architectural skeletons. In The Third Interna
tional Symposium on Computing in Object-oriented Parallel Environments 
(ISCOPE'99), San Francisco, CA. In Lecture Notes in Computer Science, 
Vol. 1732, pp 130-141. 

Gropp, W., Lusk, E., and Skjellum, A. (1994). Using MPI: Portable Parallel 
Programming with the Message-Passing Interface. MIT Press, Cambridge, 
MA. 

Halstead, M. (1977). Elements of Software Science. Elsevier North-Holland. 

McCabe, T. and Butler, C. (1989). Design complexity measurement and testing. 
Communications of the ACM, 32(12): 1415-1425. 

Meszaros, G. and Doble, J. (1997). A pattern language for pattern writing. In 
Pattern Languages of Program Design-3, Software Patterns Series. Addison
Wesley, Reading, MA. 

Schaeffer, J., Szafron, D., Lobe, G., and Parsons, I. (1993). The enterprise model 
for developing distributed applications. 1EEE Parallel and Distributed Tech
nology, 1(3):85-96. 

Schmidt, D. (1994). ACE: an object-oriented framework for developing dis
tributed applications. In Proceedings. of the Sixth USEN1X C++ Technical 
Conference, Cambridge, MA. 



www.manaraa.com

12. Building Parallel Applications Using Design Patterns 265 

Singh, A., Schaeffer,J., and Green, M. (1991). A Template-Based Approach to the 
Generation of Distributed Applications Using a Network of Workstations. 
IEEE Transactions on Parallel and Distributed Systems, 2(1):52-67. 

Singh, A., Schaeffer, J., and Szafron, D. (1998). Experience with parallel pro
gramming using code templates. Concurrency: Practice and Experience, 
10(2):91-120. 

Siu, S. and Singh, A. (1997). Design patterns for parallel computing using a 
network of processors. In Sixth IEEE International Symposium on High 
Performance Distributed Computing, pp. 293-304. 

Tahvildari, L. (1998). Assessing the impact of using design-pattern-based sys
tems. Master's thesis, Department of Electrical and Computer Engineering, 
University of Waterloo. 

Tahvildari, L. and Singh, A. (2000). Impact of using pattern-based systems on the 
qualities of parallel applications. In Proceedings of the International Con
ference on Parallel and Distributed Processing Techniques and Applications 
(PDPTA'2000), Las Vegas, NV. 

Wall, L., Christiansen, T., and Schwartz, R. (1996). Programming Perl. O'Reilly 
& Associates. 



www.manaraa.com

Part IV 

Tool Support 



www.manaraa.com

13 
The SPOOL Design Repository: 
Architecture, Schema, and Mechanisms 

Reinhard Schauer 
RudolfK. Keller 
Bruno Lague 
Gregory Knapen 
Sebastien Robitaille 
Guy Saint-Denis 

13.1 Introduction 

The landscape of reverse engineering is rich in tools for the recovery, quantifi
cation, and analysis of source code. Most of these tools, however, cover only a 
small slice of what the notion of reverse engineering promises: "a process of 
analyzing a subject system to (a) identify the system's components and their in
terrelationships and (b) create representations of a system in another form at a 
higher level of abstraction" (Chikofsky and Cross, 1990). These tools hardly 
take into account that reverse engineering is a process of collaborating activities, 
rather than a focused task of investigating some specific software property. To 
be effective, the process of reverse engineering demands that tools communicate 
and that infrastructure support be provided for their coordination. In the SPOOL 
project, we have developed and integrated a suite of tools in which each tool 
addresses a different task of reverse engineering yet allows for easy transfer of 
the gathered information to other tools for further processing (cf. Chapter 6). At 
the core of such tool collaboration lies the SPOOL repository. 

The SPOOL reverse engineering environment (Figure 13.1) uses a three-tier 
architecture (Tsichritzis and Klug, 1978; Fowler, 1997) to achieve a clear sepa
ration of concerns between the end-user tools, the schema and the objects of the 
reverse engineered models, and the persistent datastore. The lowest tier consists 
of an object-oriented database management system which provides the physical, 
persistent datastore for the reverse engineered source code models and the de
sign information. The middle tier consists of the repository schema, which is an 
object-oriented schema of the reverse engineered models, comprising structure 



www.manaraa.com

270 Schauer et al. 

(classes, attributes, and relationships), behavior (access and manipulation func
tionality of objects), and mechanisms (higher-level functionality, such as com
plex object traversal, change notification, and dependency accumulation). We 
call these two lower tiers the SPOOL design repository. The upper tier consists 
of end-user tools implementing domain-specific functionality based on the re
pository schema. This includes tools for the parsing of the source code and its 
transformation into the repository schema (source code capturing) as well as 
tools for the visualization and analysis of the source code models. Refer to 
Chapter 6 for details about the upper tier and for information on the research that 
we conducted based on the SPOOL reverse engineering environment. 

End-User Tools 
• Source Code Capturing 
• Visualization and analysis 

: 
Design Repository 

Repository Schema 
• Reverse engineered source code models 
• Abstract design components 
• Implemented design components 
• Recovered design models 
• Re-organized design models 

: ---- ----Object-Oriented 
Database Management System 

Figure 13.1. Overview of SPOOL reverse engineering environment. 

At the core of the SPOOL reverse engineering environment is the SPOOL 
design repository, which consists of the repository schema and the physical data 
store. The repository schema is an object-oriented class hierarchy that defines 
the structure and the behavior of the objects that are part of the reverse engi-



www.manaraa.com

13. The SPOOL Design Repository 271 

neered source code models, the abstract design components that are to be identi
fied from the source code, the implemented design components, and the recov
ered and re-organized design models. Moreover, the schema provides for more 
complex behavioral mechanisms that are applied throughout the schema classes, 
which includes uniform traversal of complex objects to retrieve contained ob
jects, notification to the views on changes in the repository, and dependency 
accumulation to improve access performance to aggregated information. The 
schema of the design repository is based on an extended version of the UML 
metamodel 1.1 (UML, 1997). We adopted the UML metamodel to the end of 
reverse engineering as it captures most of the schema requirements of the re
search activities of SPOOL. This extended UML metamodel (or SPOOL re
pository schema) is represented as a Java 1.1 class hierarchy, in which the 
classes constitute the data of the MVC-based (Buschmann et aI., 1996) SPOOL 
reverse engineering environment. 

The object-oriented database of the SPOOL repository is implemented using 
POET 6.0 (POET, 2000). It provides for data persistence, retrieval, consistency, 
and recovery. Using the precompiler of POET 6.0's Java Tight Binding, an ob
ject-oriented database representing the SPOOL repository is generated from the 
SPOOL schema. As POET 6.0 is ODMG 3.0 (ODMG, 2000) compliant, its sub
stitution of POET 6.0 for another ODMG 3.0 compliant database management 
system would be accomplishable without major impact on the schema and the 
end user tools. 

In the remainder of this chapter, we first detail the architecture of the SPOOL 
repository. Next, we explain the SPOOL repository schema and its relation to the 
UML metamodel, discussing the schema's top-level, core, relationship, behavior, 
and extension classes. Furthermore, we describe three of the key mechanisms of 
the repository, that is, the traversal of complex objects, model/view change noti
fication, and dependency management. Finally, as a conclusion, we reflect on the 
use of the UML metamodel as the basis of the SPOOL repository schema, and 
provide an outlook into future work. 

13.2 Repository Architecture 

The major architectural design goal for the SPOOL repository was to make the 
schema resilient to change, adaptation, and extension, in order to address and 
accommodate easily new research projects. To achieve a high degree of flexibil
ity, we decided to shield the implementation of the design repository completely 
from the client code that implements the tools for analysis and visualization. The 
retrieval and manipulation of objects in the design repository is accomplished via 
a hierarchy of public Java interfaces, and instantiations and initializations are 
implemented via an Abstract Factory (Gamma et aI., 1995). Figure 13.2 illus
trates the architecture of the SPOOL design repository. 



www.manaraa.com

272 Schauer et al. 

r---------------------------------------------------
I I 
I Client Code I 
1 ______ ---- _________________________ _____________ ~ 

Object 
Retrieval 

r--------r--------

Object 
Manipulation 

Interface Hierarchy 

Object 
Instantiation and 

Initialization 

------------, 
I 

~ ________ __________________________ ------ ______ 1 

Repository Implementation (Class 

SPOOL Repository 

--------------------------------------------------~ 

Figure 13.2. SPOOL repository architecture. 

The interface hierarchy specifies the semantics of the retrieval and manipu
lation functionality of the SPOOL repository. Binding the client code to inter
faces instead of classes yields the benefit that the client code remains unaware of 
the concrete types and the implementation of the objects it instantiates. This 
permits changes in the repository implementation without affecting the client 
code, neither at compile nor at run-time, as long as the implementation adheres 
to the specification of the interfaces. The Abstract Factory provides hook meth
ods for object instantiation and initialization. Instead of instantiating directly the 
classes of the repository implementation, the client code requests the instantia
tion of repository classes from the Abstract Factory class, whose subclasses, the 
Concrete Factories, will perform the actual instantiation of the respective 
classes. The use of the Abstract Factory design pattern proved very helpful as 
both the instantiated class and the initialization code can vary among the hook 
methods of the different Concrete Factories. In this way, the access to the 
SPOOL repository can easily be adapted, in order to meet application-specific 
needs. 

Figure 13.3 shows an excerpt of the interface hierarchy of SPOOL, which de
fines IfcModelElement to be the parent interface of IfcOperation, IfcClass, and 
IfcFile. These interfaces are implemented with an abstract ModelElement as the 



www.manaraa.com

13. The SPOOL Design Repository 273 

superclass and Operation, Class, and File as the respective concrete subclasses. 
The Client code is only bound to the interfaces of the hierarchy (not shown in 
Figure 13.3) and to the Abstract Factory AbstractModelFactory, which provides 
the hook methods makeOperation, makeClass, and makeFile for the instantiation 
of the respective concrete ModelElement classes. The actual instantiation is en
coded in the Concrete Factory class ModelFactory, in which, for example, 
makeClass returns an instance of the repository class Class.} 

This design provides to the SPOOL environment the flexibility needed for 
corrective changes without any effect on the client code, for simplifying testing, 
and for the adaptation of the repository to client specific requirements. Due to 
the decoupling of the client code from the repository's implementation code, 
corrective changes or refactoring measures in any of the classes that implement 
the repository will not affect the client code, as long as the changes do not vio
late the expectations of the client code on the interface. For testing purposes, a 
new implementation of, for example, Class (TestClass) could be instantiated in a 
new subclass of the factory ModelFactory (TestModeIFactory) which inherits all 
instantiation and initialization code from the established ModelFactory and may 
redefine only makeClass to instantiate TestClass instead of Class. The client 

.M:~Opu8t.1()n 

_eJI: eCl 0.3 :5 

\ I,;.~el<;.;..r;.;.i .;.;l.~r-_---' 

\ 
\ 
\ 
\ 
\ 
\ 
\ 1IocIe1l' actOr'!, 

. a.k e:Opeu.tion 
• . a)ceClu:s 
. alce l'1 h: 

1nurt ac:e 
L> UcCl",s 

Figure 13.3. Decoupling of client code from SPOOL repository implementation. 

} Note the difference between the notion of Class as used in (a) the repository schema to 
represent the structure and behavior of the reverse engineered system classes and (b) in 
the Java programming language as the metaclass of all Java classes. 



www.manaraa.com

274 Schauer et al. 

code can then be tested easily by just changing the model factory from Model
Factory to TestModelFactory. A similar solution may be applied in the case in 
which a specific client of the repository demands functionality that is not imple
mented in the default version of the repository. Providing the client with a do
main-specific ModelFactory can avoid many changes in the client code that 
would be inevitable if the client code were directly coupled to the repository's 
implementation. 

13.3 Repository Schema 

The schema of the SPOOL repository is an object-oriented class hierarchy whose 
core structure is adopted from the UML metamodel. Being a metamodel for 
software analysis and design, the UML provides a well-thought-out foundation 
for SPOOL as a design comprehension environment. However, SPOOL reverse 
engineering starts with source code from which design information should be 
derived. This necessitates extensions to the UML metamodel in order to cover 
the programming language level as far as it is relevant for design recovery and 
analysis. In this section, we present the structure of the extended UML meta
model that serves as the schema of the SPOOL repository. This includes the top
level classes, the core classes, the relationship classes, the behavior classes, and 
the extension classes. 

13.3.1 Top-Level Classes 

The top-level classes of the SPOOL environment prescribe a key architectural 
design decision, which is based on the ModellViewlController (MVC) paradigm 
of software engineering (Buschmann et aI, 1996; Gamma et aI., 1995). MVC 
suggests a separation of the classes that implement the end user tools (the views) 
from the classes that define the underlying data (the models). This allows for 
both views and models to be reused independently. Furthermore, MVC provides 
for a change notification mechanism based on the Observer design pattern 
(Gamma et aI., 1995). The Observer pattern allows tools, be they interactive 
analysis or background data processing tools, to react spontaneously to the 
changes of objects that are shared among several tools. In SPOOL, the classes 
Element, ModelElement, and ViewElement (Figure 13.4) implement the func
tionality that breaks the SPOOL environment apart into a class hierarchy for end
user tools (subclasses of ViewElement) and a class hierarchy for the repository 
(subclasses of ModeIElement). The root class Element prescribes the MVC 
based communication mechanism between ViewElements and ModelElements. 
In the following, we describe these three core classes of SPOOL in more detail. 

"An Element is an atomic constituent of a model" (UML, 1997). It is the ab
stract superclass from which all SPOOL classes inherit, be they part of the user 



www.manaraa.com

Vie-wElement 

13. The SPOOL Design Repository 275 

Element 

ModelEl ement 
0 .• 1< 

~------------------~~~name 
modelE lement --~--------

Figure 13.4. SPOOL repository schema: Top-level classes. 

interface or part of the repository schema. Like other well-known object-oriented 
framework architectures, such as Smalltalk and ET++ (Weinand et aI., 1989), 
the top-level Element class provides both the Subject and the Observer interfaces 
of the MVC architectural design pattern, allowing in principle every SPOOL 
object to observe any other SPOOL objects. Note that the design and program
ming guidelines of SPOOL prohibit that ModelElements observe the state of 
ViewElements. In SPOOL, dependencies emanate always from the ViewElement 
class hierarchy towards the ModelElement class hierarchy and never vice versa. 

"A ModelElement is an Element that is an abstraction drawn from the system 
being modeled. Contrast with ViewElement, which is an Element whose purpose 
is to provide a presentation of information for human comprehension" (UML, 
1997). Each ModelElement has a name, which must be unique in the namespace 
(see Core Classes) in which it is embedded. The class hierarchy of ModelEle
ment represents the SPOOL repository schema. It comprises classes that repre
sent the structure and behavior of both the reverse engineered source code 
models and the higher-level abstractions of the systems that are recovered by the 
visualization and analysis tools. 

"A ViewElement is a textual and/or graphical projection of a collection of 
Mode/Elements" (UML, 1997). The ViewElement class is the abstract root class 
of the SPOOL tools, which provides the abstract functionality and specifications 
for rendering of user interface objects, be they complex diagrams or primitive 
graphic objects. A ViewElement holds on to the ModelElements that provide the 
data for the visual or textual representation. Upon notification of a change in 
ModelElements, implemented via the observation mechanism in Element, the 
ViewElement fetches the relevant data from the respective ModelElements and 
redraws the relevant parts of its representation. 



www.manaraa.com

276 Schauer et al. 

13.3.2 Core Classes 

The core classes of the SPOOL repository schema adhere to a large extent to the 
classes defined in the core and model management packages of the UML meta
model. These classes define the basic structure and the containment hierarchy of 
the ModelElements managed in the repository (see Figure 13.5). At the center of 
the core classes is the Namespace class, which owns a collection of ModelEle
ments. A GeneralizableElement defines the nodes involved in a generalization 
relationship, such as inheritance. A Classifier provides Features, which may be 
structural (Attributes) or behavioral (Operations and Methods) in nature (see 
Figure 13.6). A Package is a means of clustering ModelElements. In the fol
lowing, we will detail the Namespace and the Feature classes. 

0 .. • o . . ' 
oo.mecn:l~ent i.po [CedJ:: lecen t 

Figure 13.5. SPOOL repository schema: Narnespace classes. 

"A Namespace is a part of a model that contains a set of ModelElements 
each of whose names designates a unique element within the namespace" (UML, 
1997). A Namespace may be viewed as a container for ModelElements, which 
themselves may be Namespaces. The Namespace defines an owning (or exis-



www.manaraa.com

/' 

13. The SPOOL Design Repository 277 

t ypo 
- '----' 

Figure 13.6. SPOOL repository schema: Feature classes. 

tence) relationship to these ModelElements, meaning that the contained Mod
elElements cease to exist if the containing Namespace is deleted from the re
pository. Examples of Namespaces are classes, unions, files, directories, or 
whole systems. In SPOOL, the Namespace provides much functionality for re
trieval and traversal of complex source code structures, such as directories, 
which may contain other directories or source code files, which in turn contain 
classes, which are the containers for methods and attributes, and so forth. As an 
example of such a traversal routine, the Namespace method allContainedEle
ments (Method. class) applied to a whole reverse engineered system returns all 
methods that are somewhere contained in any class stored in any file of any sub
directory of the system at hand. 

"A GeneralizableElement is a ModelElement that may participate in a gener
alization relationship" (UML, 1997). GeneralizableElements are the end points 
of a Generalization relationship. Refer to the Relationship classes described be
low for further details on generalization hierarchies. Subclasses of Generaliz
ableElement are Classifier, an abstract superclass for classes, unions, interface, 
and alike, and Package, which may be a whole system, a directory, or a file. 

"A Classifier is an element that describes behavioral and structural features; 
it comes in several specific forms, including class, data type, interface, compo
nent, and others that are defined in other metamodel packages" (UML, 1997). In 
SPOOL, the Classifier implements all access mechanisms to its features, which 
are attributes, operations, and methods. Being a subclass of Namespace, Classi
fier inherits the storage, retrieval, and manipulation functionality for its features 
from Namespace. Moreover, it allows for nested Classifiers, such as the inner or 



www.manaraa.com

278 Schauer et al. 

anonymous classes of Java. A key role in the SPOOL repository plays the Utility 
subclass of Classifier. It serves as a container for all non-member behavioral and 
structural features, which are declared or defined outside the namespace of a 
class. Again, being a subclass of Classifier, Utility reuses all repository function
ality for the management of such global features. 

"A Package is a grouping of model elements" (UML, 1997). In SPOOL, 
Package is the superclass for containers of ModelElements. For example, a typi
cal containment hierarchy of a reverse engineered model starts with a system, 
which contains physical and logical models. A PhysicalModel consists of Di
rectories or Files, where the Directories may contain other Directories or Files. 
Files may be composed of Classes, Unions, Datatypes, a Utility for the global 
code, and alike. The traversal functionality for such complex package structures 
is inherited from Namespace, which allows querying direct and indirect package 
containment. 

"A Feature is a property, like operation or attribute, which is encapsulated 
within a Classifier" (UML, 1997). A feature can be structural or behavioral in 
nature. Structural Features are Attributes whose type is a Classifier. Behavioral
Features can be Operations or Methods, and they are associated with a set of 
Parameters, which also include the return parameter. In object-oriented litera
ture there is much confusion about the difference between Operations and Meth
ods and, very often, these two notions are used synonymously. However, there is 
a significant difference between these two notions. The UML defines an Opera
tion as a service that can be requested from an object of a class and a Method as 
the implementation of an Operation. Whereas an Operation constitutes a specifi
cation, a Method provides the executable body of the algorithm implementing 
the specification. Every Method must have exactly one Operation, which can be 
inherited from supertypes in the generalization hierarchy. An Operation can be 
implemented mUltiple times within its subtype hierarchy. 

13.3.3 Relationship Classes 

"A relationship is a connection among model elements" (UML, 1997). The UML 
introduces the notion of Relationship as a superclass of Generalization, Depend
ency, Flow, and Association for reasons of convenience, so that tools can refer to 
any connections among ModelElements based on the same supertype (Figure 
13.7). 

"A Generalization is a taxonomic relationship between a more general ele
ment and a more specific element. The more specific element is fully consistent 
with the more general element (it has all of its properties, members, and relation
ships) and may contain additional information" (UML, 1997). In SPOOL, 
classes, interfaces, and packages can participate in a generalization relationship, 
since they all are GeneralizableElements (see section Core Classes). It is com
mon knowledge that classes and interfaces can be organized in form of a gener
alization hierarchy; however, it is less obvious that packages can participate in a 



www.manaraa.com

13. The SPOOL Design Repository 279 

I ~latl0_"p 

:I 
l ,.I T I ~"".al;i ... t1oa ; l ·koera11:tabl<£1...,n. : I -1~~cial1z:at.1On peu:ent 

1;e.necal1ze.t.lon child I 

I 
Depe_lICr 

- I.J,\l.IIplie-cDeptndency . : I-ua...,au: I Sup.,lat 

I ell e-nltDependency eli :ne! 

l Flow 
·IWoetTlo• _U:l.".,.U : I t:ar'O'tt 

I ~out:cenov :!Ioutce 

a..ociatloll:l1d 

or:<1t:1:1n~ 

I 
lssoci atioa .11 1~Dav19able !cr ... 1Ue< J 2 •.• a9IJte:qat.-ion 

I tMO'e escope type t 
.ul tlphCl ty 
ChM.Qeabl.ll.ty 

vi,.ibi litx 

Figure 13.7. SPOOL repository schema: Relationship classes. 

generalization hierarchy, too. The purpose of organizing packages in form of a 
generalization hierarchy is to show design solutions at multiple levels of abstrac
tion. In SPOOL we use package generalization to structure design patterns 
(Keller et aI., 1999). For example, the Composite design pattern may be imple
mented as a Safe Composite or a Transparent Composite, each having its 
strength and pitfalls. Refer to Gamma et al. (1995) for more details. At a certain 
level of design comprehension, however, these differences can or should be ig
nored, to be able to keep a global overview of the system at hand and not get 
bogged down into design details. 

"A Dependency states that the implementation of functioning of one or more 
elements requires the presence of one or more other elements" (UML, 1997). 
The UML specifies the modeling of Dependencies as a client/supplier relation
ship between ModelElements and associates to each of the two participating 
ModelElements the Dependency that serves as the supplier (supp/ierDepen
dency) and the one that serves as the client (clientDependency), respectively. 
Examples of dependencies as stated by the UML are Bindings, Abstractions, 
Usage, or Permissions (UML, 1997). We implemented the UML dependency 
mechanism to allow SPOOL tools to analyze and store semantic relationships 
among the model elements in the repository. Conforming to the UML meta-



www.manaraa.com

280 Schauer et al. 

model, we also use dependencies to store some structural relationships between 
model elements, such as friendship relationships among classes of a reverse en
gineered C++ system. 

"A Flow is a relationship between two versions of an object or between an 
object and a copy of it" (UML, 1997). A Flow is directed, it emanates from a 
source towards a target. In the SPOOL repository, we implement the Flow rela
tionship to provide a foundation for version management for reverse engineered 
source code models. The objective is to store only the delta that has changed 
between two versions of the system at hand. 

"An Association defines a semantic relationship between classifiers. The in
stances of an association are a set of tuples relating instances of the classifiers. 
Each tuple value may appear at most once" (1997). The ends of an Association 
are called AssociationEnd, which carry the semantics of the relationship to the 
classifier at the respective end. This includes information on ordering (objects at 
the end of an association can be organized in ordered, sorted, unordered, or other 
data structures), navigability (possibility of traversal from one end to the other), 
aggregation (designation of part/whole relationships), target scope (specification 
if the relationship points to a class or an instance), multiplicity (number of in
stances of the associated classifier that can participate in the association), 
changeability (specification if the classifier at one end can be modified from the 
one of the other end), and visibility (specifies visibility of the classifier at asso
ciation end to the classifier at the opposite end). Refer to the UML (UML, 1997) 
for more details on the semantics of these attributes. Note that the derivation of 
Associations and the attributes of the AssociationEnds is not a straightforward 
task. The goal of the SPOOL reverse engineering environment is to provide hu
man-controlled tool support to this end. 

13.3.4 Behavior Classes 

The behavior classes of the SPOOL repository implement the dynamics of the 
reverse engineered system. It is important to understand that the UML meta
model takes a forward engineering perspective and focuses on software analysis 
and design, rather than on the reverse engineering of source code. Therefore, the 
UML metamodel does not aim to encompass and unify programming language 
constructs. 

The purpose of analysis and design is to specify what to do and how to do it, 
but it is the later stage of implementation in which the missing parts of a specifi
cation are filled to transform it into an executable system. However, the UML is 
comprehensive in that it provides a semantic foundation for the modeling of any 
specifics of a model. For example, the UML suggests State Machine diagrams 
(similar to Harel's Statechart formalism (Harel, 1988)) to specify the behavior of 
complex methods, operations, or classes. To cite another example, collaboration 
diagrams can be used to specify how different classes or certain parts of classes 



www.manaraa.com

13. The SPOOL Design Repository 281 

(that is, roles) have to interact with each other in order to solve a problem that 
transcends the boundaries of single classes. 

In SPOOL, we look at a system from the opposite viewpoint, that is, from the 
complete source code, and the goal is to derive these behavior specification 
models to get an improved understanding of the complex relationships among a 
system's constituents. For this purpose, we included in the SPOOL repository the 
key constructs of the behavior package of the UML metamodel, including the 
Action and Collaboration classes presented below. However, we modified cer
tain parts to reduce space consumption and improve performance. 

Action Classes 

"An Action is an executable atomic computation that results in a change in state 
of the system or the return of a value" (Booch et aI., 1999). The SPOOL reposi
tory uses Actions to describe the internals of a method. Figure 13.8 shows the 
corresponding diagram. 

The UML metamodel embeds Actions into State Machines and Collabora
tions, which would result in an extra StateMachine object for each method of the 
reverse engineered system. In SPOOL, we provide a shortcut and save the set of 
Actions directly with the Method and provide access as well as manipUlation 
routines for Actions as part of the SPOOL schema class Method. This improves 
performance of many queries on the SPOOL repository as it avoids indirection 

0 •• 11" 

1Ictioa 

0 .. ' 

DestrorJlct1oa 

Figure 13.8. SPOOL repositoy schema: Action classes. 



www.manaraa.com

282 Schauer et al. 

via StateMachine objects. Furthennore, the UML specifies many different sub
classes of Action, which include CreateAction, CallAction, RetumAction, Ter
minateAction, UninterpretedAction, and DestroyAction (UML, 1997). We 
implemented all of these classes, but as the SPOOL analysis tools that we im
plemented so far are based on CreateActions and CallActions only, we do not 
import all this information into the SPOOL repository. This reduces the overall 
size of the physical datastore, which in turn improves the performance of many 
analysis tools. Note that at any time objects instantiating any of the Action sub
classes can be imported, as the integrated Datrix parsers (Datrix, 2000) generate 
all the necessary information. Such an extension would not affect the existing 
SPOOL visualization and analysis tools. 

Collaboration Classes 

One of the key goals of the SPOOL reverse engineering environment is to pro
vide support for the extraction of predefined design concepts, such as the struc
tures of design patterns, from source code. We call the design concepts to be 
recovered abstract design components and the recovered instances of these de
sign concepts implemented design components. The notion of design component 
alludes to the fact that these conceptual fragments of the overall design are man
aged as entities that may be used as the building blocks in a compositional de
sign process (Keller and Schauer, 1998). In SPOOL, we implemented a 
simplified version of the Collaboration package defined by the UML metamodel 
(Figure 13.9). 

"A Collaboration describes how an operation or a classifier is realized by a 
set of classifiers and associations used in a specific way" (UML, 1997). In the 
UML metamodel, a Collaboration can be viewed as a set of interacting roles, 
which define the communication among classes to achieve some overall func
tionality. 

"A ClassifierRole is a specific role played by a participant in a Collaboration. 
It specifies a restricted view of a classifier, defined by what is required in the 
collaboration" (UML, 1997). A ClassifierRole is defined by the set of available 
Features of the base Classifier, which altogether playa certain role in the Col
laboration at hand. 

In the UML metamodel, ClassifierRoles are related by AssociationRoles, 
which are roles on Associations. In SPOOL, this mechanism is not needed, since 
we are dealing with physical connections in the source code, such as instantia
tions and function calls. Therefore, we modified the design by introducing an 
interface Connection as a supertype of all subclasses of ModelElement that rep
resent links among ModelElements. This includes Relationship and Action, as 
well as all their subclasses. The Connections can be associated with the Classi
fierRoles of Collaboration. Note that the Connections of a ClassifierRole can 
only be a subset of all the Connections that are defined by the Classifier, which 
is the base of the ClassifierRole. 



www.manaraa.com

13. The SPOOL Design Repository 283 

interface 

Connection 1-0:...; • ...;..-. - ---<>1 ====== 
K >-------...J 

'rJ' \. 

" \ i 
\ 

Rel ationship 

Figure 13.9. SPOOL repositoryschema: Collaboration classes. 

13.3.5 Extension Classes 

The UML metamodel suggests two approaches to metamodel extension; one is 
based on the concept of TaggedValues and the other on the concept of Stereo
types. In SPOOL, we have only implemented the former approach (Figure 13.10) 
since Stereotypes as defined in the UML metamodel would not scale to meet the 
performance requirements of the SPOOL repository. 

"A TaggedValue is a (Tag, Value) pair that permits arbitrary information to 
be attached to any ModelElement" (UML, 1997). In programming languages, the 
concept of TaggedValue is known under the notion of property. Using Tagged
Values, the end-user tool can plug into any ModelElement any tool-specific data. 

T_dIIaJ. ... I-urre.eat .1 t8Q 
t8QQedValue 'I vftlu~ 

Figure 13.10. SPOOL repository schema: TaggedValue extension class. 



www.manaraa.com

284 Schauer et al. 

This may include infonnation on color, layout, paths, aliases, and the like. The 
interpretation of the TaggedValue is up to the end-user tool, and different tools 
must make sure that they use the TaggedValues consistently. 

"The Stereotype concept (Figure 13.11) provides a way of classifYing 
(marking) elements so that they behave in some respects as if they were instances 
of new virtual metamodel constructs" (UML, 1997). As a concrete example, the 
UML metamodel suggests to model the Utility (classifiers for non-member fea
tures) as a stereotyped Class. In such a setting, Utility objects would be instances 
of the UML metaclass Class and associated with the Stereotype object of the 
name Utility. Applied to reverse engineering, a C++ file with a class definition 
and some global variable definitions would be mapped in the repository as an 
instance of the metaclass File containing two instances of the metaclass Class, 
one for the class definition and the other for the global variable definition. The 
latter would be marked with the Utility stereotype. The pitfall of such a design 
for the SPOOL repository is that traversal methods would always need to verify 
if an object is a pure instance of the metaclass Class or a stereotyped instance. 
This would result in unacceptable performance when traversing a system with 
thousands of classes. Note that, to make things even worse, the UML meta
model, unlike the SPOOL schema, (see Figure 13.5) defines the File class as a 
stereotype of Package. This is the reason why the SPOOL repository refrains 
from using Stereotypes as defined by the UML metamodel. Rather, it represents 
all extensions to the basic metamodel, such as Utility or File, as subclasses of the 
metaclass Namespace. Thus, each ModelElement has an unambiguous type of its 
metaclass, and the Namespace traversal methods can use the Java instanceo! 
operator to identify the type of a ModelElement. 

13.4 Repository Mechanisms 

To be usable and reusable as the backend for a diverse set of interactive reverse 
engineering tools, the SPOOL repository implements a number of advanced 
mechanisms. The traversal mechanism defines how to retrieve objects of certain 
types from a complex object containment hierarchy. The observation mechanism 
defines modeVview change notification that goes beyond the Observer pattern. 

Figure 13.11. SPOOL repository schema: Stereotype extension class. 



www.manaraa.com

13. The SPOOL Design Repository 285 

The dependency mechanism allows for compression of the vast amount of de
pendencies among ModelElements for fast retrieval and visualization. 

13.4.1 Traversal Mechanism 

In SPOOL, the Namespace serves as a container for a group of ModelElements 
(Figure 13.5). Consequently, it defines methods that traverse complex object 
structures and retrieve ModelElements of a given type. For example, to identify 
all classes of a system, all files in all subdirectories of the system at hand must be 
checked for instances of the metatype Class. Unlike the objects in text-based 
repositories (Wong and Miiller, 1998; Holt, 1997), the objects in SPOOL's ob
ject-oriented database are typed and can be queried according to their types. 
SPOOL allows for the identification of the type of an object merely by using the 
Java instanceo! operator or the reflective islnstance operation of the Java class 
Class. Hence, metaclass types can be provided as parameters to the retrieval 
methods of Namespace, which then recursively traverse the containment hierar
chy of the namespace at hand and examine each ModelElement whether it is an 
instance of that type. If this is the case, the ModelElement is added to a return 
set, which is passed through the recursive traversal. The following code snippet 
shows the implementation of the method allContainedElements of the SPOOL 
repository class Namespace. 

public void allContainedElements(Class aMetaClass, Set returnSet) 

II elements() returns an iterator over the direct content 

II of a namespace 

Enumeration enum = elements(); 

while (enum.hasMoreElements(» 

ModelElement modelElem = (ModelElement) enum.nextElement(); 

if (aMetaClass.islnstance(modelElem» 

returnSet.add(modelElement); 

if (modelElem instanceof Namespace) 

((Namespace) modelElem). 

allContainedElements(aMetaClass, returnSet); 

The above version of allContainedElements accepts two parameters, the first 
specifies the type of the instances of ModelElement to be retrieved and the sec
ond accepts a Set in which the retrieved ModelElements are to be returned. For 
each ModelElement of the Namespace to which allContainedElements is ap
plied, this method first verifies if the ModelElement at hand is an instance of the 
type passed as parameter; if so, it is added to the return set. Then, it checks if the 
ModelElement is itself an instance of a Namespace, in which case allContaine
dElements is recursively applied to this sub-Namespace. Recall that the SPOOL 



www.manaraa.com

286 Schauer et al. 

repository schema is an object-oriented class hierarchy and, therefore, traversal 
and retrieval operations can also use abstract superclasses or interfaces to iden
tify ModelElements of any of the derived subclasses. This is very helpful for 
SPOOL tools to query the content of the repository. In many cases, there is no 
need to change the client code if the repository schema is, for example, extended 
with a new leaf class. Client code that is bound to the interface of an abstract 
superclass of the SPOOL repository schema will automatically receive objects of 
the new subclass. 

13.4.2 Observation Mechanism 

A general goal of the design of the SPOOL repository is to serve as the backend 
for interactive reverse engineering tools. Multiple end-user tools should be able 
to work in parallel without sacrificing data consistency. This calls for a change 
notification mechanism that informs running tools about manipUlations in the 
repository. Hence, SPOOL is based on the ModelNiew/Controller architectural 
design pattern (Buschmann et aI., 1996), which separates the user interfaces (the 
ViewElernent class hierarchy) from the application data (the ModelElernent class 
hierarchy) and allows for the synchronization of multiple user interfaces on the 
same data. 

Applying MVC out of the textbook to the vast amount of data that is typi
cally stored in the SPOOL repository would soon degenerate overall perform
ance due to considerable runtime overhead for modeVview coordination 
(Vlissides, 1998). For example, ET++ (Weinand et aI., 1989), a small-sized C++ 
application framework for graphic user interfaces of about 70,000 lines of C++ 
source code contains about 600 classes with 7,000 methods. If we loaded all of 
these 600 classes with all 7000 methods into a class diagram, and applied the 
pure Observer design pattern to coordinate the views with possible model 
changes, this would result into 7,600 graphic representations each hooked into 
their model counterparts upon creation of a system's class diagram. Vice versa, 
when the class diagram is closed, these views would need to be removed again 
from their respective models. As another example, consider source code clus
tering tools, which usually shift many classes and other model elements around 
in the system to be re-organized. Their performance would greatly suffer from a 
model that generated thousands of change notification messages for each re
moval of a ModelElement from one Namespace and its subsequent addition to 
another Namespace. In theory, the SPOOL repository would allow such a strat
egy, but in practice this is only feasible for small-sized diagrams, where message 
passing does not lead to a performance bottleneck. 

In SPOOL, we implemented another strategy for modeVview change notifi
cation. Diagrams as a whole, such as the tree directory diagram (left part of Fig
ure 13.12) and the class diagram (right part of Figure 13.12), are hooked into the 
namespaces that they represent, which is in the given case the whole system 
ET++ (Weinand et aI., 1989). When a ModelElement of any part of the system is 



www.manaraa.com

F Clu,-IitIUogltf" 
F ETC~C 
F CmdNo' 
F P,~e 
FflMllUl'lI 
F CI.M>c 
F '"'-C 
F 

13. The SPOOL Design Repository 287 

..::.. -

Figure 13.12. View synchronization via SPOOL's observation mechanism. 

updated or a ModelElement is added or removed, the SPOOL repository propa
gates notification of the change to all containers of this ModelElement. If a view 
observes any of these containers it will be notified of the change. In Figure 
13 .12, for instance, if a method is deleted from any class, the SPOOL repository 
generates a change event indicating this update, and propagates it along the con
tainer path, which includes the class, the file of the class, all directories in which 
this file is contained, the physical model that holds the reverse engineered code, 
and finally the system as the outermost container. As the tree directory diagram 
and the class diagram are hooked into the system, they receive this event, which 
includes information about what and where the event occurred. As a result, each 
diagram can identify the changed element in its containment hierarchy and exe
cute the appropriate update on its visual representation. This avoids the problem 
of too many runtime links between models and observers; however, it does not 
address the problem that every change results in an event that is separately 
passed on to the observing views. 

The manipUlation of ModelElements in the SPOOL repository is performed 
based on transactions. To guarantee consistency among end-user tools, the 
SPOOL repository caches all change events in what SPOOL calls aggregate 
event sets. These sets aggregate all changes of the SPOOL repository within a 
transaction. When the transaction is finished, all view elements that hook into 
one of the changed model elements or any of its containers are notified of the 
change and receive the set of changed model elements they are observing. Nor
mally, such aggregate event sets can significantly reduce message passing be
tween models and views. 

13.4.3 Accumulated Dependency Mechanism 

An important requirement of the SPOOL repository is to provide information on 
dependencies between any pair of ModelElements within interactive response 
time. Figure 13.13 illustrates this requirement in more detail. 



www.manaraa.com

288 Schauer et al. 

Directory I I Directory 2 I 
Filel I File3 I 

11. C 

~\ L:::.. 
+lllethodl ():B 

, 
+lllethod3 () :A 

0. ~ ) 

I~ 
......, 

D 
File2 ----r--r- +lllethod4():A - ') 

B --f-? +lllethod5():C ---- +lllethod6():C ../ 
+lllethod2 ():D _-I--

Figure 13.13. Dependencies between Model Elements. 

The directory Directory1 of Figure 13.13 consists of the two files File1, 
which contains the class A, and File2, which contains the class B. Directory Di
rectory2 consists of the file File3, which contains the two classes C and D, 
where D is a subclass of A. The return type of the method method1 is C, the re
turn type of the method method2 is D, the return type of the methods method3 
and method4 is A, and the return type of the methods method5 and method6 is C. 
In this diagram, there are seven connections among ModelElements. Six con
nections are defined by the return types (RetumType connection) of the methods, 
and one connection is defined for the generalization relationship (Generalization 
connection) between A and D. According to the above mentioned requirement, 
end-user tools should be able to identify, within interactive response time, 
whether there are any connections between, say, the two top-level directories 
Directory1 and Directory2, the directory Directory1 and the method method3 of 
class C, or the file File2 and the class D, and display them in dependency dia
grams. 

Figure 13.14, for example, shows such a dependency diagram for the top
level directories of the system ET++ (Weinand et aI., 1989). A property dialog 
box can be opened to inspect the nature of a specific dependency. In Figure 
13.14, for instance, the dependency between the directories CONTAINER and 
foundation includes 13 generalization connections, 50 feature type connections 
(types of attributes and return types of operations and methods), 541 parameter 
type connections, 5 class instantiation connections (CreateAction), 498 operation 



www.manaraa.com

13. The SPOOL Design Repository 289 

~Plopelhes £i 

E~eneranzaHons 13 .... -~ Feature Types: 50 .- Parameler Types' 541 
)~~fT'II(,IIIr",f(iII1I InslanUations: 5 ::l_ 

OperaHon Calls ' 498 "-'-DO Friendships: 0 COHT_ 

-~-

U 
~~ .. -- If 01( l~ If c_q .~-

~ .... -. .J.....-Jt ... -.-. 
II I 

~B .--• ,~. 

p,.. .... 

LJ 
._. 
. '--, .-, ...... ....... . -F' .... , .............. ,_ . . -. 
'C;~"'I_" 0 ~D ._c 

CJ 
f_· ._. .-. 

CJ .-. 
0 . -. 

LJ 
._. , ......... 
,.....-r._~ ' ...,..1: "_e 
Fc...'_c ,_. 
'-' ._ . . _c ._. 
F ....... IO!IIiII'I( 
F_ • . -. 

Figure 13.14. SPOOL dependency diagram with dialog box for inspection of properties. 

call connections (CalLAction), and 0 friendship connections. On demand, the 
dialog can also be invoked for each direction of a dependency. 

A straightforward approach to identify dependencies among ModelElements 
would be the traversal of the whole object structure at run-time. However, ap
plied to reverse engineered software with directories that contain hundreds of 
files, this approach would require batch processing. A radically different ap
proach would be to store each and every dependency among ModelElements as 
separate dependency objects, which would result in an unmanageable amount of 
dependency data. In the small example of Figure 13.13, this would amount to an 
overall of 36 dependency objects. Hence, the solution that we adopted in 
SPOOL constitutes a trade-off between run-time efficiency and space consump
tion. 

In SPOOL, we capture and accumulate dependencies at the level of Classifi
ers (for instance, classes, unions, or utilities). Accumulation refers to the fact that 
we store for each dependency its types together with the total number of primi
tive Connections on which each type is based. Given a pair of dependent Classi
fiers, we generate a so-called AccumulatedDependency object, which captures 
this information for the dependencies in the two directions. To be able to identify 
dependencies between higher-level namespaces, such as directories, files, or 
packages, without much lag time, we store the union of all AccumulatedDepen
dencies of all contained Classifiers of a given Namespace redundantly with the 



www.manaraa.com

290 Schauer et al. 

Namespace. Hence, if we want to identify, for example, dependencies between 
the directories Directory1 and Directory2, we only need to iterate over the set of 
AccumulatedDependencies of Directory 1 and look up for each element of the set 
whether the ModelElement at the other end of the element at hand (that is, the 
one which is not contained in the Namespace under consideration) has as one of 
its parent namespaces Directory2. 

Figure 13.15 illustrates the AccumulatedDependencies of our previous ex
ample. A includes the AccumulatedDependencies #1 and #2, B the Accumulat
edDependency #3, C the AccumulatedDependencies #1 and #4, and finally D the 
AccumulatedDependencies #2 and #3. Each AccumulatedDependency is desig
nated with the types and the number of connections on which it is based, in ei
ther direction. The AccumulatedDependency #1 is based on one ReturnType 
connection from A towards C and one in the opposite direction from C to A, the 
AccumulatedDependency #2 is based on one ReturnType connection and one 
Generalization connection in the direction of D towards A, the AccumulatedDe
pendency #3 is based on one ReturnType connection from B towards D, and the 
AccumulatedDependency #4 is based on two type ReturnType connections ema
nating from D towards C. All Namespaces collect all AccumulatedDependencies 
of their contained Namespaces, which amounts, for instance, for the directories 
Directory1 and Directory2 to the AccumulatedDependencies #1, #2, and #3, for 
File1 to the AccumulatedDependencies #1 and #2, for File2 to the Accumulat-

Directoryl [#1, #2, I 
File1 [#1, #2] l 

11. [#1, #2] R tun trype: 1 

----~ - @--
+methodl () :B ~, Retur 

" 
Return Type: 1 '@2_ 
Generalization: 1 -

Directory2 [# 1, #2, I 
File3 [#1, #2, #3] I 

C [#1, #4] .----Type 1 +method3 () :A 

® Return Type: 2 

I 

D [#2, #3, #4] File2 [#3] I 
Return Type: 
~ __ -'~ +method4():A 

B [#3] -~- +method5():C -- +method6():C 
+method2 () :D 

Figure 13.15. Accumulated Dependencies between Model Elements. 



www.manaraa.com

13. The SPOOL Design Repository 291 

edDependency #3, and for File3 to the AccumulatedDependencies #1, #2, and 
#3. 

13.5 Conclusion 

The authors of the UML, Booch, Jacobson, and Rumbaugh, acknowledge that 
"reverse engineering is hard; it's easy to get too much information from simple 
reverse engineering, and so the hard part is being clever about what details to 
keep" (Booch et aI., 1999). Reverse engineering is the human-controlled process 
of transforming the flood of detailed information contained in source code into 
structural and behavioral models at higher levels of abstraction. These are meant 
for easy comprehension of complex system interrelations, and the UML with its 
nine different kinds of diagrams was designed to this end. The authors of the 
UML emphasize that the purpose of the UML is not to provide a mere notation 
for forward engineering; rather, the UML was devised both ''to allow models to 
be transformed into code and to allow code to be re-engineered back into mod
els" (Booch et aI., 1999). 

The UML is hardly accepted in the reverse engineering community. Demeyer 
et aI. have articulated some reasons for the "why not UML" (Demeyer et aI., 
1999). We wholeheartedly agree that there is a lack of complete and precise 
mappings of programming languages to the UML. However, we consider this as 
a challenge for researchers, rather than a reason for abandoning the UML. With 
its Stereotype extension mechanism, the UML does provide constructs to capture 
the many details of source code written in different programming languages. The 
issue at hand is to define unambiguously how to map the various UML con
structs to source code constructs and to provide tool support for the traceability 
in both directions. A second argument of Demeyer et aI. against the UML is that 
it "does not include dependencies, such as invocations and accesses" (Demeyer 
et aI., 1999). This constitutes yet another misconception in the reverse engineer
ing community about the UML. All too often, the UML is looked at as a notation 
for structure diagrams only, and all other diagrams are rather neglected. Yet, the 
behavior package of the UML metamodel provides a precise specification of the 
method internals. However, a critique against the UML may be that the behav
ioral package is too heavyweight to be directly applicable to reverse engineering. 
It is impossible to generate and store for each method a StateMachine object 
together with all its internal objects. In SPOOL, we implemented a shortcut so
lution for the representation of the bulk of the methods. We associated Actions 
directly to methods instead of generating StateMachines, which consist of Ac
tions that are invoked by Messages. Refer to the UML for further details on the 
structure of StateMachines (Booch et aI., 1999). We do, however, allow 
StateMachines to be reverse engineered and stored for methods or classes of 
interest. 



www.manaraa.com

292 Schauer et al. 

The UML has several advantages. First, the UML metamodel is well docu
mented and based on well-established terminology. This is of great help to con
vey the semantics of the different modeling constructs to tool developers. 
Second, the metamodel is designed for the domain of software design and analy
sis, which is the target of the reverse engineering process. The UML introduces 
constructs at a high level of granularity, enabling the compression of the over
whelming amount of information that makes source code difficult to understand. 
Third, the UML metamodel is object-oriented, meaning that the structure, the 
basic access and manipulation behavior, and complex mechanisms can be sepa
rated from end-user tools and encapsulated in the repository schema. Fourth, the 
UML defines a notation for the metamodel constructs, thus providing reverse 
engineering tool builders guidelines for the visual representation of the model 
elements. 

Adopting the UML in the SPOOL environment has proven to be one of the 
most important and beneficial decisions of our project. In this chapter, we have 
described how the UML can be matched to reverse engineering, and what bene
fits can be reaped. We are not aware of any other implementation of the UML 
metamodel for reverse engineering purposes; the SPOOL repository constitutes a 
proof-of-concept of such an implementation. 

In our future work on the SPOOL design repository, we will aim to provide 
complete and precise mappings between the constructs of the UML-based 
SPOOL repository schema and the four programming languages C, C++, Java, 
and a proprietary language deployed by Bell Canada. We will also increase the 
information content of the SPOOL repository in respect to dynamic behavior. As 
discussed previously, a balance between space consumption and fast response 
time needs to be sought. One solution that we will investigate is parsing the 
source code of methods on the fly when querying, for example, control flow in
formation. A third area of work will be to provide Web-based access to the re
pository, which will allow our project partners to remotely check in source code 
systems and immediately use SPOOL tools to query and visualize the repository 
content. 

13.6 References 

Booch, B., Jacobson, I., and Rumbaugh, J. (1999). The Unified Modeling Lan
guage User Guide. Addison-Wesley, Reading, MA. 

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996). 
Pattern-Oriented Software Architecture - A System of Patterns. John Wiley 
and Sons, New York. 

Chikofsky, E. J., and Cross, J. H. II (1990). Reverse engineering and design re
covery: A taxonomy. IEEE Software, 7(1):13-17, January 1990. 



www.manaraa.com

13. The SPOOL Design Repository 293 

Datrix (2000). Datrix homepage. Bell Canada. On-line at 
<http://www.iro.umontreal.ca/labslgelo/datrixl>. 

Demeyer, S., Ducasse, S., and Tichelaar, S. (1999). Why unified is not universal. 
UML shortcomings for coping with round-trip engineering. In Bernhard 
Rumpe, editor, Proceedings UML '99 (The Second International Conference 
on the Unified Modeling Language). Springer-Verlag, New York, 1999. 
LNCS 1723. 

Fowler, M. (1997). Analysis Pattern3. Reusable Object Models. Addison
Wesley, Reading, MA. 

Gamma E., Helm, R, Johnson, R., and Vlissides, J. (1995). Design Patterns: 
Elements of Reusable Object-Oriented Software. Addison-Wesley. 

Harel, D. (1988). On visual formalisms. Communications of the ACM, 
31(5):514-530, May 1988. 

Holt, R C. (1997). Software Bookshelf: Overview and construction. March 
1997. On-line at <http://www-turing.cs.toronto.edu/pbs/papers/>. 

Keller, R K., and Schauer, R. (1998). Design components: towards software 
composition at the design level. In Proceedings of the 20th International 
Conference on Software Engineering, Kyoto, Japan, pages 302-310, April 
1998. 

Keller, R. K., Schauer, R., and Lague, B. (1999). Pattern-based reverse engi
neering of design components. In Proceedings. of the 21st International 
Conference on Software Engineering, Los Angeles, CA, pages 226-235, 
May 1999. 

ODMG (2000). Object Data Management Group (ODMG). On-line at 
<http://www.odmg.com>. 

POET (2000). Poet Java ODMG binding, on-line documentation. Poet Software 
Corporation. San Mateo, CA On-line at <http://www.poet.com>. 

Tsichritzis, D. and Klug, A C. (1978). The ANSIIX3/SPARC DBMS framework 
report of the study group on dababase management systems. Information 
Systems, 3(3): 173-191, Pergamon Press Ltd. 

UML (1997). Documentation set version 1.1. Available at 
<http://www.rational.com>. 

Viis sides, J. (1998). Pattern Hatching. Design Patterns Applied. Addison
Wesley, Reading, MA. 

Weinand, A, Gamma, A, and Marty, R. (1989). Design and implementation of 
ET++, a seamless object-oriented application framework. Structured Pro
gramming, 10(2):63-87, February 1989. 



www.manaraa.com

294 Schauer et al. 

Wong, K. and Miiller, H. (1998). Rigi user's manual, version 5.4.4, University 
of Victoria, Victoria, Canada. On-line at <ftp:llftp.rigi.csc.uvic.caipub/>. 



www.manaraa.com

14 
The Software Bookshelf 

Patrick Finnigan 
Richard C. Holt 
Ivan Kalas 
Scott Kerr 
Kostas Kontogiannis 
Hausi A. MUller 
John Mylopoulos 
Stephen G. Perelgut 
Martin Stanley 
Kenny Wong 

14.1 Introduction 

Legacy software systems are typically complex, geriatric, and difficult to 
change, having evolved over decades and having passed through many develop
ers. Nevertheless, these systems are mature, heavily used, and constitute massive 
corporate assets. 

Migrating such systems to modern platforms is a significant challenge due to 
the loss of information over time. As a result, we embarked on a research project 
to design and implement an environment to support software migration. In par
ticular, we focused on migrating legacy PLII source code to C++, with an initial 
phase of looking at redocumentation strategies. 

Recent technologies such as reverse engineering tools and World Wide Web 
standards now make it possible to build tools that greatly simplify the process of 
redocumenting a legacy software system. In this chapter we introduce the con
cept of a software bookshelf as a means to capture, organize, and manage infor
mation about a legacy software system. 

We distinguish three roles directly involved in the construction, population, 
and use of such a bookshelf: the builder, the librarian, and the patron. From 
these perspectives, we describe requirements for the bookshelf, as well as a ge
neric architecture and a prototype implementation. We also discuss various 
parsing and analysis tools that were developed and integrated to assist in the 



www.manaraa.com

296 Finnigan et al. 

recovery of useful information about a legacy system. In addition, we illustrate 
how a software bookshelf is populated with the information of a given software 
project and how the bookshelf can be used in a program-understanding scenario. 
Reported results are based on a pilot project that developed a prototype book
shelf for a software system consisting of approximately 300K lines of code 
written in a PL/I dialect. 

Software systems age for many reasons. Some of these relate to the changing 
operating environment of a system, which renders the system ever less efficient 
and less reliable to operate. Other reasons concern evolving requirements, which 
make the system look ever less effective in the eyes of its users. Beyond these, 
software ages simply because no one understands it anymore. Information about 
a software system is routinely lost or forgotten, including its initial require
ments, design rationale, and implementation history. The loss of such informa
tion causes the maintenance and continued operation of a software system to be 
increasingly problematic and expensive. 

This loss of information over time is characteristic of legacy software sys
tems, which are typically complex, geriatric, and difficult to change, having 
evolved over decades and having passed through many developers. Neverthe
less, these systems are mature, heavily used, and constitute massive corporate 
assets. Since these systems are intertwined in the still-evolving operations of the 
organization, they are very difficult to replace. 

Organizations often find that they have to re-engineer or refurbish the legacy 
code. The software industry faces a significant problem in migrating this old 
software to modern platforms, such as graphical user interfaces, object-oriented 
technologies, or network-centric computing environments. All the while, they 
need to handle the changing business processes of the organization as well as 
urgent concerns such as the "Year 2000 problem." 

In the typical legacy software system, the accumulated documentation may 
be incomplete, inconsistent, outdated, or even too abundant. Before a re
engineering process can continue, the existing software needs to be documented 
again, or redocumented, with the most current details about its structure, func
tionality, and behavior. Also, the existing documentation needs to be found, 
consolidated, and reconciled. Some of these old documents may only be avail
able in obsolete formats or hard-copy form. Other information about the soft
ware, such as design rationale, may only be found in the heads of geographically 
separated engineers. All of this useful information about the system needs to be 
recaptured and stored for use by the re-engineering staff. 

As a result of these needs, we embarked on a research project to design and 
implement an environment to support software migration. In particular, we fo
cused on migrating legacy PL/I source code to C++, with an initial phase of 
looking at redocumentation strategies and technologies. The project was con
ducted at the IBM Toronto Centre for Advanced Studies (CAS) with the support 
of the Centre for Software Engineering Research (CSER), an industry-driven 



www.manaraa.com

14. The Software Bookshelf 297 

program of collaborative research, development, and education, that involves 
leading Canadian technology companies, universities, and government agencies. 

Technologies improved over the past few years now make it possible to 
build tools that greatly simplify the process of redocumenting a legacy software 
system. These technologies include reverse engineering, program understanding, 
and information management. With the arrival of nonproprietary World Wide 
Web standards and tools, it is possible to solve many problems effectively in 
gathering, presenting, and disseminating information. 

These approaches can add value by supporting information linking and 
structuring, providing search capabilities, unifying text and graphical presenta
tions, and allowing easy remote access. We explore these ideas by implementing 
a prototype environment, called the software bookshelf, which captures, organ
izes, manages, and delivers comprehensive information about a software system, 
and provides an integrated suite of code analysis and visualization capabilities 
intended for software re-engineering and migration. 

We distinguish three roles (and corresponding perspectives) involved in di
rectly constructing, populating, and using such a bookshelf: the builder, the li
brarian, and the patron. A role may be performed by several persons and a 
person may act in more than one role. The builder constructs the bookshelf sub
strate or architecture, focusing mostly on generic, automatic mechanisms for 
gathering, structuring, and storing information to satisfy the needs of the librar
ian. The builder designs a general program-understanding schema for the un
derlying software repository, imposing some structure on its contents. The 
builder also integrates automated and semi-automated tools, such as parsers, 
analyzers, converters, and visualizers to allow the librarian to populate the re
pository from a variety of information sources. 

The librarian populates the bookshelf repository with meaningful informa
tion specific to the software system of interest. Sources of information may in
clude source code files and their directory structure, as well as external 
documentation available in electronic or paper form, such as architectural in
formation, test data, defect logs, development history, and maintenance records. 

The librarian must determine what information is useful and what is not, 
based on the needs of the re-engineering effort. This process may be automatic 
and use the capabilities provided by the builder, or it may be partly manual to 
review and reconcile the existing software documentation for on-line access. 
The librarian may also generate new content, such as architectural views derived 
from discussions with the original software developers. By incorporating such 
application-specific domain knowledge, the librarian adds value to the informa
tion generated by the automatic tools. The librarian may further tailor the re
pository schema to support specific aspects of the software, such as a proprietary 
programming language. 

The patron is an end user of the bookshelf content and could be a developer, 
manager, or anyone needing more detail to re-engineer the legacy code. Once 
the bookshelf repository is populated, the patron is able to browse the existing 
content, add annotations to highlight key issues, and create bookmarks to high-



www.manaraa.com

298 Finnigan et al. 

light useful details. As well, the patron can generate new information specific to 
the task at hand using information stored in the repository and running the inte
grated code analysis and visualization tools in the bookshelf environment. From 
the patron's point of view, the populated bookshelf is more than either a collec
tion of on-line documents or a computer-aided software engineering (CASE) 
toolset. The software bookshelf is a unified combination of both that has been 
customized and targeted to assist in the re-engineering effort. In addition, these 
capabilities are provided without replacing the favored development tools al
ready in use by the patron. 

The three roles of builder, librarian, and patron are increasingly project- and 
task-specific. The builder focuses on generic mechanisms that are useful across 
multiple application domains or re-engineering projects. The librarian focuses 
on generating information that is useful to a particular re-engineering effort, but 
across multiple patrons, thereby also lowering the effort in adopting the book
shelf in practice. The patron focuses on obtaining fast access to information 
relevant to the task at hand. The range of automatic and semi-automatic ap
proaches embodied by these roles is necessary for the diverse needs of a re
engineering effort. Fully automatic techniques may not provide the project - and 
task-specific value needed by the patrons. 

In this chapter we describe our research and experience with the bookshelf 
from the builder, librarian, and patron perspectives. As builders, we have de
signed a bookshelf architecture using Web technologies, and implemented an 
initial prototype. As librarians, we have populated a bookshelf repository with 
the artifacts of a legacy software system consisting of approximately 300,000 
lines of code written in a PLII dialect. As patrons, we have used this populated 
bookshelf environment to analyze and understand the functionality of a particu
lar module in the code for migration purposes. 

In the next section, we expand on the roles and their responsibilities and re
quirements. The subsequent section outlines the overall architecture of the book
shelf and details the various technologies used to implement our initial 
prototype. We also describe how we populated the bookshelf repository by gath
ering information automatically from source code and existing documentation as 
well as manually from interviews with the legacy system developers. A typical 
program-understanding scenario illustrates the use of the software bookshelf. 
Our research effort is also related to other work, particularly in the areas of in
formation systems, program understanding, and software development environ
ments. Finally, we summarize the contributions of this experience, report our 
conclusions, and suggest directions for future work. 

14.2 The Software Bookshelf Metaphor 

Imagine an ideal scenario: where the developers of a software system have 
maintained a complete, consistent, and up-to-date written record of its evolution 



www.manaraa.com

14. The Software Bookshelf 299 

from its initial conception to its current fonn; where the developers have been 
meticulous at maintaining cross references among the various documents and 
application-domain concepts; and where the developers can access and update 
this infonnation effectively and instantaneously. We envision our software 
bookshelf as an environment that can bring software engineering practices closer 
to this scenario, by generally offering capabilities to ease the recapture of infor
mation about a legacy system, to support continuous evolution of the infonna
tion throughout the life of the system, and to allow access to this infonnation 
through a widely available interface. 

Our software bookshelf directly involves builder, librarian, and patron roles, 
with correspondingly different, but increasingly project- and task-specific, re
sponsibilities and requirements. The roles are related in that the librarian must 
satisfy the needs of the patron, and the builder must satisfy the needs of the li
brarian (and indirectly the patron). Consequently, the builder and librarian must 
have more than their own requirements and perspectives in mind. 

14.2.1 The Builder 

The bookshelf builder is responsible for the design and implementation of an 
architecture suitable to satisfy the infonnation gathering, structuring, and storing 
needs of the librarian. To be relatively independent of specific re-engineering or 
migration projects, the builder focuses on a general conceptual model of pro
gram understanding. In particular, the schema for the underlying software re
pository of the bookshelf needs to represent infonnation for the software system 
at several levels of abstraction (Lee and Harandi, 1993; Ning, 1989; Arango et 
aI., 1985). 

The levels are: 

• Physical. The system is viewed as a collection of source code files, di
rectory layout, build scripts, etc. 

• Program. The system is viewed as a collection of language-independent 
program units, written using a particular programming paradigm. For 
the procedural paradigm, these units would include variables, proce
dures, and statements, and involve data and control flow dependencies. 

• Design. The system is viewed as a collection of high-level, implementa
tion-independent design components (e.g., patterns and subsystems), ab
stract data types (e.g., sets and graphs), and algorithms (e.g., sorting and 
math functions). 

• Domain. The domain is the explanation of "what the system is about," 
including the underlying purpose, objectives, and requirements. 

At each level of abstraction, the software system is described in tenns of a 
different set of concepts. These descriptions are also interrelated. For instance, a 
design-level concept, such as a design pattern, (Gamma et aI., 1995) may be 



www.manaraa.com

300 Finnigan et al. 

implemented using one or more class constructs at the program level, which 
correspond to several text fragments in various files at the physical level. 

The builder also integrates various tools to allow the librarian to populate the 
bookshelf repository. Data extraction tools include parsers that operate on 
source code or on intermediate code generated by a compiler. File converters 
transform old documents into formats more suited to on-line navigation. Reverse 
engineering and code analysis tools are used to discover meaningful software 
structures at various levels of granularity. Graph visualizers provide diagrams of 
software structures and dependencies for easier understanding. To aid the li
brarian, the builder elaborates the repository schema to represent the diverse 
products created by these types of tools. 

The builder has a few primary requirements. Since the information needs of 
the librarian and patron cannot all be foreseen, the builder requires powerful 
conceptual modeling and flexible information storage and access capabilities 
that are extensible enough to accommodate new and diverse types of content. 
Similarly, the builder requires generic tool integration mechanisms to allow ac
cess to other research and commercial tools. Finally, the builder requires that the 
implementation of the bookshelf architecture be based on standard, nonpropri
etary, and widely available technologies, to ensure that the bookshelf environ
ment can be easily ported to new platforms without high costs or effort. In this 
paper we describe our experiences in using object-oriented database and Web 
technologies to satisfy these and other requirements. 

14.2.2 The Librarian 

The librarian is responsible for populating the bookshelf repository with infor
mation specific to the software system. The librarian weighs the usefulness of 
each piece of information based on the needs of the re-engineering or migration 
project. The gathered information adds project-specific value and lowers the 
effort of the patron in adopting the bookshelf environment. The bookshelf con
tent comes from several original, derived, and computed sources: 

• Internal-the source code, including useful prior versions; the librarian can 
capture this information from the version control and configuration man
agement system and the working development directories 

• External-information separated from the source code, including require
ments specifications, algorithm descriptions, or architectural diagrams 
(which often becomes out-of-date or lost when the code changes); the li
brarian can recover this information by talking to the developers who know 
salient aspects of the history of the software 

• Implicit personal-information used by the original developers, including 
insights, preferences, and heuristics (which is often not verbalized or docu
mented); the librarian can recover this information by talking to the devel
opers and recording their comments 



www.manaraa.com

14. The Software Bookshelf 301 

• Explicit personal-accumulated infonnation that the developers have 
maintained personally, including memos, working notes, and unpublished 
reports (which often becomes lost when a developer leaves); the librarian 
can often recover this infonnation by accessing a developer's on-line data
bases, along with a roadmap on what can be found 

• ReJerences--cross-referenced infonnation, such as all the places where a 
procedure is called or where a variable is mentioned (which is valuable for 
recovering software structure, but time-consuming and error-prone to 
maintain manually); the librarian can usually recover this infonnation by 
using automated tools 

• Tool-generated--diverse infonnation produced by tools, including abstract 
syntax trees, call graphs, complexity metrics, test coverage results, and per
fonnance measurements (which is often not well integrated from a presen
tation standpoint); the librarian need not store this infonnation in the 
bookshelf repository if it can be computed on demand 

The librarian organizes the gathered infonnation into a useful and easily 
navigable structure to the patron and fonns links between associated pieces of 
infonnation. The librarian must also reconcile conflicting information, perhaps 
in old documentation, with the software system as seen by its developers. Find
ing both implicit and explicit personal infonnation is critical for complementing 
the tool-generated content. All these difficult processes involve significant ap
plication-domain knowledge, and thus the librarian must consult with the expe
rienced developers of the software to ensure accuracy. For the patron, the 
bookshelf contents will only be used if they are perceived to be accurate enough 
to be useful. Moreover, the bookshelf environment will only have value to the 
re-engineering effort if it is used. Consequently, the librarian must carefully 
maintain and control the bookshelf contents. 

The librarian has a few primary requirements. The librarian requires tools to 
populate and update the bookshelf repository automatically with infonnation for 
a specific software system (insofar as that is possible). These tools would reduce 
the time and effort of populating the repository, releasing valuable time for tasks 
that the librarian must do manually (such as consulting developers) or semi
automatically (such as producing architectural diagrams). 

The librarian requires the bookshelf environment to handle and allow uni
fonn access to diverse types of documents, including those not traditionally re
corded (e.g., electronic mail, brainstonning sessions, and interviews of 
customers). Finally, the librarian requires structuring and linking facilities to 
produce bookshelf content that is organized and easily explored. The links need 
to be maintained outside of the original documents (e.g., the source code) to not 
intrude on the owners of those documents (e.g., the developers). 



www.manaraa.com

302 Finnigan et al. 

Tools 

Computer 

Figure 14.1. A populated software bookshelf environment. 

14.2.3 The Patron 

The patron is an end user who directly uses the populated bookshelf environ
ment to obtain more detail for a specific re-engineering or migration task. This 
role may include the developers who have been maintaining the software system 
and have the task of re-engineering it. Some of these patrons may already have 
significant experience with the system. Other patrons may be new to the project 
and will access the bookshelf content to aid in their understanding of the soft
ware system before accepting any re-engineering responsibilities. In any case, 
the patron can view the bookshelf environment as providing several entities that 
can be explored or accessed (see also Figure 14.1): 

• Books-cohesive chunks of content, including original, derived, and com
puted information relevant to the software system and its application do
main (e.g., source code, visual descriptions, typeset documents, business 
policies) 

• Notes-annotations that the patron can attach to books or other notes (e.g., 
reminders, audio clips) 

• Links-relationships within and among books and notes, which provide 
structure for navigation (e.g., guided tours) or which express semantic rela
tionships (e.g., between design diagrams and source code) 



www.manaraa.com

14. The Software Bookshelf 303 

• Tools-software tools the patron can use to search or compute task-specific 
information on demand 

• Indices-maps for the bookshelf content, which are organized according to 
some meaningful criteria (e.g., based on the software architecture) 

• Catalogs-hierarchically structured lists of all the available books, notes, 
tools, and indices 

• Bookmarks-entry points produced by the individual patron to particularly 
useful and frequently visited bookshelf content 

For the patron, the populated bookshelf environment provides value by unifying 
information and tools into an easily accessible form that has been specifically 
targeted to meet the needs of the re-engineering or migration project. The work 
of the librarian frees the patron to spend valuable time on more important task
specific concerns, such as rewriting a software module in a different language. 
Hence, the effort for the patron to adopt the bookshelf environment is lowered. 
Newcomers to the project use the bookshelf content as a consolidated and logi
cally organized reference of accurate, project-specific software documentation. 

The patron has a few major requirements. Most importantly, the bookshelf 
content must pertain specifically to the re-engineering project and be accurate, 
well organized, and easily accessible (from possibly a different platform at a 
remote site). The patron also requires the bookshelf environment to be easy to 
use and yet flexible enough to assist in diverse re-engineering or migration 
tasks. Finally, the patron requires that the bookshelf environment not interfere 
with day-to-day activities, other than to improve the ability to retrieve useful 
information more easily. In particular, the patron should still be able to use tools 
already favored and in use today. 

14.3 Building the Bookshelf 

With builder, librarian, and patron requirements in mind, the builder designs and 
implements the architecture of the bookshelf environment to satisfy those re
quirements. In this section we describe our experience, from a bookshelf builder 
perspective, with a bookshelf architecture that we implemented as a proof-of
concept. The architecture follows the paradigm proposed by Van der Linden and 
Muller (1995), where a system is composed of a set of building blocks and com
ponents (Kozaczynski et aI., 1995). 

Our c1ient--server architecture consists of three major parts: a user interface, 
an information repository, and a collection of tools (see Figure 14.2). The c1ient
side user interface is a Web browser, which is used to access bookshelf content. 
The server-side information repository stores the bookshelf content, or more 
accurately, stores pointers to diverse information sources. The repository is 
based on the Telos conceptual modeling language (Mylopoulos et aI., 1990), is 



www.manaraa.com

304 Finnigan et al. 

implemented using DB21 (DATABASE 2), and is accessed through an off-the
shelf Web server. Client-side tools include parsers to extract information from a 
variety of sources, scripts to collect, transform, and synthesize information, as 
well as reverse engineering and visualization tools to recover and summarize 
information about software structure. These major parts are described in more 
detail later in the section. 

Our architecture uses Web technologies extensively (see Table 14.1 for ac
ronyms and definitions). In particular, these technologies include: a common 
protocol (HTTP), integration mechanisms (CGI, Java2), a common hypertext 
format (HTML), multimedia data types (MIME), and unified access to informa
tion resources (URL). These standards provide immediate benefits by partly 
addressing some requirements of the builder (i.e. , tool integration, nonpropri
etary standards, and cross-platform capabilities), the librarian (i.e., uniform ac
cess to diverse documents and linking facilities), and the patron (i .e., easy 
remote access). 

ma.s 

• PVI. C. 0++, C08OI. PARSBIS 
• IIOOI<MASlBI. L.aTalC 
• HIM. <XJIMR1tRS 
• AlGI, I.HOlCAPE GRAPH IIISUAUZERS 
• OTIEII CQMt.EIOAI. ma.s 

Network 

I 

• APACI£ WEB SERVER 
• oe..ET SERVER 
• DB2 · mos 
• GLOe.t.I..5CIf3IA 
• NMIHG 58lIIICE 
• OUERI'SERVICE 

USER INlB'If,t,CE 

• OEfAUtTLS 
NETSCAPE tU.W>ATOA 

• OTHER WEB BI'KlWSERS 

Figure 14.2. Builder perspective of the implemented bookshelf architecture. 

I DB2 and DAT ABASE2 are trademarks or registered trademark of Intemational Busi
ness Machines Corporation. 
2 Java is a trademark or registered trademark of Sun Microsystems, Inc. 



www.manaraa.com

Item 

Common Protocol 

Unified Access 

Multimedia Data 
Types 

Common 
Hypertext Format 

Integration 
Mechanism 

14. The Software Bookshelf 305 

Table 14.1. Web technologies. 

Description 

The Web is founded on a client-server architecture. The clients 
and servers run independently, on different machines in differ
ent control domains. They communicate through a common 
protocol, the HyperText Transfer Protocol (HTIP). The con
nections are stateless; once the transaction with the client is 
completed, the server forgets the communication context. Ver
sion 1.1 of the HTIP protocol supports persistent connections 
that allow multiple transfers before the connection closes. To 
be served, a client issues a request to one of the servers, and the 
server analyzes the request, performs the requested operation 
(e.g., GET, POST, PUT), and generates a response. 

The servers provide controlled access to information resources 
they manage. The resources are accessed by clients via links 
called unifonn resource locators (URLs) that designate the lo
cation and the identity of the desired resource. 

The data associated with requests and responses are typed us
ing the Multipurpose Internet Mail Extensions (MIME). The 
unit of transfer between the client and the server is a MIME 
document, which is a typed sequence of octets. 

The HyperText Markup Language (HTML) defines a compos
ite document model. The document may contain references to 
other documents that are rendered in line by the client (e.g., 
tags, pictures, audio, video). In addition to these, the document 
may contain links to external documents (or parts thereot). If 
the type of a document is textlHTML and the document con
tains links to other documents, each one of these is handled in a 
separate transfer. 

The Common Gateway Interface (CGI) defines a mechanism 
that allows a Web server to launch and convey requests to ar
bitrary external programs. 

Many nonproprietary components are available off-the-shelf, including Web 
browsers, Web servers, document viewers, and HTML file converters, which 
can reduce the effort of building a software bookshelf architecture. Conse
quently, the use of Web technologies provides significant value to the bookshelf 
builder. In addition, the Web browser is easy to use and-we can assume to
day-immediately familiar to the patron. This lowers the startup cost and train
ing effort of the patron in adopting the populated bookshelf environment. 



www.manaraa.com

306 Finnigan et al. 

14.3.1 User Interface 

The patron navigates through the bookshelf content using a Web browser, which 
may transparently invoke a variety of tools and scripts. The patron can browse 
through books or notes by simply clicking (a selection using a mouse button) on 
any links. We implemented a hypermedia link mechanism to support relation
ships between various pieces of content. This mechanism allows the librarian to 
provide the patron a choice among possible destinations. For instance, clicking 
on a procedure name in a source code file may present a list of options, includ
ing the definition of the procedure in source code, its interface declaration, its 
position within a global call graph, the program locations that call it, and its in
ternal data and control flow graphs. Once the patron chooses an option, a par
ticular view of the procedure can be presented by the browser or by one of the 
integrated presentation tools in the bookshelf environment. This multiheaded 
link mechanism thus offers the librarian added flexibility in organizing and pre
senting access to bookshelf content. 

We chose Netscape Navigator3 as the default Web browser for the bookshelf 
environment, but any comparable browser should suffice. The browser must, 
however, support Java (Gosling et aI., 1996) directly since this is used as a cli
ent-side extension mechanism. In particular, this mechanism enables any 
browser that connects to the Web server to be transparently extended to handle 
various data objects in the information repository. 

Navigator also supports remote invocation features to allow tools to tell it to 
follow a URL. In following the URL, Navigator accesses the Web server to re
trieve requested content from the information repository. For example, a tool 
can present a map of the bookshelf content as a graph, where clicking on a node 
would invoke Navigator to go to the corresponding book or note. These features 
also allow, for example, a code editor to request the browser to display details 
about a selected software artifact. This ability benefits the patron by making the 
bookshelf content readily and transparently accessible from the patron's devel
opment environment. 

14.3.2 Information Repository 

To track all the different information sources and their cross references, the 
bookshelf environment contains an information repository that describes the 
content of the bookshelf. Access to the information repository is through a Web 
server. A module of this server is an object server, which is a mediator to a per
sistent object store. The object server and object store constitute the implemen
tation of the repository. 

3 Netscape Navigator is a trademark or registered trademark of Netscape Communica
tions Corporation. 



www.manaraa.com

14. The Software Bookshelf 307 

The structure for the stored data is specified using an object-oriented con
ceptual modeling language. By using object-oriented database technology, the 
bookshelf builder can provide the necessary capabilities to represent and struc
ture highly interrelated, fine-grained data. The librarian especially needs these 
capabilities to express and organize software artifacts and dependencies. Fur
thermore, our particular choice of technology supports dynamic updates to the 
data schema, to allow extension to new and unforeseen types of content. Conse
quently, our use of object-oriented database technology provides a major benefit 
by satisfying some requirements of the builder (i.e., powerful conceptual mod
eling and extensibility to new types of content) and the librarian (i.e., structuring 
and linking facilities). 

Meta-Data Repository 

The information repository generally stores descriptions about pieces of book
shelf content (such as location) along with the links among the pieces. Since 
these descriptions constitute data about other data, they are called meta-data 
(Seligman and Rosenthal, 1996). 

The repository explicitly stores the meta-data, not necessarily the data them
selves. The actual data are left in files, databases, physical books, etc. This indi
rect approach is necessary since the actual data can be too large to store or too 
complex to fully model. Nevertheless, this detail only concerns the builder and 
librarian. The patron perspective is that bookshelf content is somehow delivered 
by the bookshelfrepository. 

Our repository design provides three basic capabilities for the builder and li
brarian: an information model, global schema, and persistent storage. The in
formation model provides facilities for modeling the meta-data and is analogous 
to a data model for a database. The global schema consists of classes describing 
the kinds of information to be stored. This schema serves as a foundation for 
modeling the software implementation domain (by the builder) and modeling the 
application domain (by the librarian). In addition, the shared nature of this 
schema enables data integration for various tools. The persistent storage con
tains a populated instantiation of the schema. 

Web Server 

The Web server provides an interface for accessing information in the reposi
tory. It does so by delivering the appropriate data to the requesting tool or acting 
directly as an information conduit. The Web server accepts HTTP requests and 
maps them using the repository meta-data into appropriate actions for accessing 
the actual content. This approach allows the server to journal all requests. The 
server can also cache requests, to allow specific optimizations for accessing dis
tributed content. In our bookshelf implementation, we use the freely available 



www.manaraa.com

308 Finnigan et al. 

Apache Web server.4 The only additional requirement is that the server support 
CGI. 

Object Server and Store 

The repository is implemented by an object server and object store. The object 
server is an in-memory facility that offers caching, query, and naming services, 
built as an Apache Web server module for more efficient performance (see Fig
ure 14.3). (An earlier, slower prototype used CGI and Tel scripts to connect the 
Web server and repository.) The object store provides persistence for content 
description objects using DB2. The object server communicates with the object 
store through messages implemented with UNIX5 sockets. The single communi
cation channel between the object server and store ensures consistency. In addi
tion, all queries and updates can be performed in the local workspace of the 
object server, thereby increasing performance. The object server can update the 
store according to whatever schedule is appropriate, depending on hardware 
availability, security issues, and usage patterns. 

Web Server !. !. !. 
I ~a I 

OBJECT SERVER l 
I<ERNEl...IN1BI=ACE 

• COMM.JNICATE WITH KERNEL 
• OBJECT CACHING 
• ISSUE QUERY AND lAlATE REQUESTS 

OBJECT STORE INTERFACE 

• HANDlE QUERY AND UPDATE 
• GI..OBAI... NAME SERVER 
• COMMUNICATE WITH OBJECT STORE 

1 PEmmNT OBJECT STORE I 

Figure 14.3. Bookshelf repository subsystems. 

4 The Apache HTIP Server Project is a collaborative software development effort aimed 
at creating a commercial-grade source-code implementation of an HTTP Web server. 
Information about the project can be found at the Internet World Wide Web site 
http://www .apache.org. 
5 UNIX is a trademark or registered trademark of XlOpen Co., Ltd. 



www.manaraa.com

14. The Software Bookshelf 309 

Information Modeling 

The information model is based on the conceptual modeling language Telos 
(Mylopoulo et aI., 1990) which offers facilities for organizing information in the 
repository using generalization, aggregation, and classification. These facilities 
are all necessary to satisfy the information structuring needs of the librarian. 

In our experience, program-understanding and re-engineering tasks require a 
high level of flexibility in structuring information and forming semantic asso
ciations. Telos also provides constructs for representing meta-data using meta
classes and meta-attributes. For example, links from a procedure to called 
procedures would be stored as part of the meta-description of a procedure. An 
interpreter/compiler for Telos is built into the object server. 

Schema 

The repository does not impose a predefined view of the data it is representing. 
Rather, a customized schema needs to be built for each application domain. This 
customization is a significant task and it is necessary for the builder to reduce 
the work of the librarian. Figure 14.4 shows some of the design-level metaclass 
definitions. In our customization we have tried to prepare a generally global 

MetaCIass Design 
In DesIgnCIass 
\sa Realization 
wilt> 
IsAeaJlz.edByAltribute 

isRealizedBy : I~tion 

IsPartOlAllribute 
isPartOf : DesIgn 

hasPa/1sA!tJ1bute 
hasParts : Design 

isCQntelnedlnAttt1bute 
IsContalnedln : DesIgn 

containsAltribute 
contains : DesIgn 

end 

MemCIass System 
;sa DesIgn 

end 

MetaCIass Subsystem 
!sa Design 
wilt> 
lsPartOfAttribue 

IsPartOl : System 
hasPartsAltribute 

hasParts : Subsystem 

end 

MetaCIass Algo<Ithm 
with 
descriptionAttribute 

end 

pseo IdoCode : Pseo IdoCode 
speclflCBllon : SpecIfication 
text : AlgorithmText 

Figure 14.4. Schema details for the design level. 



www.manaraa.com

310 Finnigan et al. 

schema that is applicable to a variety of program-understanding projects. This 
schema mirrors the levels of software abstraction previously outlined and in
cludes meta-classes defining the kinds of objects that can reside in the object 
store. 

According to these design-level definitions, a System is a subclass of De
sign and may have Subsystems as parts (with isPartOfAttribute). 
Design-level classes (Design and its subclasses) are realized by one or more 
program-level classes (Implementation and its subclasses). This is ex
pressed by the isRealizedByAttribute of Design. For example, a spe
cific Subsystem is a design that could be realized as a set of files. Finally, an 
Algorithm can be described by PseudoCode, a Specification, or in 
Algori thmText. 

Analogous definitions apply for the program and physical levels. Relevant 
metaclasses for the program level include Implementation, Program
mingConstruct, and Statement. Similarly, Storage, FileSystem, 
StorageFile, and Directory are some of the classes for the physical 
level. Figure 14.5 shows these different levels of the schema. 

Link Mechanism 

A multiheaded hypermedia link is implemented by accessing a repository object 
that describes possible destinations for the link. This description depends on the 
classes that the object instantiates. The possible destinations can be different for 
different types of objects (e.g., procedures versus variables) and can be further 

Figure 14.5. Schema overview: the basic classes at the design, implementation, and stor
age levels. Nodes represent meta-classes and arcs represent is-a relations. 



www.manaraa.com

14. The Software Bookshelf 311 

individualized for particular objects. In Telos terms, these multiheaded links are 
supported by multiple attributes within multiple attribute categories. For exam
ple, while browsing a procedure object, the patron may want to see different 
views of the procedure and its relationship to the rest of the software. By ac
cessing the attributes in the defaultView and availableView categories, 
the patron can navigate to a source code view of the procedure or a text file ex
plaining the implemented algorithm (see Figure 14.6). 

Name Translation Service 

The repository integrates the content found in disparate information sources. A 
particular procedure may be mentioned many times in different source code files 
and other documentation. For this procedure, there should only be a single ob
ject in the store, with appropriate attributes describing where the procedure is 
defined, mentioned, called, etc. Consequently, one common problem of data 
integration is reconciling the multiple names used for the same entity. At one 
extreme, a tool may have an inflexible mechanism that requires a unique name 
for each entity it manipulates. At the other extreme, a tool may simply manipu
late the entities without any concern for their meaning. In addition, the imple
mentation domain may impose restrictions on the names of entities. For 
example, the rules of a programming language usually require that all global 
procedures have unique names. 

To deal with these needs, our repository provides an integrated name trans-

SimpleClass proc_1 
in Proc 
with 
URL 

: "httpJ/CSER/projectslboundary.html" 
name 

: "proc_1" 
defaultView 

HTMLSourceView : proc_1 _1; 
availableView 

AJgortthmVlew : proc_1_3; 
/lalgorithm 

ProcCalledByView: proc_1_2; 
llcalled procedures 

FuliCaliGraphView : proc_1_26; 
lIentire call graph 

NearCaliGraphView : proc_1_27; 
I/neighborhood call graph 

FarCallGraphView : proc_1_28; 
I/far call graph 

ProcToVarView : proc_1~9 
I/accessed variables 

end 

Figure 14.6. Specific detail of the repository schema showing how attribution is used 
to represent hyperlinks. 



www.manaraa.com

312 Finnigan et al. 

lation service for use by the bookshelf tools. This service is implemented by 
giving each entity a unique object identifier and by maintaining a mapping be
tween this identifier and the form of name needed by a tool. This service pro
vides additional capabilities, aside from easing data integration. In particular, 
this service is a basis for a general, name-based query service for use by the 
tools. This query service is used to support virtual links that implicitly connect 
entities or dynamic links that are created on demand. For example, consider a 
patron reading through a text document that describes the major algorithms used 
in a software system. This document predates the creation of the software and 
has almost no explicit hyperlinks. If the patron highlights a word representing 
the common name of an algorithm, the viewing tool could query the repository 
for all entities that use this name. Using the result, the tool can present the pa
tron with a number of navigation options for further exploration of how this al
gorithm is implemented in the software. These navigation paths are dynamic. If 
it happens that these paths are useful, they can be made explicit and static, with
out changing the original document. 

Adding New Content 

By design, the information repository is easily extensible with new data or types 
of data. In the former case, the repository creates new objects describing the new 
data, with appropriate pointers to the location of the data. The new data are im
mediately available to all tools. A tool can dynamically query the repository, 
fetch information about the new data, and display them to the patron. The latter 
case for a new type of data requires changes to the schema to describe the class 
of information being added to the repository. 

The schema itself is dynamic. That is, the schema can be extended, con
tracted, or modified without changing the representation of existing objects or 
the tools that manipulate those objects. This flexibility allows, for example, a 
new type of view to be added to the procedure class without affecting any of the 
actual procedure instances or any of the display tools that already operate on 
these instances. Another use of a dynamic schema is to create user-defined 
views to organize and capture implicit personal information. 

14.3.3 Tools 

Our bookshelf environment is based on an open architecture, which allows a 
variety of tools to be integrated. Tools that populate the bookshelf repository are 
generally independent, communicating with each other using files and to the 
bookshelf Web server using standard Web protocols. These common protocols 
also provide the necessary integration mechanism for the Web server to export 
meta-data or data to external tools. These tools may use this information to lo
cate the appropriate input files and derive new information that is stored either 
separately as a file, directly in the repository, or in some combination of the two. 



www.manaraa.com

14. The Software Bookshelf 313 

For example, a code analyzer might scan the intermediate representation of a 
set of program files, and calculate various complexity metrics. The results could 
be stored in a local file, with an entry made in the repository describing the new 
information and its location. In this example, the tool takes care of storing its 
output in a file, but updates to the repository are sent to the bookshelf Web 
server via Web protocols. 

Adding Tools 

A web browser provides only a single kind of access point into the bookshelf 
contents. Additional presentation tools that also access the repository are needed 
and should be integrated within the bookshelf architecture using Web protocols. 
For example, suppose that a patron wants to edit a source code segment while 
also viewing an annotated version of the source in the Web browser. The patron 
clicks on a button on the Web page to launch the patron's favorite code editor to 
process the appropriate source code file. One way of implementing this feature 
with Web protocols is the following. The button is tied to a URL which, when 
clicked, causes the Web server to run a CGI script. This script encapsulates the 
name of the desired file using a special MIME type. The encapsulated data are 
sent from the server to the browser as a response. The browser recognizes these 
data as having a special type, and launches the appropriate helper application on 
the data. The helper application processes the data as a file name, consults the 
patron's preferences, and launches the preferred code editor to process the de
sired file. Such an approach relaxes the requirement for a detailed tool-modeling 
notation usually found in other software engineering environments (Valetto and 
Kaiser, 1995). In any case, a CGI script or helper application mediates between 
a tool and the repository, translating between the specific form required by the 
tool and the form required by the Web server. 

Tighter integration with the bookshelf environment can be achieved by 
making a tool fully HTTP-aware (i.e., capable of sending and receiving HTTP 
requests and responses). If this is done, the tool is able to communicate with 
other tools and the repository more efficiently. An important step for integrating 
a specific tool is to describe its capabilities in terms of what kinds of views it 
can display (using MIME types) and what kinds of information it supplies (using 
the repository schema). 

Dynamic Content 

There is a need for live, specialized, computed views as bookshelf content 
(Zachmann, 1987; Sowa and Zachman, 1992). It is not possible to prefabricate 
all the views one might want and store them directly as static HTML pages or 
graphic images. There are a number of server-side solutions for creating dy
namic pages. Web authors often use CGI scripts or Web server modules to con
struct content dynamically. Also, a meta-language of preprocessing and 
transformation directives can extend HTML to provide more dynamic pages. 
Server Side Includes (SSI) are a primitive form of such a meta-language. 



www.manaraa.com

314 Finnigan et al. 

In addition to the server-side approaches, there are also client-side strategies 
that operate from the Web browser, including helper applications, plug-ins, Java 
applets, and JavaScript6 handlers. Helpers are independent programs that can 
provide sophisticated views. Plug-ins are software components that conform to 
an interface for communicating with the browser and drawing into its windows. 
Java applets are platform-neutral programs fetched over the network and run on 
a Java-enabled browser. JavaScript handlers are scripts that are triggered on 
certain events, such as the clicking of a link. These scripts are embedded in 
HTML pages and are interpreted by JavaScript-enabled browsers. All of these 
strategies are flexible for presenting interactive views of bookshelf data. How
ever, some strategies may be easier to exploit than others. 

To gain experience with tool integration strategies, we decided to focus on 
two extremes: tight and loose integration. For tight integration, the tool is essen
tially reimplemented in the new setting (e.g., rewritten as a Java applet). For 
loose integration, the tool needs to be programmable and customizable, to adapt 
and plug into the new setting. An annotated bibliography on different strategies 
for software engineering environment integration can be found in Brown and 
Penedo (1992). In the past, we had developed software visualization tools that 
employed graph-oriented user interfaces (i.e., Landscape (Penny, 1992), Rigi 
(MUller and Klashinsky, 1988), and SHriMP (Storey et aI., 1996)). Given our 
experience with these tools and the opportunity to compare these visualization 
techniques within the Web paradigm, we decided to integrate Landscape and 
Rigi into the bookshelf environment. 

Integrating Landscape Views 

The Landscape tool (Penny, 1992) produces diagrams, called landscapes, of the 
global architecture of the target system (Chase, 1996). In each diagram, there are 
boxes that represent software entities such as subsystems, modules, or files. Ar
rows connecting the boxes represent dependencies, such as calls to procedures 
or references to variables. These diagrams are created semi-automatically
based on software artifact information extracted automatically using parsers, 
together with system decomposition information collected manually from the 
developers through interviews. A later section in this paper illustrates how a 
patron uses these diagrams to obtain high-level overviews of the target software. 

The original version of the Landscape tool was stand-alone. For the book
shelf environment, a new landscape tool was written as a Java applet. This app
let displays landscape diagrams, to provide convenient navigation through the 
structure of the software from diagram to diagram, and to access related book
shelf content. 

6 lavaScript is a trademark or registered trademark of Sun Microsystems, Inc. 



www.manaraa.com

14. The Software Bookshelf 315 

Integrating Rigi Views 

Rigi is a visualization tool for exploring and understanding large information 
spaces. The user interface is a graph editor that is used to browse, analyze, and 
modify a graph that represents the target information space. The tool is end-user 
programmable and extensible using the Tcl scripting language (Ousterhout, 
1994), allowing user-defined views of graphs, integration with external tools, 
and automation of graph editing operations (Tilley et aI., 1994). Also, Rigi is 
designed to document software architecture and to compose, manipulate, and 
visualize subsystem structures according to various criteria (MUller et aI., 1993). 

To exploit its reverse engineering and software analysis capabilities, the Rigi 
tool was integrated into the bookshelf environment. The basic idea was to allow 
Rigi to render views constructively, based on information stored in the reposi
tory. This is an advance over approaches that only retrieve static, ready-made 
images. By building views dynamically, the patron can filter immaterial arti
facts, emphasize relevant components, and customize the views to the analysis 
task at hand. The views are live and manipulable. Also, changes to the software 
being re-engineered are easily reflected without requiring batch updates to stati
cally stored images. 

Like Landscape, the Rigi system could be tightly integrated with the book
shelf environment by rewriting the user interface in Java. However, the pro
grammability of Rigi allows for a loose integration strategy that requires no 
changes to the editor. Rigi was connected to the bookshelf environment using a 
CGI script and a helper application, both written in Perl (Wall et aI., 1996). Ac
cess to Rigi and its constructive views from the bookshelf Web browser had to 
be as simple as following a URL. Consequently, we specified a special form of 
URL that invokes the CGI script with a sequence of keyword/value pairs. These 
pairs specify required parameters, including project name, domain model, data
base, version, user identification, session data, display host, computational host, 
requested view, and context. The CGI script parses the pairs and sends the pa
rameters to the helper application as a custom MIME type. The helper converts 
the parameters into Tcl and generates a custom configuration file, as well as a 
startup script that is used to launch Rigi to produce the view. If Rigi is already 
running, then the helper conveys the requested view in a file that Rigi periodi
cally polls. 

In our experience, the time needed to convey the request to Rigi is short, 
compared to the time needed to compute and present the requested view in a 
window. Since constructive views are computed by another process possibly on 
another machine, there are no memory problems or security limitations incurred 
by rendering these views within the browser using plug-in modules or Java 
applets. This integration strategy is generic and can be readily adapted for any 
stand-alone analysis tool that is end-user programmable or provides a compre
hensive application program interface. 

There are many strategies for integrating a tool with a Web browser. We ex
plored two specific approaches: loose integration using CGI scripts, which al-



www.manaraa.com

316 Finnigan et al. 

lows for fast prototyping, and tight integration using Java applets, which allows 
for a common "look-and-feel." 

Parsers 

The librarian requires tools to populate the bookshelf repository from existing 
information sources automatically, insofar as that is possible. For example, the 
files that belong to a software project are stored, typically, in one or more di
rectories in a file system. The process of converting these files to HTML can be 
automated by "walking" the directory structure and converting the files based on 
their content types. Of particular interest are parsers, tools used to extract data 
about software artifacts and dependencies automatically. Source code files are 
parsed at various levels of detail according to program-understanding needs. For 
example, a simple parser might extract procedure calls and global variables, 
whereas a complete parser might generate entire abstract syntax trees. 

Our use of parsers is for program-understanding purposes rather than code 
generation, and so the focus is primarily on extracting useful information, not all 
the details that would be needed for code compilation. Information useful for 
program understanding includes procedures (their definitions and calls) and data 
variables (their definitions and usage). In the implemented bookshelf environ
ment, the parser output is processed through further code analysis to establish 
links among related code fragments, compile cross references of procedures and 
global variables, drive visualization tools, generate architectural diagrams, pro
duce metrics on structural complexity (McCabe, 1976; Halstead and Maurice, 
1977), locate cloned fragments of code, and determine data and control flow 
paths. Since the parsers collect the locations of the extracted artifacts, the de
tailed analyses can be linked to the relevant fragments of code. 

A simple source code parser was developed using emacs macros (Stallmann, 
1981) and is currently used to parse procedure definitions and calls, and variable 
declarations and references. Because this parser analyzes the program source, 
HTML tags can be inserted in the annotated source code output at appropriate 
points, such as around a procedure definition. Hypertext links are generated 
automatically from these references using indirection (i.e., the repository main
tains a mapping of references to tags), and HTML pages are generated automati
cally with resolved HTML tags. The parser can be extended to link the 
annotated code to other documentation. Similarly, external comments and notes 
can be attached to relevant code fragments. 

A series of prototype parsers were also developed to parse two alternative 
program representations generated by a compiler front-end processor we were 
using: the cross-reference listing and the intermediate language representation. 
As bookshelf builders, our goal was to obtain some level of language independ
ence by using these forms of input in some combination. In addition, parsers for 
these inputs are easier to write due to the limited syntax. The cross reference 
listing requires only a simple parser, but the reported data are selective and the 



www.manaraa.com

14. The Software Bookshelf 317 

format of the listing is language- and compiler-dependent. Some information is 
also missing, such as procedure-to-procedure calls. 

These problems can be overcome by parsing the intermediate language rep
resentation. For a family of IBM compilers, this representation is shared across 
multiple languages, hardware, and operating system platforms. The representa
tion can provide detailed information to determine static control flow and, to 
some degree, information to calculate complexity metrics. In particular, this 
information includes variable type definitions, function parameter declarations, 
function return types, and active local and global variables. Nevertheless, in our 
experience, parsing only this representation is not enough since some of the in
formation is lost. For example, the structure of file inclusions is not maintained 
and names of data elements generated by the front-end processor may not accu
rately match the variables names from the original source. Still, the approach 
handles the entire compiler family sharing the intermediate representation. To 
demonstrate this, we applied the parser to the intermediate representations of 
both PLII dialect and C source code. 

14.3.4 Shortcomings and Lessons Learned 

The initial prototype of the bookshelf environment served as a testing ground 
that helped us understand where Web technologies worked well (e.g., ready ac
cess, ease of use, and consistent presentation) and where more sophisticated 
approaches were needed. The prototype became a vehicle for bringing together a 
diverse set of reverse engineering tools and techniques. 

Our experience with the prototype exposed several issues with building a 
bookshelf using Web technologies. First, the advantage of a universally under
stood Web browser interface degenerates rapidly as more interactive techniques 
are used to give the degree of control and flexibility required for sophisticated 
re-engineering needs. Second, the separation between the client side and the 
server side introduces sharp boundaries that must be dealt with to create a 
seamless bookshelf environment to the patron. For example, since a client and 
the server run most often on different machines and file systems, there is a 
problem when mapping access rights between the client and server contexts. 
Third, the connections are stateless (as mentioned in Table 14.1). This creates a 
communication overhead when composing documents for viewing in the Web 
browser. Finally, no mechanism is provided for session management and version 
control. 

The initial prototype has several limitations. First, adding a new tool re
quired the builder to write a handcrafted COl script, which takes some effort. 
Second, repository access was slow for the patron, because of the communica
tion mechanisms used (i.e., UNIX pipes and interpreted Tcl scripts). Third, there 
were no security provisions to support selective access to read and possibly edit 
bookshelf content among patrons. Finally, maintaining a populated bookshelf 
repository in the face of multiple releases of the target software was another 



www.manaraa.com

318 Finnigan et al. 

problem not addressed. Some support for multiple releases has been added to 
later versions of the prototype and this support is being evaluated. 

14.4 Populating the Bookshelf 

With patron requirements in mind, the librarian populates the bookshelf reposi
tory with project-specific content to suit the needs of the re-engineering or mi
gration effort. In this section, from a librarian perspective (see Figure 14.7) we 
describe our experience in populating the initial bookshelf prototype with a tar
get software system. This target software is a legacy system that has evolved 
over twelve years, contains approximately 300K lines of highly optimized code 
written in a dialect of PLII, and has an experienced development team. This 
system is the code optimization component of a family of compilers. In this pa
per, the name used to refer to this system is SIDOI. 

14.4.1 Gathering Information Manually 

As with many legacy systems, important documentation for SIDOI existed only 
in hard-copy versions that were filed at the back of some developer's shelf. One 

BCX>KSHElF Al.JTHORING 

• PARSING SOURCE CODES 
• CONVERTlNG DOCUMENTATlON 
• COMPOSING AACHfTEcnJRAI.. DIAGRAMS 
• ESTABUSHING CROSS REFERENCES 

Network 

BOOKSHElF REPOSrrORY 

• CONCEPTUAl.. MODEL 
• GLOBAL SCHEMA 
• PAOJECT-5PECIAC SCHEMA 
• NAMING SER\I1CE 
• OUERY SERVICE 

Figure 14.7. Librarian perspective of bookshelf environment capabilities. 



www.manaraa.com

14. The Software Bookshelf 319 

major need was to discover these documents and transform them into an elec
tronic form for the software bookshelf. Consequently, over a one-year period, 
the members of the bookshelf project interviewed members of the development 
team, developed tools to extract software artifacts and synthesize knowledge, 
collected relevant documentation, and consequently converted documents to 
more usable formats. 

Most of the information for the bookshelf repository was gathered or derived 
automatically from existing on-line information sources, such as source code, 
design documents, and documentation. However, some of the most valuable 
content was produced by interviewing members of the development team. 

Recovering Architectures 

The initial view of the legacy system was centered around an informal diagram 
drawn by one of the early developers. This diagram showed how the legacy 
system interfaced with roughly 20 other major software systems. We refined this 
architectural diagram and collected short descriptions of the functions of each of 
these software systems. The resulting diagram documented the external archi
tecture of the legacy system. At roughly the same time, the chief architect was 
interviewed, resulting in several additional informal diagrams that documented 
the high-level, conceptual architecture (i.e., the system as conceived by its own
ers). Each of these diagrams was drawn formally as a software landscape. 

The first of these diagrams was simple, showing the legacy system as com
posed of three major subsystems that are responsible for the three phases of the 
overall computation. The diagram also showed that there are service routines to 
support these three phases, and that the data structure is globally accessed and 
shared by all three phases. There were also more detailed diagrams showing the 
nested subsystems within each of the major phases. Using these diagrams, with a 
preliminary description of the various phases and subsystems, we extracted a 
terse but useful set of hierarchical views of the abstract architecture. 

After some exploration with trying to extract the concrete architecture (i.e., 
the physical file and directory structure of the source code), we found it more 
effective to work bottom-up, collecting files into subsystems, and collecting 
subsystems into phases, reflecting closely the abstract architecture. This exercise 
was difficult. For example, file-naming conventions could not always be used to 
collect files into subsystems; roughly 35 percent of the files could not be classi
fied. The developers were consulted to determine a set of concrete subsystems 
that included nearly all of the files. The concrete architecture contained many 
more subsystems than the abstract architecture. 

In a subsequent, ongoing experiment, we are recovering the architecture of 
another large system (250K lines of code). In this work we have found that the 
effort is much reduced by initially consulting with the architects of the system to 
find their detailed decomposition of the system into subsystems and those sub
systems into files. 



www.manaraa.com

320 Finnigan et al. 

ILl Data Structure 

The intermediate language implementation (Ill) data structure represents the 
program being optimized. The abstract architecture showed that understanding 
III would be fundamental to gaining a better understanding of the whole sys
tem. As a result, we interviewed the developers to get an overview of this data 
structure and to capture example diagrams of its substructures. This information 
is documented as a bookshelf book that evolved with successive feedback from 
the developers (see Figure 14.8). This book provides descriptions and diagrams 
of III substructures. The developers had repeatedly asked for a list of frequently 
asked questions about the III data structure, and so one was created for the 
book. 

Ill: 
Contents 

Include. 
IILiIWIIlII 
m big Include 
II IkI Include 
III loBJocludc 
Ili.JHRJmIulIr 
II! mise Include 
1M pd Include 
PI plJnclud. 
HI srJocludr 
M! tllts.lnclyde 
HI lIII.lnclydc 

0. 8. 

LI 
LI an In core data Sll'UCIln hokIna 8 compled ptOgr1Im • lormatlhall3 

conducive to 0 at!o by the SI061 Dpbm Ing bad: end. 

Ill: Overview 
Immediate language ~lemencatlon)" an In-core database contaJ "Q a 

represe_ of. complied program. I s. languaGe In that descnbes the 
use( progral1\ but k not I-e famI! ar compUle anguages III that dOes not have 
• no 5ImpIe har Iormat Instead the user program 9 rep esemd ., 8 r 
datab. e III uI!ab e lor oP'lmt'lIIIon and code gereradOD. 

r--;:::=====::::;----, There.e. few compliers let! thai 
dinlCUy generata Il • but the C\nanl 
policy 'lor 8 Iront end to generate 
ntermedlale Representation Code and 

for!hl to be fed Intc • ptognrn that 
tr~5~5theIMemw~ 
Representation Code ID Il SIOOI 

TIlere are two distinCt points of ~ for 
underStandlDg l' Firstly from the 
point of vfew 01 • front end or a 
Intermediate Representation Cede 
trl105latDr Llis an inIIIrmedlale 
lMguage. -wt-och defines the enace 
to the Siool back end. It Is the job 01 
the toni end to tran51a1e !he User'5 
program to 1I Sec~ tom $Iool's 
00int 01 vfew 1I 15 • In-core d81abase , 

Ill: References 
1 Pro ..... Flow AMIysI.: Theory Mel AppIIcIlllon. by Steven S. MlcIYlid 

and Net 0 Jones Prenllce Hal. New Jersey 1981 
eo.piIr": PrincIpIn. Techolqun. Mel Tools by Alred V Aha, Rav! 
SIIUIi, JetlO Ulman; Adcbon-WII5Iey Don Mob. 1985 

3 Prot ... _= l ....... Mel TheIr C--.n. Second Revised 
Venion. 1870 by John Cocke and .11 ~ New VOti< Unlversty, 
New or1\, 1970 

4 CO!Ip!IIr I!'II!sIoDlllllon' tor High PCrfol'lllllCe Co!!U!l!tlng 
IPoltscdpn by David F Bacan. Susan L GrW>Im, and Oliver .1 SIIarp 

Figure 14.8. Bookshelf view representing the documentation on the key ILl data 
structure. 



www.manaraa.com

14. The Software Bookshelf 321 

Effort 

In addition to the initial work of extracting the architectural structure of the tar
get system, one significant task was getting the developers to write a short over
view of each subsystem. These descriptions were converted to HTML and 
linked with the corresponding architectural diagrams for browsing. Since there 
are over 70 subsystems, this work required more than an elapsed month of a 
developer's time. We collected relevant existing documents and linked them to 
the browsable concrete architecture diagrams. In some cases, such as when de
termining the concrete architecture, we required developers to invent structures 
and su~ystem boundaries that had not previously existed. 

In our experience, the bookshelf librarian would need to acquire some appli
cation-domain expertise. In many legacy software projects, the developers are so 
busy implementing new features that no time or energy is left to maintain the 
documentation. Also, the developers often overlook parts of the software that 
require careful attention. Thus, the librarian must become familiar with the tar
get software and verify new information for the bookshelf repository with the 
developer. 

Reducing Effort 

We were constantly aware, while manually extracting the information, that this 
work is inherently time consuming and costly. We evolved our tools and ap
proaches to maximize the value of our bookshelf environment for a given 
amount of manual work. It is advantageous to be selective and load only the 
most essential information, such as the documentation for critical system parts, 
while deferring the consideration of parts that are relatively stable. The book
shelf contents can be refined and improved incrementally as needed. 

In a subsequent experiment with another target system, we have been able to 
do the initial population of its bookshelf much faster. Our support tools had 
matured and our experience allowed us to ignore a large number of unprofitable 
information extraction approaches from the first target system. 

i4.4.2 Gathering information Automatically 

Several software tools were used to help create and document the concrete ar
chitecture. To facilitate this effort, the parser output uses a general and simple 
file format. This format is called Rigi Standard Format (RSF) and consists of 
tuples representing software artifacts and relationships (e.g., procedure P calls 
procedure Q, file F includes file G). These tuple files were the basis of the dia
grams of the concrete architecture. A relational calculator called Grok was de
veloped to manipulate the tuples. To gain insights into the structure of this 
information, the Star system (Mancoridis and Holt, 1995) was used to produce 
various diagram layouts. The diagrams were manually manipulated to provide a 
more acceptable appearance for patrons. 



www.manaraa.com

322 Finnigan et al. 

Valuable information about the software was found in its version control and 
defect management system. It provided build-related data that was used to create 
an array of metrics about the build history of the project. The metrics included 
change frequency, a weighted defect density, and other measurements relating to 
the evolution of each release. A set of scripts was written that queried the ver
sion control system, parsed the responses, and gathered the desired metrics that 
can be used by different tools to generate views of the evolution of the software. 

14.5 Using the Bookshelf 

Re-engineering or migration tasks are generally goal-driven. Based on a desired 
goal (e.g., reducing costs, adding features, or resolving defects) and the specific 
task (e.g., simplifying code, increasing performance, or fixing a bug), the patron 
poses pertinent questions about the software and answers them in part by con
sulting the bookshelf environment data (see Figure 14.9). To illustrate the use of 
the software bookshelf, we introduce a scenario drawn from our experience with 
the SIDOI target system. The scenario illustrates the use of the bookshelf envi
ronment during a structural complexity analysis task by a patron who is an expe
rienced developer. 

In this scenario, the patron wishes to find complex portions of the code that 
can be re-engineered to decrease maintenance costs. In particular, one subsystem 
called DS has been difficult to understand because it is written in an unusually 

BOOKSHELF BROWSING 

• PROJECT OIIERVIEW 
• PROGRAM UNDERSTANDING 
• STRUC1\JRE VlSUAUZATlON 
• COMPI.EXITY ANALYSIS 

Networ1< 

PROJECT-sPEOflC BOOKS 

• ANNOTRm SOURCE CODE 
• ARCHrTEC1\JRAL. DIAGRAMS 
• DESIGN DOCUMENTS 
• COAPOIW'E KNOWI..EOGE 

Figure 14.9. Patron perspective of a populated bookshelf environment. 



www.manaraa.com

14. The Software Bookshelf 323 

different style. Other past developers have been reluctant to change DS because 
of its apparent complexity (despite reports of suspected performance problems). 
Also, there may be portions of DS that can be rewritten to use routines else
where that serve the same or similar function. Reducing the number of such 
cloned or redundant routines could simplify the structure of DS and ease future 
maintenance work. The information gathered, while studying the complexity of 
DS, will help to estimate the required effort to revise the subsystem. 

14.5.1 Obtaining an Overview 

The patron is unfamiliar with DS and decides to use the bookshelf environment 
to obtain some overview information about the subsystem, such as its purpose 
and high-level interactions with other subsystems. Starting at the high-level, 
architectural diagram of SIDOI (see Figure 14.10), the patron can see where DS 

Contents 

.2Y.mIlqt 

.~ 
·1llWfKn 
.~ 
• Pili Structures 
.~ 

• Rckrmccs 
.~ 

SIOOI 
SIOOI15 a common Dp\lmrzmg component used Pr1n1arl1y1n RISC compilers 

--
------

try~tt ----- ------

Figure 14.10. High-level architectural view of the SIDor system. 



www.manaraa.com

324 Finnigan et al. 

fits into the system. This diagram was produced semi-automatically using the 
Landscape tool, based on the automatically generated output of various parsers. 
Since nested boxes express containment, the diagram (in details not shown here) 
indicates that OS is contained in the optimizer subsystem. For clarity, the proce
dure call and variable access arcs have been filtered from this diagram. The pa
tron can click on a subsystem box in this diagram or a link in the subsystem list 
in the left-hand frame to obtain information about a specific subsystem. For ex
ample, clicking on the OS subsystem link retrieves a page with a description 
about what OS performs, a list of what source files or modules implement OS, 
and a diagram of what subsystems use or are used by OS (see Figure 14.11). The 
diagram shows that OS is relatively modular and is invoked only from one or 
more procedures in the PLII file opt imi ze . pl through one or more 
procedures in the file ds . pl. 

.. tllea : DS 011 

fie Ed. View 00 Booknwtla OpllDns DftcIDIy WIndow Help 

Contents 

. Q'{~ 

• Eun~tl2CI 
. ~e1 
• Algorithms 
· ~ru~tu~ 
• RuQurce, 

• References 
.~ 

Includes 
... ~ 

OS ELIMINATION 
The OS EnmlnaUon optlmizatlol1 deletes store instructions that are redundant elttler 
becau e their targets VIi I a~ be stored in 0 by later stores before being loaded from, 
or because they Wli never be loaded from 

.. 

Figure 14.11. Architectural view of the DS subsystem. 



www.manaraa.com

14. The Software Bookshelf 325 

The page also offers links to other pages that describe the algorithms and lo
cal data structures used by DS. The algorithm description outlines three main 
phases. The first phase initializes a local data structure, the second phase per
forms a live variable analysis, and the third phase emits code where unnecessary 
stores to variables are eliminated. The data structure description is both textual 
and graphical, with "clickable" areas on the graphical image that take the patron 
to more detailed descriptions of a specific substructure. These descriptions are 
augmented by important information about the central ILl data structure of 
smol. After considering potential entry points into the DS subsystem, the pa
tron decides to navigate systematically along the next level of files in the sub
system: dsinit.pl, dslvbb.pl, dslvrg.pl, and dselim.pl. 

14.5.2 Obtaining More Detail 

The patron can click on a file box in the previous diagram or a file link in the list 
on the left-hand frame to retrieve further details about a particular source file of 
DS. For example, clicking on the dsinit .pl file link provides a list of the 
available information specific to this file and specific to the DS subsystem (see 
Figure 14.12). 

The available views for a given file are outlined below. 

• Code redundancy view. This view shows exact matches for code in the 
file with other parts of the system, which is useful for determining in
stances of cut-and-paste reuse and finding areas where common code 
can be factored into separate procedures. 

• Complexity metrics view. This view shows a variety of metrics in a bar 
graph that compares this file with other files in the subsystem of interest. 

• Files included view. This view provides a list of the files that are in
cluded in the file. 

• Hypertext source view. This view provides a hypertext view of the 
source file with procedures, variables, and included files appearing as 
links. 

• Procs declared view. This view provides a list of procedures declared in 
the file. 

• Vars fetched and vars stored views. These views provide a list of vari
bles fetched or updated in the file. 

In general, clicking on a file, procedure, or variable in the diagram or set of links 
produces a list of the available views specific to that entity. Views appear either 
as lists in the left-hand frame, as diagrams in the right-hand frame, or as dia
grams controlled and rendered by other tools in separate windows. Figure 14.13 
shows a diagram generated by Rigi with the neighboring procedures of proce
dure dsinit. The patron can rearrange the software artifacts in the diagrams 



www.manaraa.com

326 Finnigan et al. 

Fi--------------------- - - - - ---- - --- -- - -----------T,ir 

Views for FIe 

• FillS" IncludlS 

GI 1 •• 1111." ~ .,..., 

DSEUMlNAnON 
The OS EImInII!on opttmlzlllan CIeIIt8s SIDle Instrucdons thlt.,. redundant dher 
became Ihelr targets .... Uuays be stDnId Into by 'IIbIr stores bcfrn being loaded from 
or becllUSC they will never be loaded tum. 

Zoom. Z/z Mouse' L-Same browser "'-New browser R-Vlews 

Module • Sub-s stem: 

d'_5Y' 

• ShIIc COIIQICIdty Metrics 
• Pro" It decl .... " 
• Glob .. , It dec""" 
• Glob .. , It fctcbcs 
• GlobII, It stOI'lS 
• Subsystem contlJolng It 
• IfTM!..!zed Soun;, 
• Code Cloolog AnNis 
• FRA Documeotatlon 

Figure 14_12_ Available views for the dsinit.pl module_ 

and apply suitable filters to hide cluttering information. The capabilities of the 
Rigi tool are fully available for handling these diagrams_ 

Other, more flexible navigation capabilities are provided. For instance, the 
patron can enter the name of a software artifact in the query entry field of the 
left-hand frame. This search-based approach is useful for accessing arbitrary 
artifacts in the system that are not directly accessible through predefined links 
on the current page. Also, the Web browser can be used to return to previously 
visited pages or to create bookmarks to particularly useful information. 

14.5.3 Analyzing Structural Complexity 

While focusing on the DS module, the patron decides that some procedure
specific complexity measures on the module would be useful for determining 



www.manaraa.com

14. The Software Bookshelf 327 

RCLCommond : 

Figure 14.13. Call graph with the neighboring procedures of procedure dsinit. 

areas of complex logic or potentially difficult-to-maintain code (see Figure 
14.14). Such static information is useful to help isolate error-prone code 
(McCabe, 1976; Kafura and Reddy, 1987; Curtis et aI., 1979; Buss, 1994). The 
bookshelf environment offers a procedure-level complexity metrics view that 
includes data- and control-flow-related metrics, measures of code size (i.e., 
number of equivalent assembly instructions, indentation levels), and fanout (i.e., 
number of individual procedure calls). 

To examine areas of complex, intraprocedural control flow, the cyclomatic 
complexity metric can be used. This metric measures the number of independent 
paths through the control flow graph of a procedure. The patron decides to con
sider all the procedures in OS and compare their cyclomatic complexity values. 
This analysis shows that dselim, initialize, dslvbb, and dslvrg have 
values 75, 169,64, and 49, respectively. 



www.manaraa.com

328 Finnigan et al. 

fie Ed. View 011 BooIaIwks Options ORclby WIndow 

Procedure-Level Metrics for OS Subsystem 

Cyclollllltic Complexity lor Proc:.du_ In the DS SUbsystem 

J 
~ -... ~ i: ___ I I --~--. 

Memes Values for Procedures in OS Subsystem 

File Procedure Fanout Da a Data Cyclollat1c: 
Plolol COmpleuty Complexity 

dsl1vl8t .pl new_item 7 9 1.12500 8 
dsllvlst.pl insert lt~m after 2 6 2.00000 2 
dslivlot .pl in!lert:llera_09C 5 6 1.00000 5 
ds.,l1m.pl dsellm 16 39 2.29412 75 
dsdbg.pl dicent 1 7 3.50000 I 
dS~.PI fofh I 7 3.50000 1 
dB,n .pl loffs I 7 3.50000 1 
dBln! .pl init Kcan 0 5 5.00000 2 
dunit .pl InitIal he 32 154 4.66661 169 
dslnit .pl alloc 3 9 2.25000 2 
dsl1vlst .pl delete_lfrag 4 4 O.BOOOO 6 
dSlivlst.pl d .. lete_i em 1 4 2.00000 I 

!31il ! 

Figure 14.14. Procedure-specific metrics for the DS subsystem. 

14.5.4 Finding Redundancies 

Using the code redundancy and source code views in the bookshelf environ
ment, the patron discovers and verifies that procedures dselirn and dslvbb 
are nearly copies of each other. Also, procedure ds 1 vrg and ds 1 vbb contain 
similar algorithmic patterns. Code segments are often cloned through textual 
cut-and-paste edits on the source code. Some of the clones may be worth re
placing by a common routine if future maintenance can be simplified. The 
amount of effort needed depends on the complexity measures of the cloned 
code. With a pertinent set of bookshelf views, the re-engineering group can 
weigh the benefits and costs of implementing the revised code. 



www.manaraa.com

14. The Software Bookshelf 329 

After completing the whole investigation, it is useful to store links to the dis
coveries in some form, such as Web browser bookmarks, guided tour books, 
footprints on visited pages, and analysis objects in the repository. Such historical 
information may help other developers with a similar investigation in the future. 

14.6 Related Work 

In this section, we discuss related work on integrated software environments, 
parsing and analysis tools, software repositories, and knowledge engineering. 

14.6.1 Integrated Software Environments 

Tool integration encompasses three major dimensions: data (Le., exchanging and 
sharing of information), control (Le., communication and coordination of tools), 
and presentation (Le., user interface metaphor) (Schefstrom and Van den Broek, 
1993). Data integration is usually based on a common schema that models soft
ware artifacts and analysis results to be shared among different tools. For exam
ple, in the PCTE system (ECMA, 1990), data integration is achieved with a 
physically distributed and replicated object base. Forming a suitable common 
schema requires a study of functional aspects related to specific tool capabilities 
and organizational aspects in the domain of discourse. Control integration in
volves the mechanics of allowing different tools to cooperate and provide a 
common service. In environments such as Field (Reiss, 1990) and SoftBench 
(Cagan, 1990), tools are coordinated by broadcast technology, while environ
ments based on the Common Object Request Broker Architecture (CORBA) 
standard (OMG, 1991) use point-to-point message passing. Furthermore, control 
integration involves issues related to process modeling and enactment support 
(Curtis et aI., 1992), computer-supported cooperative work (CACM, 1991), 
cooperative information systems (CACM, 1997), and distributed computing. 
Presentation integration involves look-and-feel and metaphor consistency issues. 

The software bookshelf tries to achieve data integration through a meta-data 
repository and Telos conceptual model, control integration through Web proto
cols and scripting, and presentation integration through the Web browser hy
pertext metaphor. Kaiser et ai. recently introduced an architecture for World 
Wide Web-based software engineering environments (Kaiser et aI., 1997). Their 
OzWeb system implements data integration through subweb repositories and 
control integration by means of groupspace services. In addition, there are sev
eral existing commercial products such as McCabe's Visual Reengineering 
Toolset BattleMap (McCabe, 1995), which offers a variety of reverse engineer
ing and analysis tools, visualization aids, and a meta-data repository. By and 
large, these environments are not based on the technologies selected for our 
bookshelf implementation. In particular, our work is distinguished through an 
open and extensible architecture, Web technology with multiheaded hypermedia 



www.manaraa.com

330 Finnigan et al. 

links, a powerful and extensible conceptual model, and the use of off-the-shelf 
software components. 

14.6.2 Parsing Tools 

Many parsing tools and reverse engineering environments have been developed 
to extract software artifacts from source files (Arnold, 1993). The Software Re
finery (Kotik and Markosian, 1989) parses the source and populates an object 
repository with an abstract syntax tree that conforms to a user-specified domain 
model. Once populated, the user can access, analyze, and transform the tree us
ing a full programming and query language. PCCTS is a compiler construction 
toolkit that can be used to develop a parser (Parr, 1996). The output of this 
parser is an abstract syntax tree represented by c++ objects. Analysis tools can 
be written using a set of C++ utility functions. GENOA provides a language
independent abstract syntax tree to ease artifact extraction and analysis 
(Devanbu, 1992). Lightweight parsers have emerged that can be tailored to ex
tract selected artifacts from software systems rather than the full abstract syntax 
tree (Murphy et aI., 1996; Murphy and Notkin, 1996). For the software book
shelf, our parsers convert the source to HTML for viewing or extract the arti
facts in a language-independent way by processing the intermediate language 
representation emitted by the compiler front-end processor. 

14.6.3 Analysis Tools 

To understand and manipulate the extracted artifacts, many tools have been de
veloped to analyze, search, navigate, and display the vast information space ef
fectively. Slicing tools subset the system to show only the statements that may 
affect a particular variable (Weiser, 1984). Constructive views (Wong, 1993), 
visual queries (Consens et aI., 1992), Landscapes (Penny, 1992), and end-user 
programmable tools (Tilley et aI., 1994) are effective visual approaches to cus
tomize exploration of the information space to individual needs. Several strate
gies have emerged to match software patterns. GRASPR recognizes program 
plans, such as a sorting algorithm, with a graph parsing approach that involves a 
library of stereotypical algorithms and data structures (cliches) (Wills and Rich, 
1990). Other plan recognition approaches include concept assignment (Bigger
staff et aI., 1994) and constraint-based recognition (Quilici, 1994). Tools have 
been developed for specific analyses, such as data dependencies (Selby and 
Basili, 1991), coupling and cohesion measurements (Choi and Scacchi, 1990), 
control flow properties (Arnold, 1993), and clone detection (Kontogiannis et aI., 
1996; Johnson, 1996; Baker, 1995). On the commercial front, several products 
have been introduced to analyze and visualize the architecture of large software 
systems (Olsem, 1997). 



www.manaraa.com

14. The Software Bookshelf 331 

14.6.4 Software Repositories 

Modeling every aspect of a software system from source code to application 
domain information is a hard and elusive problem. Software repositories have 
been developed for a variety of specialized uses, including software develop
ment environments, CASE tools, reuse libraries, and reverse engineering sys
tems. The information model, indexing approach, and retrieval strategies differ 
considerably among these uses. The knowledge-based LaSSIE system provides 
domain, architectural, and code views of a software system (Devanbu et ai., 
1991). Description logic rules (Devanbu and Jones, 1997) relate the different 
views and the knowledge base is accessed via classification rules, graphical 
browsing, and a natural language interface. The Software Information Base uses 
a conceptual knowledge base and a flexible user interface to support software 
development with reuse (Constantopoulos et ai., 1995). This knowledge base is 
organized using Telos (Mylopoulos, 1990) and contains information about re
quirements, design, and implementation. The knowledge base can be queried 
through a graphical interface to support the traversal of semantic links. The 
REGINA software library project builds an information system to support the 
reuse of commercial off-the-shelf software components (Nagl, 1996). Their pro
posed architecture also exploits Web technology. 

14.6.5 Knowledge Engineering 

Related areas in knowledge engineering include knowledge sharing (Patil et ai., 
1992), ontologies (Gruber, 1993), data repositories (Bernstein and Dayal, 1994), 
data warehouses (Hammer, 1995), and similarity-based queries (Jagadish et ai., 
1995; Jurisica and Glasgow, 1997)). Meta-data have received considerable at
tention (e.g., (Klas and Sheth, 1994)) as a way to integrate disparate information 
sources (Seligman and Rosenthal, 1996). Solving this problem is particularly 
important for building distributed multimedia systems for the World Wide Web 
(WWW5, 1996). Atlas is a distributed hyperlink database system that works 
with traditional servers (Pitkow and Jones, 1996). Other approaches to the same 
problem focus on a generic architecture (e.g., through mediators (Wiederhold, 
1995)). The software bookshelf uses multiheaded links and an underlying meta
data repository to offer a more flexible, distributed hypermedia system. 

In general, the representational frameworks used in knowledge engineering 
are richer in structure and in supported inferences than those in databases, but 
those in databases are less demanding on resources and also scale up more 
gracefully. The bookshelf repository falls between these extremes in representa
tional power and in resource demands. Also, the bookshelf repository is par
ticularly strong in the structuring mechanisms it supports (i.e., generalization, 
aggregation, classification, and contexts) and in the way these are integrated into 
a coherent representational framework. 



www.manaraa.com

332 Finnigan et al. 

14.7 Conclusions 

This chapter introduced the concept of a software bookshelf to recapture, re
document, and access relevant information about a legacy software system for 
re-engineering or migration purposes. The novelty of the concept is the tech
nologies that it combines, including an extensible, Web-based architecture, tool 
integration mechanisms, an expressive information model, a meta-data reposi
tory, and state-of-the-art analysis tools. The paper describes these components 
from the perspectives of three, increasingly project-specific roles involved in 
directly constructing, popUlating, and using a software bookshelf: the builder, 
the librarian, and the patron. Moreover, we outline a prototype implementation 
and discuss design decisions as well as early experiences. In addition, the paper 
reports on our experiences from a substantial case study with an existing legacy 
software system. 

The software bookshelf has several major advantages. 
First, its main user interface is based on an off-the-shelf Web browser, mak

ing it familiar, easy-to-use, and readily accessible from any desktop. This aspect 
provides an attractive and consistent presentation of all information relevant to a 
software system and facilitates end-user adoption. 

Second, the bookshelf is a one-stop, structured reference of project-specific 
software documentation. By incorporating application-specific domain knowl
edge based on the needs of the migration effort, the librarian adds value to the 
information generated by the automatic tools. 

Third, reverse engineering and software analysis tools can be easily con
nected to the bookshelf using standard Web protocols. Through these tools, the 
bookshelf provides a collection of diverse redocumentation techniques to extract 
information that is often lacking or inconsistent for legacy systems. 

Fourth, the bookshelf environment is based on object-oriented, meta-data re
pository technology and can scale up to accommodate large legacy systems. 

Finally, the overall bookshelf implementation is based on platform
independent Web standards that offer potential portability for the bookshelf. 
Using a client-server architecture, the bookshelf is centralized for straightfor
ward updates yet is highly available to remote patrons. 

We consider the software bookshelf useful because it can collect and present 
in a coherent form different kinds of relevant information about a legacy soft
ware system for re-engineering and migration purposes. We also demonstrated 
that it is a viable technique, because the creation of a large software bookshelf 
can be completed within a few months by librarians who have access to parsers, 
converters, and analysis tools. Moreover, the viability of the technique is 
strengthened in that the bookshelf environment requires little additional software 
and expertise for its use, thanks to adopting ubiquitous Web technology. 

Despite some encouraging results, there are additional research tasks to be 
completed to finish evaluating the bookshelf technique. 



www.manaraa.com

14. The Software Bookshelf 333 

First, we are currently validating the generality of the technique by applying 
it to a second legacy software system. Such a study will also provide a better 
estimate of the effort required in developing new bookshelves and provide use
ful insight to bookshelf builders. 

Second, we wish to study techniques that would allow bookshelf patrons to 
extend and update bookshelf contents, as well as adding annotations at public, 
private, and group levels. This study would ensure that the technology does in
deed support the evolution of a bookshelf by its owners and end users. 

Third, we are working on mechanisms for maintaining consistency of the 
bookshelf contents and for managing the propagation of changes from one point, 
for example, a source code file, to all other points that relate to it. 

Fourth, the bookshelf user interface is sufficiently complex to justify a user 
experiment to evaluate its usability and effectiveness. 

Finally, we are currently studying extensions to the functionality of the 
bookshelf environment so that it supports not only redocumentation and access, 
but also specific software migration tasks. 

14.8 Acknowledgments 

The research reported in this paper was carried out within the context of a proj
ect jointly funded by IBM Canada and the Canadian Consortium for Software 
Engineering Research (CSER), an industry-directed program of collaborative 
university research and education, involving leading Canadian technology com
panies, universities, and government agencies. 

This project would not have been possible without the tireless efforts of sev
eral postdoctoral Fellows, graduate students, and research associates. Many 
thanks go to: Gary Farmaner, Igor Jurisica, lannis Tourlakis, and Vassilios 
Tzerpos (University of Toronto); Johannes Martin, James McDaniel, Margaret
Anne Storey, and James Uhl (University of Victoria); and Morven Gentleman 
and Howard Johnson (National Research Council). 

We also wish to thank all the members of the development group that we 
worked with inside the IBM Toronto Laboratory for sharing their technical 
knowledge and insights on a remarkable software system. 

Finally, we gratefully acknowledge the tremendous contributions of energy, 
diplomacy, and patience by Dr. Jacob Slonim in bringing together the CSER 
partnersqip and in launching this project. 

Copyright 1996 International Business Machines Corporation. Reprinted with the per
mission o/the IBM Systems Journal, Vol. 36, No.4. 



www.manaraa.com

334 Finnigan et aJ. 

14.9 References 

Arango, G., Baxter, I., and Freeman, P. (1985). Maintenance and Porting of 
Software by Design Recovery. In CSM-85, Proceedings of the Conference 
on Software Maintenance, Austin, TX, IEEE Computer Society Press, No
vember 1985, pages 42-49. 

Arnold, R. (1993). Software Reengineering. IEEE Computer Society Press, NY. 

Baker, S. (1995). On Finding Duplication and Near-Duplication in Large Soft
ware Systems. In Proceedings of the Working Conference on Reverse Engi
neering (WCRE), Toronto, Ontario, IEEE Computer Society Press, July 
1995, pages 86-95. 

Bernstein, P. and Dayal, U. (1994). An Overview of Repository Technology. 
International Conference on Very Large Databases, Santiago, Chile, Sep
tember 1994. 

Biggerstaff, T., Mitbander, B., and D. Webster. (1994). Program Understanding 
and the Concept Assignment Problem. Communications of the ACM, 37(5), 
May 1994, pages 72-83. 

Brown, A. and Penedo, M. (1992). An Annotated Bibliography on Software 
Engineering Environment Integration. ACM Software Engineering Notes, 
17(3), July 1992, pages 47-55. 

Buss, E. (1994). Investigating Reverse Engineering Technologies for the CAS 
Program Understanding Project. IBM Systems Journal, 33(3), August 1994, 
pages 477-500. 

CACM (1991). Collaborative Computing. Communications of the ACM, Special 
Issue, December 1991. 

CACM (1997). Mylopoulos, J. and Papazoglou, M. (Editors). Special Issue on 
Cooperative Information Systems. IEEE Expert. 

Cagan, M. R. (1990). The HP SoftBench Environment: An Architecture for a 
New Generation of Software Tools. Hewlett-Packard Journal, 41(3), June 
1990, pages 36-47. 

Chase, M. (1996). Analysis and Presentation of Recovered Software Architec
tures. In Proceedings of Working Conference on Reverse Engineering 
(WCRE), Monterey, CA, IEEE Computer Society Press, November 1996, 
pages 153-162. 

Choi, S. C. and Scacchi, W. (1990). Extracting and Restructuring the Design of 
Large Systems. IEEE Software, 7(1), January 1990, pages 66-71. 

Consens, M., Mendelzon, A., and Ryman, A. (1992). Visualizing and Querying 
Software Structures. In Proceedings of the 14th International Conference 
on Software Engineering (leSE), Melbourne, Australia; IEEE Computer 
Society Press, May 1992, pages 138-156. 



www.manaraa.com

14. The Software Bookshelf 335 

Constantopoulos, P. et al. (1995). The Software Information Base: A Server for 
Reuse. Very Large Data Bases Journal, 4, pages 1-43. 

Curtis, B., Kellner, M., and Over, J. (1979). Measuring the Psychological Com
plexity of Software Maintenance Tasks with the Halstead and McCabe Met
rics. IEEE Transactions on Software Engineering, SE-5, March 1979, pages 
96-104. 

Curtis, B., Kellner, M., and Over, J. (1992). Process Modeling. Communications 
of the ACM, 35(9), September 1992, pages 75-90. 

Devanbu, P. (1992). GENOA-A Customizable Language- and Front-End In
dependent Code Analyzer. In Proceedings of the 14th International Confer
ence on Software Engineering (lCSE) , Melbourne, Australia, IEEE 
Computer Society Press, May 1992, pages 307-317. 

Devanbu, P. and Jones, M. (1997). The Use of Description Logics in KBSE 
Systems. ACM Transactions on Software Engineering and Methodology, 
6(2), April 1997. 

Devanbu, P. (1991). Lassie: A Knowledge-based Software Information System. 
Communications of the ACM 34(5), May 1991, pages 34-49. 

ECMA (1990). ECMA: Portable Common Tool Environment, Technical Report 
ECMA-149, Geneva, Switzerland. 

Gamma, E., Richard, H., Johnson, R. and Vlissidos, J. (1995). Design Patterns: 
Elements of Reusable Object-Oriented Software, Addison-Wesley Publish
ing Co., Reading, MA. 

Gosling, 1., Joy, B. and Steele, G. (1996). The Java Language Specification, 
Addison-Wesley Publishing Co., Reading, MA. 

Gruber, T. (1993). A Translation Approach to Portable Ontology Specifications. 
Knowledge Acquisition 5, No.2, March 1993, pages 199-220. 

Halstead, M. and Maurice, H. (1977). Elements of Software Science, Elsevier 
North-Holland Publishing Co., New York. 

Hammer, J. (1995). The Stanford Data Warehousing Project. IEEE Data Engi
neering Bulletin, June 1995. 

Jagadish, H., Mendelzon, A., and Milo, T. (1995). Similarity-based Queries. In 
Proceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Sympo
sium on Principles of Database Systems (PODS), San Jose, CA, May 1995, 
pages 36-45. 

Johnson, H. (1996). Navigating the Textual Redundancy Web in Legacy Source. 
In Proceedings of CASCON '96, Toronto, Ontario, November 1996, pages 
7-16. 

Jurisica, I. and Glasgow, J. (1997). Improving Performance of Case-based Clas
sification Using Context-based Relevance. International Journal of Artifi-



www.manaraa.com

336 Finnigan et al. 

cialIntelligence Tools, special issue of IEEE ITCAI-96 Best Papers 6, No. 
3&4. 

Kafura, D. and Reddy, G. (1987). The Use of Software Complexity Metrics in 
Software Maintenance. IEEE Transactions on Software Engineering, SE-
13(3), March 1987, pages 335-343. 

Kaiser, G. et al. (1997). An Architecture for WWW-based Hypercode Environ
ments. In Proceedings of the 19th International Conference on Software 
Engineering (lCSE) , Boston, MA, IEEE Computer Society Press, May 
1997, pages 3-13. 

Klas, W. and Sheth, A. (Editors). (1994). Special Issue: Metadata for Digital 
Media. ACM SIGMOD Record, 23(4), December 1994. 

Kontogiannis, K. et al. (1996). Pattern Matching for Clone and Concept Detec
tion. Journal of Automated Software Engineering, 3, pages 77-108. 

Kotik, G. and Markosian, L. (1989). Automating Software Analysis and Testing 
Using a Program Transformation System. Reasoning Systems Inc., 3260 
Hillview A venue, Palo Alto, CA 94304. 

Kozaczynski, V. et al. (1995). Architecture Specification Support for Compo
nent Integration. In Proceedings of the Seventh International Workshop on 
Computer-Aided Software Engineering (CASE), Toronto, Canada, IEEE 
Computer Society Press, July 1995, pages 30-39. 

Lee, H. and Harandi, M. (1993). An Analogy-based Retrieval Mechanism for 
Software Design Reuse. In Proceedings of the 8th Knowledge-Based Soft
ware Engineering Conference, Chicago, IL, IEEE Computer Society Press, 
pages 152-159. 

Mancoridis, S. (1996). The Star System, Ph.D. thesis, Department of Computer 
Science, University of Toronto, 10 King's College Road, Toronto, Ontario, 
Canada M5S 3G4. 

Mancoridis, S. and Holt, R. (1995). Extending Programming Environments to 
Support Architectural Design. In Proceedings of the Seventh International 
Workshop on Computer-Aided Software Engineering (CASE), Toronto, 
Ontario, IEEE Computer Society Press, July 1995, pages 110-119. 

McCabe (1995). Visual Reengineering Toolset, 5501 Twin Knolls Road, Suite 
111, Columbia, MD 21045. More information can be found at the Internet 
World Wide Web site http://www.mccabe.comlvisual/reeng.html. 

McCabe, T. (1976). A Complexity Measure. IEEE Transactions on Software 
Engineering SE-2, pages 308-320. 

MUller, H. and Klashinsky, K. (1988). Rigi-A System for Programming-in-the
Large. In Proceedings of the 10th International Conference on Software 
Engineering (lCSE), Raffles City, Singapore, IEEE Computer Society 
Press, April 1988, pages 80-86. 



www.manaraa.com

14. The Software Bookshelf 337 

MUller, H. et al. (1993). A Reverse Engineering Approach to Subsystem Struc
ture Identification. Journal of Software Maintenance: Research and Prac
tice, 5(4), December 1993, pages 181-204 

Murphy G. and Notkin, D. (1996). Lightweight Lexical Source Model Extrac
tion. ACM Transactions on Software Engineering and Methodology, April 
1996, pages 262-292. 

Murphy, G., Notkin, D., and Lan, S. (1996). An Empirical Study of Static Call 
Graph Extractors. In Proceedings of the 18th International Conference on 
Software Engineering, Berlin, Germany, IEEE Computer Society Press, 
March 1996, pages 90-100. 

Mylopoulos, J. et al. (1990). Telos: Representing Knowledge About Information 
Systems. ACM Transactions on Information Systems, 8(4), October 1990, 
pages 325-362. 

Nagl, M. (Editor). (1996). Building Tightly Integrated Software Development 
Environments: The IPSEN Approach, Lecture Notes in Computer Science 
1170, Springer-Verlag, Inc., New York. 

Ning, J. (1989). A Knowledge-based Approach to Automatic Program Analysis, 
Ph.D. thesis, Department of Computer Science, University of Illinois at Ur
bana-Champaign. 

Olsem, M. (1997). Software Reengineering Assessment Handbook, United States 
Air Force Software Technology Support Center, OO-ALCrrISEC, 7278 4th 
Street, Hill Air Force Base, Utah 84056-5205. 

OMG (1991). Object Management Group, Inc. The Common Object Request 
Broker: Architecture and Specification, Framingham Corporate Center, 492 
Old Connecticut Path, Framingham, MA 01701, December 1991. 

Ousterhout, J. (1994). Tel and the Tk Toolkit, Addison-Wesley Publishing Co., 
Reading, MA. 

Parr, T. 1. (1996). Language Translation Using PCCTS and C++: A Reference 
Guide, Automata Publishing Company, 1072 South De Anza Blvd., Suite 
A107, San Jose, CA 95129. 

Patil, R. et al. (1992). The DARPA Knowledge Sharing Effort: Progress Report. 
In Proceedings of the Third International Conference on Principles of 
Knowledge Representation and Reasoning, Boston. 

Penny, P. (1992). The Software Landscape: A Visual Formalism for Program
ming-in-the-Large, Ph.D. thesis, Department of Computer Science, Univer
sity of Toronto. 

Pitkow, J. and Jones, K. (1996). Supporting the Web: A Distributed Hyperlink 
Database System. Fifth International World Wide Web Conference 
(WWW96), Paris, May 1996. 

Quilici, A. (1994). A Memory-based Approach to Recognizing Programming 
Plans. Communications of the ACM, 37(5), May 1994, pages 84-93. 



www.manaraa.com

338 Finnigan et al. 

Reiss, S. (1990). Connecting Tools Using Message Passing in the Field Envi
ronment. IEEE Software, 7(3), July 1990, pages 57-66. 

Schefstrom, D. and Van den Broek, G. (1993). Tool Integration: Environments 
and Frameworks, John Wiley & Sons, Inc., New York. 

Selby, R. and Basili, V. (1991). Analyzing Error-Prone System Structure. IEEE 
Transactions on Software Engineering, SE-17(2), February 1991, pages 
141-152. 

Seligman, L. and Rosenthal, A. (1996). A Metadata Resource to Promote Data 
Integration. In IEEE Metadata Conference, Silver Spring, MD, IEEE Com
puter Society Press, April 1996. 

Sowa, J. F. and Zachman, J. A. (1992). Extending and Formalizing the Frame
work for Information Systems Architecture. IBM Systems Journal, 31 (3), 
590-616. 

Stallman, R. (1981). Emacs: The Extensible, Customizable, Self-Documenting 
Display Editor. In Proceedings of the Symposium on Text Manipulation, 
Portland, OR, June 1981, pages 147-156. 

Storey, M.-A. et al. (1996). On Designing an Experiment to Evaluate a Reverse 
Engineering Tool. In Proceedings of the Working Conference on Reverse 
Engineering (WCRE), Monterey, CA, IEEE Computer Society Press, No
vember 1996, pages 31-40. 

Tilley, S. et al. (1994). Programmable Reverse Engineering. International Jour
nal of Software Engineering and Knowledge Engineering, 4(4), December 
1994, pages 501-520. 

Valetto, G. and Kaiser, G. (1995). Enveloping Sophisticated Tools into Com
puter-Aided Software Engineering Environments. In Proceedings of the 
Seventh International Workshop on Computer-Aided Software Engineering 
(CASE), Toronto, Ontario, IEEE Computer Society Press, July 1995, pages 
40-48. 

Van der Linden, F. and Muller, J. (1995). Creating Architectures with Building 
Blocks. IEEE Software, 12 (6), November 1995, pages 51-60. 

Wall, L., Christiansen, T., and Schwartz, R. (1996). Programming Perl, 
O'Reilly and Associates Inc., 101 Morris Street, Sebastopol, CA 95472. 

Weiser, M. (1984). Program Slicing. IEEE Transactions on Software Engineer
ing, SE-IO(4), July 1984, pages 352-357. 

Wiederhold, G. (1995). The Conceptual Technology for Mediation. Interna
tional Conference on Cooperative Information Systems, Vienna, May 1995. 

Wills, 1. and Rich, C. (1990). Recognizing a Program's Design: A Graph
Parsing Approach. IEEE Software, 7(1), January 1990, pages 82-89. 

Wong, K. (1993). Managing Views in a Program Understanding Tool. In Pro
ceedings of CAS CON '93, Toronto, Ontario, October 1993, pages 244-249. 



www.manaraa.com

14. The Software Bookshelf 339 

WWW5 (1996). Fifth International World Wide Web Conference, Paris, May 
1996. 

Zachman, J. A. (1987). A Framework for Information Systems Architecture. 
IBM Systems Journal, 26(3), pages 276-292. 



www.manaraa.com

15 
Dynamic Documents Over the Web 

Paulo Alencar 
Don Cowan 
Daniel German 
Luis Nova 
Bob Fraser 
Jamie Roberts 
Gary Pianosi 

15.1 Introduction 

In general, software engineering practice includes document production as one 
of the activities that software developers need to perform during the software 
development process. According to Pressman (1992), most software develop
ment organizations spend a substantial amount of time developing documents, 
and in many cases the documentation process itself is quite inefficient. Pressman 
also mentions that it is not unusual for a typical software engineering organiza
tion to spend as much as 20 or 30 percent of all its software development effort 
on producing documentation. Thus, automated support for document presenta
tion and production provides an opportunity for the developers to save time and 
effort and, consequently, to improve productivity. 

However, the organization of most current online documentation systems is 
similar to that found in hardcopy manuals. The structure is rigid and navigation 
techniques are limited. The document topics are organized in a sequence of 
chapters that are subdivided into a number of sections and subsections. These 
sections are further connected through hyperlinks. Additional browsing tech
niques available in these systems include an index of topics or a query system 
that supports searching for a given string across the collection of documents. 

Today, with the diversity of publishing formats and user profiles, we must 
devise a system that allows us to "author once, publish many." Information that 
was once delivered in a rigid software-specific format may have to be converted 
a few months later. Thus, having a system that allows an easy transition to a 



www.manaraa.com

342 Alencar et al. 

different presentation, structural, or publishing format is crucial for software 
documentation (Stieren, 1997). 

15.1.1 Using the Internet and the Web 

The accessibility of the World Wide Web (WWW) and the InternetJIntranet has 
produced a paradigm shift in the way product information can be stored, distrib
uted and presented. Product information, formerly delivered in hardcopy and 
softcopy books, is now being delivered as hypertext webs or documents tagged 
with HTML and accessible through a Web browser. This new paradigm has 
generated numerous tools to author and maintain documents with embedded 
tags. 

The Internet as a world wide interconnected collection of networks allows 
individuals or groups in almost any type of organization to interchange data. 
Access to data can be provided to anyone on the Internet independent of the 
location of the user and the data. Because of the Internet's exponential growth a 
large percentage of individuals who would like to exchange documents have 
that capability (Tanenbaum, 1996). 

The WWW is one such set of data. The Web consists of a vast collection of 
documents, and uses the Internet infrastructure to provide access to documents 
stored in different machines all over the world. These documents are called 
pages. Pages may have links that refer to other pages located at different loca
tions. Users can activate a link and jump to the referred page. The strings of text 
that are links to other pages are called hyperlinks. As individual pages may 
contain not only text but also hyperlinks, they are referred to as hypertext or 
hypertext pages. When the hypertext pages are mixed with other media, such as 
audio or video, the result is called hypermedia. Web pages are built from text 
strings delineated or marked with tags from languages called markup languages, 
such as HTML (Hypertext Markup Language). These text strings refer to text, 
graphics, hypermedia content, and links to other Web pages. Web pages are 
viewed with a program called a browser. 

Putting large information libraries into hypertext webs presents many new 
challenges for document designers and writers. The information itself must be 
designed for easy and usable online access, a process that involves organizing 
information into independent, distinct topics. The result is often a web of infor
mation containing thousands of files. 

At IBM, we have experience creating webs of product information for sev
eral VisualAge products that exceed 10,000 files. The size of these webs creates 
enormous building and maintenance problems for the writers, and correspond
ing search and navigation issues for the users. To solve these problems, we 
looked for new approaches for creating, maintaining, and delivering large in
formation webs. 



www.manaraa.com

15. Dynamic Documents Over the Web 343 

15.1.2 Our Approach to Dynamic Documentation 

In this chapter we address the problem of how to make it easier to build, evolve, 
and use technical software documentation that is delivered via the Web. 

In essence, our approach is to provide support to separate the different con
cerns of Web-based documents into four orthogonal components: content, 
structure, navigation, and presentation. The proposed support is basically pro
vided by storing the information in databases and providing methods and tools 
to handle multiple document views and related navigation issues. 

The objective of this research project is to investigate and propose models 
that address the documentation needs of IBM within this new Web and Internet
based world. The proposed documentation model is being prototyped using 
LivePage Enterprise software (Janna Systems Inc., 1999). This software stores 
documents tagged with SGML-compliant languages in SQL databases. The 
LivePage software also has a number of integrated tools including a server 
mechanism that supports SQL statements embedded in documents and dynamic 
presentation of documents on the Web. 

In this way, we would enable users of IBM products to navigate and search 
easily through large databases of product information, which will be dynamic 
and customizable and may be distributed across an Intranet or the Internet. In 
addition, we would simplify the construction and maintenance of these data
bases so that the creators of product information may concentrate on content and 
usability instead of issues related to managing large files. The University of 
Waterloo, Janna Systems, and the IBM Canada Laboratory are performing this 
research, which aims at implementing the approach described in this section. 

In the next section we describe the challenges faced when building, main
taining, delivering, and using large documents distributed over the WWW. 
Among other issues, we examine the impact of tagging or markup languages 
and the underlying storage models. In Section 15.3, we briefly outline the un
derlying document model that constitutes the basis for the work presented in this 
chapter. In Section 15.4, we describe how our approach has been implemented; 
and the results of applying this approach to some technical documents. We close 
the chapter with discussions of future and related work. 

15.2 Building, Maintaining and Using Hyperlinked 
Documents 

Documents created for delivery using the WWW normally use a number of hy
perlinked files tagged with HTML. As these documents grow they become ex
tremely difficult to manage and maintain because of the number of files and 
links. For example, producing, maintaining and using paper documents for 
complex software systems such as IBM's DB2 involves about 20 large manuals. 
These documents have to be made available for different operating environ-



www.manaraa.com

344 Alencar et al. 

ments and in several national languages. Moreover, it has been argued that 
maintaining a large Web site for such documentation is similar to and as com
plex a task as maintaining a large software system (Brereton et aI., 1998). 

Because of the inherent complexity of the document the maintainer can not 
easily or correctly modify or add features. For example, it is difficult to add as a 
new feature a "role" tag that is not visible but that defines a set of users that can 
access the document. Thus, it is not unusual for document features not to be 
implemented in a timely manner or not to work. Further, the user will find it 
almost impossible to augment the documentation, a practice, which is becoming 
more common as software systems are constructed from components. For ex
ample, suppose that a software company needs to include a document compo
nent in its existing software documentation about how the software works with a 
new operating system. Adding this component may not be possible because of 
the existence of inconsistent document parts. 

A typical hyperlinked HTML document is constructed from individual text 
files formed through hyperlinks into a large web or network of pages. There is 
usually some implied hierarchical structure resembling a table of contents. This 
structure is usually implemented as a set of hyperlinks or table of contents 
(TOe) radiating from the main or home page. In addition, the hyperlinks are 
used to connect related concepts together into a knowledge structure. There are 
a number of issues to be addressed in adding material or modifying material in 
such a document. Tasks such as relating content to a file name, adding or mov
ing a page within the structure all become quite complex. 

Modifying existing Web pages is quite difficult. How do we find the correct 
context in a large Web space consisting of files with simple names? It is very 
difficult to map the contents of substantial text files into names. Adding new 
pages is also a problem. The page or file name must be added to the existing 
table of contents; this operation may cause a series of update operations. Delet
ing a page is similarly complex, not only must the page be removed from the 
appropriate tables of contents, but all hyperlinks that use this page as a destina
tion from the TOe or as part of the knowledge structure must be found and 
modified. The problems described here only relate to a single view of a docu
ment; the problems increase dramatically when multiple TOes must be main
tained because dynamic and conditional views of a document are required. 

Because current Web-based documentation systems rely on files as the stor
age model, there is little underlying additional structure or language to support 
features such as access control and a history or audit trail. 

Maintenance of a documentation system is an expensive operation that is la
bor-intensive and requires a large investment in highly paid personnel. Many 
Web sites become stale or out of date because of this requirement for invest
ment. 

Searching a Web document is also a complex operation. An index of all the 
important words and terms in the set of Web pages must be compiled, so that a 
local search can be performed. 



www.manaraa.com

15. Dynamic Documents Over the Web 345 

So far we have discussed only a single author, maintainer or user. How can a 
document be shared so that the integrity of the document is maintained? In other 
words how do we prevent multiple authors/maintainers from modifying a 
document at the same time? How do we ensure that all changes are backed up, 
so we can recover from disasters or errors? 

The tagging language HTML is also a problem; it is not easily extensible. 
The developer of the Web browser fixes these languages and merges both the 
structural and presentation aspects of the language into a single tag thereby re
moving flexibility. Besides not allowing distinct tags to handle structure and 
presentation, it is not possible to add new tags to deal with additional features 
such as rating a Web site or limiting the users that can access a specific page 
depending on their roles. 

Most of the issues illustrated in this section are related to separation of con
cerns and extensibility. These are issues usually addressed in software engi
neering, but only beginning to be examined in the context of document systems 
(Halasz and Schwartz, 1994; Isakowitz et aI., 1995; Garzotto et aI., 1993; 
Schwabe and Rossi, 1995; German et aI., 1999). Most tools to support authoring 
and maintenance of HTML documents focus on the file as the main entity. The 
authors of these tools pay almost no attention to the fact that these types of 
documents are just a visual representation of more abstract entities that are inter
related, and the modification of one entity might require changes in another. 

Because files are just simple lists with no underlying structure and associated 
programming language, they are not easily extended to include new structures. 
The markup language for describing the document is similarly limited and not 
extensible, and describes a mixture of structure, navigation and appearance. The 
following list categorizes some of the common problems of HTML documents 
that arise from these considerations: 
• Consistency. Since every page is independent, information common to sev

eral pages has to be repeated, presenting a potential consistency problem.! 
• Organization or structure. The organization of an HTML document is 

bound when the files are created. Restructuring is expensive and requires 
splitting, collating, renaming or deleting files, and also updating links 
among files. 

• Navigation. Since the navigational structure is embedded in the files, it is 
difficult to find and modify navigational links. 

• Presentation. Information is not isolated from its presentation.2 If the pres
entation of pages needs to change, that information has to be changed on a 
file-by-file basis. 

! Some HTIP servers support "server-side includes", which are directives to the server 
that are replaced by the contents of a given file or the result of an executable program. 
This technique only partially addresses the problem of consistency at a high performance 
price, since the directive is executed every time the node is requested. 

2 Cascading Style Sheets are trying to solve this problem partially at the file level. 



www.manaraa.com

346 Alencar et al. 

• Referential Integrity. When the name, hyperlink or Uniform Resource Lo
cator (URL) (Berners-Lee et al. 1994) of a resource changes, all the links 
pointing to that resource have to be updated. This problem exists at both the 
global level, where the author does not have control over the documents 
pointing to the local information from an external site, and at the local 
level. 

• Extensibility. Files do not have the associated tools and structures that make 
them easy to extend their capabilities. Similarly the tagging languages are 
limited in scope. 

The apparent simplicity of the tagging systems and the file structures being 
used for document systems has a substantial cost. The author of a document 
mixes together different design concerns indiscriminately, and then stores the 
result in multiple files. Because of this integration, it is difficult to change a 
document's presentation, structure, and content without a complete and complex 
rewrite. In addition, because there is no clear distinction among these disparate 
concepts, a document designer often considers the navigational and organiza
tional structure first, followed by presentation, and finally, if there is any time 
left, the content. Ideally, this process should be reversed: write the content, de
fine the presentation, and then impose a navigational structure. 

Many of the issues described can be resolved with database systems and 
more powerful tagging languages. In the next two subsections we briefly de
scribe extensible tagging languages, and then describe in general terms how 
databases can be used to address many of the issues associated with creation, 
maintenance, and use of text-based documentation systems. 

15.2.1 Tagging Languages 

As mentioned earlier, a markup language (also known as a tagging language) is 
the language used for writing Web pages. Essentially, a markup language de
scribes how to format documents. The term "markup" applies when copy editors 
used to tell typographers which fonts to use. Therefore, markup languages con
tain explicit commands for formatting. These languages use tags to indicate the 
start and the end of a formatting mode. For example, in HTML, <B> means start 
boldface mode, and <IB> means leave boldface mode. Other well known exam
ples of markup languages are TeX and Troff. 

Tagging languages can be divided into general-purpose and domain
dependent schemes. In the former, the tags have a generic meaning; an HI tag in 
HTML represents the biggest type of title tag available. However, this type of 
tag does not specify whether the tag is the title of a book, the title of a poem, or 
the name of a country. The only information specified is that the text enclosed 
by the tag is sufficiently important to render it with a large font and in bold. 
Domain-dependent schemes are created to reflect the structure of the document: 
a book is divided into chapters and the chapters into sections. Each one can have 



www.manaraa.com

IS. Dynamic Documents Over the Web 347 

a title. Paragraphs, quotations, citations, foreign words-each can be separately 
marked with a specific tag type. 

Generic languages such as HTML have been extensively used because they 
are easier to implement since the browser knows the language being rendered 
for presentation. SGML (Goldfarb, 1990) and its newer derivative XML (W3 
Consortium, 1997) are meta-languages in that they are used to define domain
specific tagging languages. These meta-languages with an accompanying 
grammar or document type definition (DID) (Goldfarb, 1990) define the lan
guage. In other words they define the tag types and their use. The accompanying 
style languages such as XSL (Microsoft Corporation, 1998; W3 Consortium, 
1998) and DSSSL (Adler, 1994) provide the flexibility to expand the syntax and 
semantics of documentation systems and support the separation of the presenta
tion of the document from the other design concerns. 

Including more information about the structure of a document benefits both 
the authoring and browsing processes. The author does not have to make style 
decisions such as the size of the header for a particular part of the text or 
whether quotations should be displayed with underscores or italics. Instead, the 
author can concentrate on the content and the proper use of tags. In a subsequent 
step, the document can be translated into a generic tag language-such as 
HTML-or it can be viewed by using a more sophisticated browser that takes as 
input the DID, a style-sheet that specifies how to render each tag in the lan
guage and the document. The way the document is displayed can then be easily 
changed, either by the designer or by the reader. Furthermore, searching can be 
more precise, since the search engine can take advantage of the structure of the 
document. 

15.2.2 Databases/or Storage o/Text 

A database is a data repository that provides access to a large number of data 
elements, which in our case are related to documents. In the case of a relational 
database, the repository stores a structured collection of tabular data. The data is 
accessed through query language statements. The use of a query language hides 
the complexity of the sophisticated processing required to implement queries. 

Relational and object-oriented databases can be used to store the objects 
found in documentation. The stored elements are segments of text and objects to 
which they refer (e.g., pictures, graphics, audio or video clips and programs). 
What are the advantages of using a database over the use of multiple files? 

A database can be viewed as a single file containing various structures or 
meta-data relating all the objects or tables. Extra structures can be imposed upon 
the database to capture relationships that are not inherent in the document. Al
though such structures can also be added to files, the languages and tools to 
support these structures must also be constructed, whereas languages such as 
SQL, and supporting tools are an inherent part of a database system. We men
tion some specific examples of useful structures in the following paragraphs. 



www.manaraa.com

348 Alencar et al. 

We have noticed that almost all hyperlinks in a document fall into four cate
gories; structural or organizational, circular, star, and index. Structural links are 
used to organize a document into a hierarchy resembling a book. Circular, star 
and index links form knowledge structures. Circular and star links connect 
similar concepts together. Circular links form a chain, while star links point to a 
common destination or concept. Index links are the reverse of star links, in that 
they are usually presented as part of an index table and connect the concept in 
the table to all its references. Since hyperlink structures can be categorized, the 
relationship among hyperlinks can be captured in database structures. This 
structure can then be scanned to detect missing destinations, or reflect deleted or 
additional hyperlinks. Multiple organizational structures can also be maintained 
supporting different views of a document. 

A history could be included in the database that included comments about 
modifications to the data or the date of the most recent changes. Such a structure 
would allow an author or user to find and track the most recent changes to a 
document. The aforementioned structures can be used to separate organization 
and navigation from content, thereby addressing issues related to separation of 
concerns. Such structures also make it easy to support referential integrity and 
consistency. In effect the ability to add structures with supporting languages 
such as SQL or embed those languages in other programming languages makes 
a highly extensible open environment. 

Databases support common functions such as security, backup and replica
tion. The security model in most databases has been well tested over time. Secu
rity can be used to lock database structures in order to implement check-in and 
check-out facilities. Such techniques are essential in managing author interac
tion in a multi-author document. Backup structures are also inherent in most 
database systems and are essential in implementing disaster control. Replication 
facilities support distribution of information across computing platforms. 

Storing and manipulating text containing a markup language such as SGML 
or XML is only valuable if the text can be delivered in manageable chunks 
similar to those provided by a traditional Web-based system. In the next section 
we describe the LivePage system and illustrate how it uses database technology 
to store and deliver Web pages. 

15.3 The Underlying Hypermedia Model 

Currently, there are several methodologies for hypermedia document develop
ment such as Schwabe and Rossi's Object-Oriented Hypermedia Design Model, 
OOHDM (Schwabe and Rossi, 1995); Isakowitz et al.'s Relational Management 
Methodology, RMM (Isakowitz et aI., 1995); Lange's Object Oriented Design 
Method, EORM (Lange, 1995); Garzotto et al.'s Hypermedia Design Model, 
HDM (Garzotto et aI., 1993). These methodologies are, primarily, guidelines to 
be followed during the design process. They also specify the characteristics of 



www.manaraa.com

15. Dynamic Documents Over the Web 349 

the deliverables that are created at each of their stages. These products are usu
ally informally specified in the sense that they do not have a formal syntax or 
formally defined semantics. 

In particular, OOHDM defines a four-step building process, where each step 
focuses on a specific design concern of a large hypermedia application. Based 
on this methodology, German et al. (1999) defined a formal system that 
separates the different tasks faced during the application design process. In this 
respect, a hypermedia document is defined according to four different concerns: 
content, structure, navigation, and presentation. These concerns can be viewed 
as four orthogonal axes in a design space. 

Such a design model requires an implementation tool that closely follows 
these concerns. LivePage Enterprise software was chosen as the implementation 
platform because of its ability to represent the four different hypermedia con
cerns separately. While content, structure, and navigation are represented in 
different relational tables, presentation is defined by means of style files, which 
are dynamically attached to the document being delivered. 

15.4 Implementing the Document System 

In a previous section, we have proposed that database systems are an appropri
ate storage model for tagged text, and support the separation of the different 
concerns of hypermedia design. 

15.4.1 A Base 1mplementation 

We have developed a base implementation (Janna Systems Inc., 1999; Zobel et 
aI., 1991) of our model that satisfies most of the specified requirements, and 
uses a relational database system. Figure 15.1 illustrates a simplified view of 
this implementation; details are presented in the next subsections. 

The System Implementation 

In this implementation we initially embed text, hyperlinks, and references to 
objects into a single document. We distinguish or "separate" them by tagging 
conventions using an SGML-compliant tagging language. Thus, if we move to a 
different entity storage model, we will be able to separate the three types of in
formation easily. 

Once the document is complete, we verify it against a grammar or document 
type definition (DTD) before loading the document into a single relational 
(SQL) database. 



www.manaraa.com

350 Alencar et al. 

Database 
Builder 

Database 
Browserl 
U pdater 

Hyperlink 
Table 

Sty Ie 

Object 
Table 

Index 
Table 

Figure 15.1. The base implementation. 

Each fundamental tagged structure3 or document component is loaded into a 
single field in a relational database table and given a unique identifier. There are 
three separate tables for text, objects and hyperlinks. In addition, every word in 
the document is also placed in an index to facilitate searching when the database 
is browsed. Optionally, every structure tag can be placed in the same index to 
facilitate searching for words within specific tagged structures. An author can 
also create specialized indices by defining the words and phrases that form its 
content. The various objects such as graphics, video and sound, and links to 
external programs are stored directly in the object table as "blobs" with the ap
propriate attributes. The tables for the tagged text, hyperlinks, objects and index 
are identified and collectively labeled as a multimedia database. 

The Toolkit 

The basic LivePage toolkit is provided to support creation (the database 
builder), maintenance (the updater), and browse and query (the browser) of the 
database. Builder functions, namely the verification against a DTD and creation 
of the database tables are described earlier. We consider documents as trees 
(Mackie and Zobel, 1992), and the updater allows a substructure (subtree) to be 
moved, deleted, modified or replaced within the document. While this sub
structure is being changed, the corresponding section of the database can be 
locked in order to maintain database integrity . Since we use SQL database tech
nology, the database can be created, updated, and browsed using SQL state-

3 Apart from certain exceptions, a fundamental tagged structure will contain no tagged 
substructures. 



www.manaraa.com

15. Dynamic Documents Over the Web 351 

ments. However, the LivePage tools provide an interface that makes the appli
cation of the SQL statements transparent. 

The database builder and updater are primarily tools for the database ad
ministrator or author, while the browser is a tool for the general user to examine 
the database. The browser supports linear browsing, forward and backward hy
perlinks, and object activation. The functions of the database builder and up
dater are presented through a uniform user interface so documents can be cre
ated and modified seamlessly. 

The browser also supports queries. The queries can be Boolean or simple 
where the results of the simple query are presented in relevance order with the 
most relevant result presented first. The simple query can be an English sen
tence. 

Text stored in the database can be extracted and modified using most com
mercially available structured text editors. Similarly objects stored in the data
base can be extracted using the updater and can be created or modified using 
appropriate authoring tools. 

Tools such as the browser and updater allow the client to view the document 
stored in the database. However, the document contains only content, structural 
and navigation information. Presentation or style information is contained in a 
separate style repository and is loaded into the browser or updater when it is 
invoked. 

Connecting to the World Wide Web 

The base implementation described previously allows local access to documents 
but does not support access through the WWW. The LivePage toolkit contains 
two other mechanisms for this purpose. Figure 15.2 illustrates the architecture of 
a dynamic distributed document database system accessible over the WWW. 
Users accessing a WWW browser such as Netscape or Microsoft Explorer re
quest a WWW page from a WWW server. Using the CG!, NSAPI or Microsoft 
ISAPI protocol, the WWW server passes the request to the LivePage Server 
module that then accesses a database of WWW pages tagged with SGML or 
XML. The specific WWW page that was requested is retrieved from the data
base and then transformed into HTML by the LivePage server, and returned 
through the WWW server to the WWW browser for presentation. 

The transformation shown in Figure 15.2 proceeds in two steps. First the 
SGML or XML document is transformed into HTML. After this transformation 
the document is augmented with HTML code and other language commands to 
achieve a specific appearance. A typical presentation would contain a "Table of 
Contents" (TOC) and navigation buttons. The automatic generation of a TOC 
and the navigation buttons relieves the author of the WWW site of creating 
navigational aids, and allows users to orient themselves by returning to the TOC 
whenever they feel "lost in hyperspace.4" 

4 The position in the TOC is highlighted to assist in the orientation process. 



www.manaraa.com

352 Alencar et al. 

Multimedia 
Database 

Web 
Browser 

HTML to HTML 

SGML/XML to HTML 

Figure 15.2. Accessing the database over the WWW. 

The SGMLIXML pages in the database can also contain embedded SQL 
commands that support access to structured relational databases. The LivePage 
Server intercepts these embedded SQL statements and passes them to the struc
tured database. Thus we can combine multimedia and structured data in a single 
page. The LivePage Server module is not restricted to a single database, but can 
retrieve and search WWW pages from multiple tagged document databases as 
illustrated in Figure 15.2. 

The Publisher is a tool similar to the Server Administrator except that the 
Publisher generates a static Web site. The generation process creates a WWW 
site from the database at a specific point in time. Obviously, if the database 
changes after the last creation time, then the "publishing" process must once 
again be repeated. 

Importing Legacy WWW Sites 

There are many existing WWW sites that could benefit from the support of 
document databases. The LivePage toolkit provides a facility to import an ex
isting WWW site, to attempt the correction of structural errors, and then to build 
a tagged document and multimedia database. Once the database is constructed, 
all the tools previously described can be used. 



www.manaraa.com

15. Dynamic Documents Over the Web 353 

15.4.2 Extending the Base Implementation 

The extensibility of the database and tagging approach to documentation sys
tems is illustrated through features that have been added to the database through 
the LivePage toolkit. 

We have often augmented a DTD with tags to support features within a 
document. For example, a document could contain a "rating" tag that is not visi
ble but that describes the intended audience for the document.The database can 
be easily extended to provide new features in a document. For example, a his
tory indicating dates on which a specific section of a document has been 
changed or comments describing those changes can be easily included. 

We can also easily provide "views" of a document through the realm con
cept. A realm is a set of pages in the database with a user assigned to one or 
more realms through a database table. Thus a user can be excluded from 
browsing a specific set of pages by being excluded from a realm. Realms can be 
used to implement access control, or tables of contents for limited viewing. 

We consider documents as composed of uniquely identified components that 
are organized into trees. Thus, database tables can specify the table of contents 
(TOe) or structure of a document. If we wish to create another document from 
the same set of components then we only need to create new database tables or 
TOes to specify the new structure. Thus when a user switches contexts the sys
tem is only required to switch to a new TOe. This useful feature has been added 
to the original system in order to provide multiple structural views of the same 
contents. 

In summary, current prototypes of the documentation system support: 
• Automatic dynamic translation of SGML documents into HTML: Docu

ments stored in a database are translated into HTML and served to the Web 
at the time they are requested. A table of contents (TOC) and context
sensitive navigation buttons are added to the document to provide the user 
with advanced navigation capabilities. 

• Conditional views (dynamic and static): The same documentation is usually 
presented in different ways to different users depending on the user's inter
est or qualifications. For example, some documents have "conditional" sec
tions that are displayed only under certain circumstances. "Static" views 
(e.g. author vs. user views) are password protected, while "dynamic" views 
(e.g. OS/2 vs. Windows 95 views) may be changed during navigation. 

• Structural views: The document appears to be re organized with a different 
clustering of topics depending on the user's requirements. For example, the 
document could be presented in a tool rather than a task view. 

• Multiple table of contents (TOCs): a different TOe is generated automati
cally for each conditional or structural view of a given document. 

• "Intelligent" searching: the model provides support for searching where 
the results are organized according to a relevance ranking. Searching within 



www.manaraa.com

354 Alencar et al. 

a context provided by SGML tags is also supported. Searching is restricted 
to the current view of the document. 

• Unicode documents: the model supports documents written in Unicode al
lowing the display of documents written in other national languages. 

15.4.3 Evaluation 

The approach outlined in the previous sections has been applied to create webs 
of product information for several VisualAge products. This section presents a 
discussion about the results of applying our approach to some classes of techni
cal documents. 

The LivePage implementation retains the basic concepts of our underlying 
hypermedia model by maintaining the separation of the different concerns of 
Web-based documents. The structure of the database used in the LivePage 
model was optimized for retrieval rather than updates, since we expect that a 
document will be browsed more often than modified. The organization of the 
internal tables of the database allows fast retrieval of a subtree of the original 
document at the expense of slower updates; currently, an update is implemented 
as a deletion and then an insertion. We are investigating better algorithms to 
perform updates. 

There is approximately a six-fold difference between the size of the original 
untagged document and its equivalent database. This increase in size is caused 
by a number of factors including: the system tables, the indexing associated with 
fast retrieval of information from the database tables, and the indexing of every 
word in the document (with the exception of stop words). 

The implementation supports referential integrity. In the LivePage imple
mentation referential integrity is inherent in the tagging since it is simple to ver
ify that all the links and anchors of a document exist. Access and update control, 
locking mechanisms, and rollback are all inherent in the LivePage implementa
tion, since LivePage uses an SQL relational database as its storage model. The 
LivePage tools provide extra navigational aids such as table of contents genera
tion. Such a facility could also easily be provided in the model.A complete 
WWW site is stored in a single database that can be easily moved and does not 
have file system dependencies. LivePage is successful in solving many of the 
common problems inherent in WWW site development. However, there are a 
number of issues that need to be addressed. 

As more and more information is made available on the WWW it becomes 
increasingly difficult to find the information that you want. Even search tools 
which use ranking to return only the results that are the most relevant, are near
ing their limits as to how much text they can effectively index. One technique to 
increase the search effectiveness is to include in the ranking algorithm informa
tion that can be derived from the HTML tags about the structure of the docu
ment. Unfortunately, the HTML tag set is not very rich in its ability to describe 



www.manaraa.com

15. Dynamic Documents Over the Web 355 

the structure of all documents accurately. Augmenting HTML with additional 
SGML tags would be one way to overcome this problem. 

Complex WWW sites do not just consist of static textual data with a few 
added graphics. It is often desirable to include other data, such as a stock market 
table, that is more dynamic and may be constantly changing. Frequently, this 
kind of data is also stored in relational databases. We have created a number of 
demonstrations of how this kind of data can be seamlessly integrated into the 
WWW site. Further analysis is needed to make this approach comparable to the 
process of building a simple WWW page. 

Even the static textual data that makes up the majority of information in a 
WWW site is dynamic if looked at over a period of time. Frequently, a WWW 
site will go through several versions as it is enhanced and maintained. In some 
applications it is important to keep track of these different versions and to be 
able to recall an earlier version of the site. This form of version control could be 
added to the LivePage system. 

Currently databases created for WWW sites are tagged with HTML, rather 
than SGML to avoid translating SGML tags to HTML tags and perhaps en
countering incompatibilities. However, HTML may not adequately reflect the 
structure of the information, and SGML may be a better solution. However, it 
will be necessary to allow the database administrator to define sets of transfor
mation rules to convert SGML code into HTML. Such a capability requires 
further study. 

The LivePage document database tools only support a single DTD per 
document, whereas a document may have several different types of structures. 
This feature is supported by the SGML definition but is not currently available 
in the LivePage system. 

15.5 Related Work 

Different approaches have been tried to separate the content from its organiza
tion and presentation. We highlight some of them in this section. 

Other Tagging Languages 

Since HTML has limited structural components and is more oriented toward 
presentation, some authors have chosen to use another tagging language for the 
"master" of the information they maintain. The most common tagging system 
chosen uses SGML-compliant tagging languages which have a richer structure 
than HTML. These languages allow the author to characterize the structure of a 
set of documents, and to enforce this structure. Using ad-hoc filters, the SGML 
files can be converted to HTML. The advantage of such an approach is that the 
structure of the published information is kept separate from its presentation. If 
the user decides to change the master document's appearance, then only the fil
ters need to be changed. A number of companies who publish the same infor-



www.manaraa.com

356 Alencar et al. 

mati on in various forms, have chosen SGML-compliant tagging languages as 
their master format. Other master formats have been proposed: LaTeX, word
processor based tags, and RTF. All these consider a WWW site as a text docu
ment, with well-specified rules to translate it into HTML. Properly used, this 
approach avoids inconsistencies, and separates presentation and navigation in
formation from content. The main disadvantage of this approach is its focus on 
documents with a linear structure, such as books and articles, rather than the 
highly interconnected structures of objects typical in hypermedia applications. 

Publishing SGML-Compliant Documents Directly on the WWW 

Some WWW publishers make their documents only available for users with 
specific SGML browsers (such as Grif Symposia and SoftQuad's Panorama). 
They publish documents tagged with SGML-based tagging languages compliant 
with a standard DTD. A style-sheet is produced for the DTD, and is downloaded 
with the document to ensure proper rendering. SoftQuad is distributing copies of 
its browser to promote this concept. 

Macroprocessor-Based Systems 

In this approach the master information is stored in an ad-hoc tagging format, 
and a preprocessor or macroprocessor tailored specifically for HTML, is used to 
convert the files into HTML pages. A flexible macroprocessor can greatly assist 
in WWW development, reducing inconsistencies and separating content from 
presentation and navigation structure. Prior to defining the approach described 
in this chapter, we have used a macroprocessor-based system approach to create 
the WWW version of the "The University of Waterloo Undergraduate Calen
dar," which is composed of around 500 pages. The savings in development time 
were enormous compared to using plain HTML files. We have also developed a 
prototype macroprocessor system using the M4 preprocessor. 

Page Image Systems 

PDF and PostScript are popular formats used to publish information on the 
WWW. Both require special browsers to provide full control of the document 
typography. 

Hypermedia-Based Systems 

The success of the WWW has prompted the authors of some hypermedia sys
tems such as Microcosm to adapt them to generate HTML pages. Hill et al. 
(1995) proposed to unify Microcosm and the WWW in three ways: 
• Microcosm-aware WWW clients that is enhancing clients to support Micro

cosm primitives. 
• Generating static pages out of a Microcosm system. 



www.manaraa.com

15. Dynamic Documents Over the Web 357 

• Using CGI scripts to allow the interaction of a Microcosm server with typi
cal WWW clients. The CGI scripts would convert Microcosm requests to 
HTML browsable files. 

Other Systems 

In all the previous cases, the information does not reside on a database. How
ever, there are other implementations (Active Systems, Inc., 1996; EBT Interna
tional, 1996) that use a database specialized for the storage and retrieval of 
tagged documents. However, these are proprietary in nature and not easily ex
tensible by the user of the system. Other hypermedia systems (Hill et aI., 1995) 
have been adapted to generate HTML tagged text. However the information 
does not reside in a database. Other authors have described using relations to 
represent hyperlinks (Lange, 1995; Isakowitz et aI., 1995; Schwabe et aI., 1996). 

15.6 Conclusion and Future Work 

In this chapter we discuss issues related to creating and maintaining large hy
perlinked documents, a form of documentation that is becoming more common 
as the World Wide Web becomes increasingly pervasive. We describe a system 
that provides the tools necessary to create and maintain large, complex WWW 
sites. The system utilizes the power of SGML and relational database systems to 
solve many of the problems with which developers of large WWW sites are 
currently struggling. A clear separation is provided between the content, pres
entation, and navigational structure of the WWW site. This separation allows 
authors to focus on what they do best, writing content. On large WWW sites 
there will be other experts to focus on presentation and navigation. Even on 
smaller WWW sites, where there is only one expert, this separation can provide 
significant advantages by allowing the author to focus on each aspect of WWW 
development in tum. 

We also claim that the database approach overcomes significant limitations 
of Web-based documentation systems related to openness, extensibility, consis
tency, and referential integrity. Finally we present an approach to documenta
tion systems based on storing text marked with an SGML or XML compliant 
tagging language in a relational database. Style languages such as XSL are used 
to convert SGML tags into HTML for presentation using the Web. The imple
mentation is open since it is based on standards in both tagging languages and 
databases. Further, these two standards are extensible. In addition, our approach 
leads to an implementation that is independent of specific storage structures. For 
this reason, the designer of a system can more freely make choices based on the 
available database systems and respective authoring tools. 

Besides the technical advantages, adopting our approach also leads to bene
fits from a corporate perspective. The approach is cost-effective in terms of lev
eraging an organization's existing investment and expertise in RDBMS. There is 



www.manaraa.com

358 Alencar et al. 

also an ample supply of third-party (or outside) assistance. Because it is based 
on open standards, developers are not locked into a proprietary solution. In ad
dition, text and data can be accessed using SQL across different vendors, and 
systems are easily portable to other vendors' systems. Furthermore, since rela
tional database technology is a current de facto standard, relational databases are 
portable across different hardware vendors. 

Indeed, the database support for our approach to documentation is scalable, 
flexible, extensible and proven. It scales from stand-alone PCs to mainframes. 
There is also a wide range of relational database vendors with excellent track 
records. In particular, relational databases have proven the test of time with re
spect to security, performance, and data replication. 

Ongoing and future work will deal with topics related to modeling, and with 
verification and validation of software documents described using our approach, 
and include the following topics. 

We are working on the definition of document models based on graphs that 
separate the concerns of Web-based documents, easily support the expansion of 
requirements, and can incorporate legacy material. These rigorous graph models 
will be used as a basis for the design and implementation of flexible and exten
sible documentation and help systems for large document sets. We also plan to 
use this model as a basis for the validation and verification of technical docu
ment descriptions. 

We also want to take into account the roles of the different users that can 
access a dynamic document. Such roles can be related to various user charac
teristics, such as hislher level of expertise, hierarchical position in the organiza
tion, and access authorization level. A novice and an expert user, for example, 
would not normally have access to the same parts of a document. However, the 
objects in a page should be accessed based on user roles; that is, some informa
tion which is shown to a user belonging to a specific role may not be shown to a 
user belonging to a different role. Further, user access also depends on the navi
gational context: depending on the page a user is accessing, he/she may see (not 
see) parts of this page depending on hislher user role. This model provides a 
foundation for a user-based access control mechanism related to dynamic 
documents. Realms may be used as the basic implementation mechanism for 
this model. 

Further, we are working on combining the verification of role-based access 
constraints with the verification through model checking (Clarke et aI., 1986) of 
navigational properties of the dynamic document models. In this way, we are 
able to check if, based on a particular user role, a certain navigational constraint 
holds about the document model. As an example, one should be able to prove 
whether or not a user with a specific role is able to see a certain page. 

With regard to implementation issues, we also plan to investigate the auto
mation of the conversion process of legacy systems into our research model. 
Management tools will be implemented to automate the creation and mainte
nance of new document structures. Finally, new data models and tools will be 



www.manaraa.com

15. Dynamic Documents Over the Web 359 

investigated to improve our ability to manage concurrent updates of the several 
document structures. 

Ideally, the information delivery system should provide multiple views into 
the information for the user depending on their level of expertise or the type of 
knowledge being requested. Meta-data about this information can be stored in 
the SGML or XML markup language, or in the database as attributes. 

15.7 Acknowledgments 

The authors wish to thank IBM Canada and the Consortium for Software Engi
neering (CSER) for their support. 

15.8 References 

ActiveSystems, Inc. (1996). ActiveSystems--Reference Manual. 

Adler, S. (1994). ISO/IEC DIS 10179.2:1994. Information Technology - Text 
and Office Systems--Document Style Semantics and Specification Lan
guage (DSSSL), International Organization for Standardization. 

Berners-Lee, T., Masinter, M., and McCahill, M. (1994). Uniform Resource 
Locators (URL), Request for Comments 1738. 

Brereton, P., Budgen, D., and Hamilton, G. (1998). Hypertext: The Next Main
tenance Mountain. IEEE Computer, 13(37), pages 49-55. 

Clarke, E. M., Emerson, E. A, and Sistia, A P. (1986). Automatic verification 
of finite-state concurrent systems using temporal logic specifications. ACM 
Transactions on Programming Languages, 8(2), pages 244-263. 

EBT International. (1986). DynaBase Reference Manual. 

Garzotto, E, Paolini, P., and Schwabe, D. (1993). HDMA: Model-Based Ap
proach to Hypertext Application Design. ACM Transactions on Information 
Systems, 11(1), pages 1-26. 

German, D. M., Cowan, D. D., and Alencar, P. S. C. (1999). A Framework for 
Formal Design of Hypertext Applications. In 4th Brazilian Symposium on 
Multimedia and Hypermedia Systems, Rio de Janeiro, Brazil. 

Goldfarb, C. (1990). SGML Handbook. Oxford University Press. Oxford. 

Halasz, F. and Schwartz, M. (1994). The Dexter Hypertext Reference Model. 
Communications of the ACM, 37(2), pages 30-39. 



www.manaraa.com

360 Alencar et al. 

Hill, G., Hall, W., Roure, D., and Carr, L. (1995). Applying Open Hypertext 
Principles to the WWW. In Proceedings of the International Workshop on 
Hypermedia Design (IWHD'95), June 1995. 

Isakowitz, T., Stohr, A, and Balasubramanian, P. (1995). RMM: A Methodol
ogy for Structured Hypermedia Design. Communications of the ACM, 
38(8), pages 34-44. 

Lange, D. (1995). An Object-Oriented Design Method for Hypermedia Infor
mation Systems, In Proceedings of the 28th Hawaii International Confer
ence on System Sciences, January 1995. 

Janna Systems, Inc. (1999). LivePage Enterprise. 158 University Avenue West, 
Waterloo, Ontario. 

Mackie, E. and Zobel, J. (1992). Retrieval of Tree-structured Data from Disc. In 
Databases '92, Third Australian Database Conference, Melbourne, Febru
ary 1992. 

Microsoft Corporation. (1998). XSL Tutorial. Available: 
www.microsoft.com/xml/xsl/tutorial/tutorial.asp. 

Pressman, R. S. (1992). Software Engineering: A Practitioner's Approach. 
McGraw-Hill, New York, 1992. 

Schwabe, D. and Rossi, G. (1995). The Object-Oriented Hypermedia Design 
Model. Communications of the ACM, 38(8), pages 45-46. 

Schwabe, D., Rossi, G., and Barbosa, S. D. J. (1996). Systematic Hypermedia 
Application Design with OOHDM. In Proceedings of Hypertext 96, pages 
116-118. 

Stieren, C. (1997). Add One Egg, a Cup of Milk and Stir: Single Source Docu
mentation for Today. In Proceedings of the SIGDOC, pages 255- 262. 

Tanenbaum, AS. (1996). Computer Network. Prentice-Hall, Englewood Cliffs, 
NJ,1996. 

W3 Consortium. (1997). Extensible Markup Language (XML). Available: 
www.w3.org/TRlPR-xml-971208. 

W3 Consortium. (1998). A Proposal for XSL. Available: w3c.orglTR/NOTE
XSL.html. 

Zobel, J., Wilkinson, R., Mackie, E., Thorn, J., Sacks-Davis, R., Kent, A, and 
Fuller, M. (1991). An Architecture for Hyperbase Systems. In J st Austra
lian Multi-Media Communications Applications and Technology Workshop, 
Sydney, July 1991. 



www.manaraa.com

16 
Support for Geographically Dispersed 
Software Teams 

Ivan Tomek 

16.1 Introduction 

Product development is typically a team effort involving information-related 
activities and intense communication. As projects increase in size and as 
economies become globalized, enterprises become geographically dispersed 
(Carmel, 1999). Walking over to another team member's desk first becomes 
difficult and then impossible. Chance encounters--known to playa very impor
tant role in product development (Harrison and Dourish, 1996; Huxor, 1998; 
Isaacs et a!., 1996)--are restricted to meetings with collocated team members, 
and traditional face-to-face communication is replaced with various forms of 
telecommunication. 

Although technology alleviates problems caused by geographic dislocation, 
team members still find it inadequate and much research has been dedicated to 
finding more effective collaborative environments for geographically dispersed 
work teams (Herbsleb, 1999; CSCW'98; CVE'98; ECSCW'99; CRIWIG'99; 
W ACC'99). The topic is relevant to the software engineering community. As 
evidence of this, the International Conference on Software Engineering held its 
3rd Workshop on Software Engineering over the Internet. 

In this chapter, we first informally analyze the work performed by members 
of software development teams and use this analysis to formulate the desirable 
features of a collaborative work environment. We then explain why a text-based 
collaborative virtual environment (CVE) appears to be a very good fit for these 
requirements, and describe two pilot environments that we developed to address 
the issues of distributed software engineering (DSE). The chapter concludes 
with an outline of anticipated future work, concluding remarks relating our proj
ect to other recent research, and a list of references. 



www.manaraa.com

362 Tomek 

16.2 The Work of a Software Developer 

The primary task of software developers is to create and organize information. 
The required information typically consists of formal documents such as re
quirements specifications, analysis and design documents, source code, and in
spection, bug, and test reports. Although most development methodologists 
would let us believe that formal documents are all that is really worth creating 
and keeping, software developers consider informal information equally or more 
important (Kaiser 2000). They value informal notes, hand-drawn diagrams, e
mail records, URL links, references to trade journals, and mental notes gathered 
during formal meetings and conversation with colleagues and customers, and 
phone calls. The sum of this information and the knowledge gained by personal 
work experience forms the critically important context of work, and contributes 
to corporate memory. The quality, organization, and accessibility of this infor
mation greatly affect the quality and productivity of a team and the enterprise. 

An essential part of the development process is communication. Software 
developers communicate with other team members, managers, and customers 
via face-to-face encounters, telephone conversations, e-mail, video 
conferencing, electronic chat, mail, fax, and other media. Communication may 
be planned or unplanned, and synchronous (occurs in real time), or asynchro
nous (does not require the participants to be present at the same time). The for
mat of communication includes words, either spoken or textual, and documents 
such as requirement specifications, design diagrams, and code files. Whatever 
the means of communication, productive teams are always characterized by 
good communication. 

As teams get larger and geographically dispersed, creation, gathering and ac
cess of information become increasingly difficult, and communication progres
sively shifts from synchronous face-to-face communication to asynchronous 
electronic communication. Meetings become more and more difficult to organ
ize, particularly as teams span time zones, and cultural differences create addi
tional problems where cross-cultural teams are involved (Raybourn and 
McGrath, 1999). In these cases, communication becomes less efficient and 
teams less productive. 

To counter the negative effects of separation, a great amount of research has 
been dedicated to the study of its effects and to finding ways to minimize them. 
Computer networks are the natural technology of choice because much of the 
development process already takes place electronically, and the general direction 
of research has been to create shared environments in which team members can 
communicate and share common views of documents and tools. Two general 
approaches can be identified. One approach focuses on creating shared envi
ronments centred around projects (Steinfeld et aI., 1999; Highsmith, 1999) while 
other researchers argue that if physical collocation is impossible, virtual collo
cation via software emulating essential aspects of the physical world is the best 
substitute (Churchill and Bly, 1999a; Roseman and Greenberg, 1996; Spellman 



www.manaraa.com

16. Support for Geographically Dispersed Software Teams 363 

et aI., 1997). Our work belongs in the second category, and the rest of this 
chapter is dedicated to this approach. 

16.3 Requirements on a Collaborative Virtual 
Environment 

During the relatively long existence of groupware (software for the support of 
collaboration), many sophisticated environments have been developed only to be 
rejected by their intended beneficiaries (Baecker, 1993). The reasons for this can 
be traced to two main causes---lack of involvement of prospective users in their 
design, and difficulty of predicting all possibly required forms of collaboration. 
Before embarking on yet another groupware project, it is thus essential to de
termine what properties the environment should have. As we have already 
stated, our premise is that a collaborative environment should emulate and ex
tend the essential properties of a physical workplace and substitute physical and 
temporal collocation with virtual ones. These properties include topological or
ganization of disjoint work places, communication among collocated workers, 
navigation from one place to another, support for awareness of events, objects 
(primarily artefacts) and tools that can be moved from one virtual place to an
other, and unlimited extendibility and customizability. We will now give several 
reasons for this position. 

Emulation of real-world topology is important because it is a very natural 
and easily understood metaphor, and appropriate metaphors are very important 
for usability and learnability, which are the prerequisites for successful software. 
The principle of emulation of physical space also provides a natural organizing 
principle-Dffices, meeting rooms, and document libraries are some of the natu
ral types of places suitable for organizing a virtual space for software develop
ment teams. Besides, not only people, but information too can be organized in a 
spatial manner. 

In the physical world, space is naturally allocated to a particular use, 
equipped for that use, and restricted for use by a particular group of people. A 
virtual environment should also exhibit these features and provide means for 
enforcing privacy and separation. 

The importance of communication in the work process has already been dis
cussed and allowing multiple simultaneous communications localized in disjoint 
scopes populated by team members or their software proxies provides a natural 
means for focused discussion and a basis for recording communication in con
text. Navigation is necessary for virtual displacement of users and their virtual 
holdings from one emulated place to another. It is required for both planned ac
tivities such as individual and group meetings, and to enable chance encounters. 

An essential part of work-related communication is timely notification of the 
occurrence of work-related events such as the release of a new version of code 
by a team member. Team members should be able to register their interest in 



www.manaraa.com

364 Tomek 

specific events, and their occurrence should be automatically broadcasted to 
them. Besides being aware of events, the environment should facilitate their 
automatic handling by subscriber-defined mechanisms. Emulation of the physi
cal world provides a natural basis for event-driven operation. 

Objects such as documents, and tools such as software development tools are 
at the heart of software development. Emulation of the physical world and the 
ability to move objects and tools around and share them provides a parallel to 
the way that we deal with objects and tools in the real world. To be truly useful, 
an emulated work environment should be all-inclusive like the real world, and 
provide seamless access to external tools. The CVE should thus form a universe 
interfacing to other software tools rather than be just another application disjoint 
from others. 

Human needs and the nature of work are unpredictable and development and 
decision processes naturally evolve. Any environment that is closed and pro
prietary and can only be extended or modified by a small group of developers is 
thus doomed to fail. As a consequence, a useful work environment must be re
configurable, customizable and extendible--just like the real world. In the 
physical world, we depend on our ability to rearrange or extend our offices, con
struct new buildings, use them for a variety of purposes, create new types of 
objects and tools, move them from one place to another, etc. A virtual environ
ment can and should provide these facilities. 

Teamwork is characterized by a multitude of dimensions whose study is the 
subject of several disciplines including Computer Supportive Collaborative 
Work (CSCW). These features include, for example, support for awareness, us
age policies that control how tools and objects can be used according to the roles 
of individual team members, and work processes. A virtual environment emu
lating the physical world is a natural framework for supporting these concepts. 

An important aspect of a physical environment is that it allows contact be
yond the limits of the current work team. Physically collocated workers can talk 
not only to people who are working on the same project, but also to others. This 
allows exchange of ideas and sharing of valuable expertise. Project-centered 
groupware does not provide this facility, but emulated virtual spaces make it 
possible. In recent studies by Churchill (Churchill and Bly, 1999a, 199b) long
term CVE users reported that they commonly used the environment to meet co
workers working on other projects and even people who have left the enterprise, 
and used these virtual encounters to support their own project. 

All the above arguments suggest that close emulation of those features of the 
physical world that are essential for collaboration, a CVE, seems an optimal 
candidate for a DSE environment. What other properties should such environ
ments have? The environment must be easy to learn and use, responsive, and 
unobtrusive. An environment whose learning and use requires substantial effort 
or is slow and detracts from work will not be popular with busy software devel
opers and will not be used. Churchill states that long-term CVE users report that 



www.manaraa.com

16. Support for Geographically Dispersed Software Teams 365 

the lightweight nature of the environment with its ease of use and rapid response 
is one ofCVE's main advantages. 

Besides involving geographically dislocated teams, today's work demands 
frequent individual displacement, both locally and over large distances. A CVE 
must therefore allow its users ubiquitous access to the environment and to other 
users, whether they are momentarily accessible or not. Churchill reports that the 
ability to access a CVE from virtually anywhere, and to find one's co-workers in 
predictable virtual locations, are among the main benefits cited by long-term 
CVE users. 

Finally, to stimulate its users, the environment should be engaging, that is, 
preferably fun to explore and use. Long-term experience with virtual environ
ments has shown that virtual environments satisfy these requirements (Haynes 
and Holmevik, 1998). 

16.4 Which Type of eVE? 

Having accepted the premise that a CVE provides a suitable basis for support of 
work teams, the next question is which of the several known CVE types is best 
suited for software developers. Available technologies include text-based, vir
tual reality-based, and augmented reality. VR-based environments can be further 
divided into low-technology desktop environments based on VRML and similar 
techniques (Ames et aI., 1996; Darners, 1998), and high realism and high-cost 
environments (VRAIS'98; IEEE, 2000). Augmented reality combines text-based 
or virtual reality environments with information from sensors in the real world, 
possibly implemented as electronic objects in collaborative. We will now briefly 
evaluate the suitability of these technologies for our purpose. 

Text-based collaborative virtual environments use aUI windows, possibly 
enhanced with graphics, audio, or even video input and output. Following oth
ers, we will refer to these environments as MUDs (an acronym to be explained 
later). One of the advantages of these environments is that they are easy to learn 
and use, allowing users to focus on contents rather than manipulation, and not 
distracting with additional visual context. MUDs are also low-tech and thus 
high-performance environments. 

Users, via simple commands can easily extend MUDs through an extendible 
programming language. Another advantage of MUDs is that text-based infor
mation can be easily captured, organized, and searched. Their disadvantage is 
that a aUI is an incomplete approximation of the real world, but this is not a 
serious drawback when focus is on sharing textual and diagrammatic informa
tion. On the psychological side, experience shows that users quickly acquire a 
feeling of physical collocation with other occupants of the virtual space even 
without the visual cues. 

Environments based on virtual reality (VR) of one kind or another have the 
advantage of providing a more accurate approximation of physical reality. They 



www.manaraa.com

366 Tomek 

are, however, more difficult to use (requiring, for example, manipulation of the 
user's avatar on the screen via mouse buttons), thus distracting the user from 
communication. They are also much more difficult to expand and modify, and 
the additional visual cues enlarge the amount of information that must be proc
essed by the user without providing a significant benefit in applications that 
don't require spatial models of reality. 

Augmented reality is an extension of MUD and VR environments, still rela
tively little explored. Although it has potential benefits, we have not considered 
it appropriate at this stage of our research. 

Our brief analysis suggests that MUDs are preferable to other virtual envi
ronments when the focus is on communication and textual or graphical artefacts, 
and when capturing and accessing verbal contextual information is important. 
VR-based environments have their place in applications in which access to vis
ual information is essential, as in e-commerce, architectural design, etc. Since 
our focus is on the use of CVEs for software development teams whose interests 
are primarily in textual and graphical documents and exchange of ideas, the 
work reported below is restricted to text-based CVE environments. Our decision 
to focus on MUD-based environments has many precedents as numerous publi
cations, commercial and experimental products, and periodicals dedicated to 
virtual environments attest (Fitzpatrick et aI., 1996; Harrison and Dourish, 1996; 
Journal of MUD Research; Lindstaed and Schneider, 1997; Poltrock and Engle
beck, 1997; Roseman and Greenberg, 1996; Spellman et aI., 1997; Steed and 
Tromp, 1998; TeamWave). 

16.5 What Is a MUD? 

MUDs first appeared in the late 1970s. The acronym MUD originally stood for 
Multi-User Dungeons because the first MUDs were networked implementations 
of the popular fantasy game called Dungeons and Dragons. Eventually, the ac
ronym acquired additional and more respectable interpretations including Multi
User Domains and Multi-User Dialogs, particularly when the environments were 
extended to support socialization rather than strictly game playing. 

In the late 1980s, Paul White developed an object-based implementation of 
MUD referred to as MOO, for MUD Object-Oriented. Pavel Curtis then re
implemented the concept and created Lambda MOO (Haynes, 1998), which has 
since become the most common form of MUD. In the following, we will use 
MUD as a generic term representing both MUDs and MOOs. 

A classical implementation of a MUD consists of a single server with multi
ple connected clients. Until relatively recently, MUD users used a simple Telnet 
client to connect to the server. After connecting, users would communicate, 
navigate, and perform other operations by typing commands that would be in
terpreted by the server, which would then update its database and return a re
sponse to the user using ASCII text. Recently, pure text Telnet interfaces have 



www.manaraa.com

16. Support for Geographically Dispersed Software Teams 367 

mostly been replaced with GUIs, most commonly based on HTML and Java and 
using a Web browser (TWUMOO). Beyond the changes in the user interface, 
the principle of the environment has remained essentially unchanged. 

As we have already explained, a MUD emulates selected features of the 
physical world inhabited by user proxies (called agents or avatars), objects, and 
tools. The emulated world (universe) is divided into disjoint but possibly nested 
domains corresponding to interconnected rooms, buildings, and other real-world 
concepts. The consequences of this partitioning are that individual spaces may 
be dedicated to specific uses, restrict communication to groups of users, and 
serve as repositories of objects and tools with restricted access. 

The avatars representing MUD users can move from one virtual place to an
other (navigate) carrying their possessions (objects and tools) with them. 
Autonomous software agents playing various roles and often automating me
chanical tasks typically complement them. Agents of both kinds can pick up and 
drop objects and communicate with other agents, typically within the constraints 
of their current location. The environment is persistent and the database con
taining the universe with its interconnected places, objects, tools, and agents 
resides on the server 

Avatars representing users are generally constrained by roles that authorize 
them to perform a variety of actions and prevent them from executing others. 
The main differences between different roles are typically in limits on how 
much an avatar can extend and customize the MUD universe. At the lowest 
level, avatars can instantiate a predetermined number of entities such as rooms, 
objects, and tools, whereas users with higher authorization can create new types 
(classes) of objects and functionalities, and add them to the environment. 

This brief description shows that a MUD satisfies the eVE requirements 
postulated above. It is a persistent emulation of essential features of the real 
world, provides navigable scopes that can be used for separate activities using 
and producing tools and artefacts, incorporates the concepts of time and events, 
and provides means for synchronous and asynchronous communication. Its users 
can perform assigned roles and these roles may be used to define policies for the 
use of tools and other tasks. MUDs are easy to use and easily accessible and, 
most importantly, user-extendible and customizable at two levels: A user can 
instantiate an existing class of entity and--with proper authorization---extend 
the functionality of the universe by extending existing types of entities and de
fining new ones. 

In the following sections, we will now present two environments that were 
developed and used to explore some of the requirements enumerated above. 

16.6 Jersey: An Overview 

Our interest in eVEs was sparked by Object Technology International (OTI), a 
recognized leader in the development of Object Oriented technology, particu-



www.manaraa.com

368 Tomek 

lady Smalltalk and later Java. Object Technology International has several of
fices around the world and their need to deal with geographic separation of team 
members led to the formulation of the problem addressed in our project. 

To help us in our exploration of possible use of MUDs in distributed soft
ware development, on provided us with the skeleton of a non-commercial ap
plication called Jersey implementing a basic MUD architecture. The environ
ment used a Telnet connection and all communication from a client had the form 
of Smalltalk messages transmitted as ASCII text and interpreted by a Smalltalk 
server. This was acceptable because the intended users were Small talk pro
grammers and because of Smalltalk's simple syntax. 

Since the server can process any Smalltalk messages, users can send not only 
Jersey-specific commands to perform usual MOO activities, but can also create 
new functionality on the fly and do anything that a Smalltalk environment per
mits. This provides great flexibility and lets users customize and extend the uni
verse at run time. However it also violates basic security because it allows the 
user to use the Telnet client to program the server to do such things as capture 
all Jersey communication, damage or even destroy the whole Jersey universe 
and its engine or even the Smalltalk environment itself. In our pilot project, this 
was not an important consideration because security was low on our priority list. 

The design of Jersey allows a flat layer of virtual rooms with no support for 
containment. In other words, users can create rooms but not rooms within 
buildings. A user's avatar always resides in a room and can move to any adja
cent room via an exit or to any other room in the universe by teleporting. Users 
can communicate with standard MOO commands such as "whisper," "say," and 
"shout," and use simple built-in e-mail. Jersey also provides a basic framework 
for software agents and defines a hierarchy of utility and information holding 
objects whose examples are described below. 

After installing Jersey, recovering its design from the undocumented source 
code, and correcting some problems, we embarked on experimentation and ex
pansion (Tomek et aI., 1998a; 1998b; Tomek et aI, 1999a; 1999b). Our experi
ments were restricted to a small team of faculty and MSc students and to several 
software-engineering courses. We held class and team meetings on Jersey and 
used it for inspection of Jersey code. We also used the concept of disjoint do
mains to organize our project artefacts (see Class Rooms below). 

When using Jersey for meetings, we quickly found the limitations of textual 
communication due to slow typing and network delays, and the importance of 
friendly user interfaces. The open nature of Jersey proved very beneficial here, 
as we were able to change the environment on the fly. As an example, we im
plemented simple meeting support while an actual meeting was in progress. 

Our extensions of the original implementation included new user interfaces, 
new objects and tools, new types of agents, on-line help and query support, ac
cess to Small talk code for use in software inspections, and Development Clus
ters, templates of room combinations to accommodate development teams. The 
following section will describe this work. 



www.manaraa.com

16. Support for Geographically Dispersed Software Teams 369 

16.7 Jersey: User Interfaces 

As already mentioned the original Jersey user interface requires the user to enter 
commands as Small talk messages. This practice, common in conventional 
MUDs, is awkward and makes the use of the environment difficult for two rea
sons. Users must remember the exact syntax of all commands that they want to 
use (or find it via a primitive "help" command), and the sometimes-lengthy 
multi-argument commands must be entered with flawless spelling. To remove 
this annoying shortcoming, we designed an interface that allows the user to pro
duce commands by filling in automatically generated templates. 

The main window of the new user interface is shown in Figure 16.1. Besides 
providing buttons to perform the most common actions, the window contains 
several specialized fields and lists. The input field (lower left) is used to send 
commands to the server. Typing text into the field and sending it to the server is 
interpreted as a "say" message and causes the text to be displayed in the output 
pane (upper left) of a similar window seen by all users whose avatars are present 
in the same location. The screenshot shows the format of these notifications. 

If the user precedes the text with the @ symbol, the line is interpreted as a 

flo fcfl l{.. Go F....... Help 

rqu-'--------------------I II IS Iocaled III em JIVC'i 
II cODllllls 

W""",*- • a Nml&!Itll 
r,Tt.::;-:W:::aI<;::spoce=~fieId;:;-_=---;-bMlc----:~:-;-;f-CI"-new-_-t"':'U:-se"":'i ':""fCl"-)'CU---------:,...,.1 • aNmitSttl2 
not .. and 10 cr .... and_MOO....... ¢j y .. cnldtry_el ....... 

A9>I P....... Ir1iDIIr. 

Once!'OU logon, !he _ r9>I Loc«m I>OI1Oi ~ _ WIn Iocobon. t:J IVIIIabIe cOIlIIDIDdI 

E...... I s_ I Close .""'H"""elp---=. ~:;lKJl ------------
.1 IIlIII 

Figure 16.1. WWW main Jersey interface. 



www.manaraa.com

370 Tomek 

Small talk message. The server filters all arriving messages, ignores those that 
are illegal, and executes those that are valid. As mentioned earlier, the text is not 
restricted to Jersey messages and any Smalltalk message may be entered here. 
The input field can thus be used to program Jersey at run time, although not as 
comfortably as with a regular Smalltalk code browser. 

As in any MUD, the total number of Jersey messages is large and their de
tails difficult to remember. Jersey provides several ways to alleviate this prob
lem. One is the workspace below the input field, which can be used as a reposi
tory of frequently used commands. Users can type commands into this pane and 
then copy and paste them into the input field. Another form of support is a spe
cial help facility that can be activated by the Help button; it displays help infor
mation in the upper part of the window. The Tree Help agent described below 
can also be used for environment help although its function is intended mainly 
for development support. Switching from command execution mode to com
mand help mode via the radio buttons between the two lists on the right provides 
another form of help. In addition to direct command entry, commands associated 
with rooms and objects can be activated via clickable text as explained below. 
We found that these simple improvements greatly improved Jersey's usability 
,and usability is, as we mentioned above, one of the critical requirements on a 
successful eVE. 

The top of the right-hand side of the main window is a list containing click
able information about the user's current location. It shows all objects and 
agents in the current location, as well as exits to adjacent rooms. When the user 
selects an item in this pane, the list underneath shows information about the se
lection and its click able executable commands. 

16.8 Jersey Objects, Tools, and Agents 

The original Jersey was only a basic framework, and to make it interesting as a 
collaborative tool for software developers, we added a number of new classes of 
objects and agents. The new objects can be divided into utility objects and in
formation-capturing objects. Utility objects include offices equipped with stan
dard tools, desks consisting of a desktop and drawers, garbage cans emptied 
periodically by janitor agents, and copiers for duplication of documents and 
other text objects. 

Many useful objects for capturing, organizing, and keeping information are a 
part of the framework. These include: 

• filing cabinets, 
• document objects providing URL-based links to information stored beyond 

Jersey boundaries, such as Word documents, a camcorder (a camera that 
can be carried around to record communication that Occurs in the location 
of the agent carrying it--an extension of the stationary security camera, 
which is bolted to a wall), 



www.manaraa.com

16. Support for Geographically Dispersed Software Teams 371 

• a whiteboard for recording and displaying information, 
• and other objects. 

To provide a flexible general-purpose query facility, we created an agent
based Help Tree, a variation on Answer Garden 2 (Ackerman et aI., 1996). The 
Help Tree uses an autonomous software agent that processes queries from users 
and tries to match them against answers stored in folders in afiling cabinet (all 
of them Jersey objects). If the agent fails to find an answer, it sends the question 
to users who have registered as experts in the query area and the received an
swers are stored in folders for future use and delivered to the user who issued 
the query. 

The Help Tree agent is an example of an autonomous agent. Autonomous 
agents in Jersey are software entities that can autonomously move from one 
place to another, interacting with the environment, and executing scripts. They 
are mobile, but only in a limited sense because they can only move within the 
universe running on the server machine. The scripts defining agents are Jersey 
objects and as in the case of such objects, they may be shared among different 
users and edited. 

Agent actions are based on a combination of mission actions defining the 
purpose of the agent, autonomous random actions providing a semblance of free 
will, and finally response actions that allow the agent to respond to events in its 
environment. 

Examples of Jersey agents include messenger agents who deliver messages, 
janitors who navigate through the universe and empty office trash cans, and an 
agent who makes copies of new issues of the Jersey newsletter and delivers 
them to each subscriber's office. Jerry is the Help Tree agent, and Tim is the 
notifier agent who notifies interested users whenever a new edition of a Small
talk source code module to which they subscribed is released. 

Tim is our solution to a problem that we faced when we wanted to use Jersey 
to support software development teams. Although Jersey is developed in Small
talk, its user interface cannot access Small talk development tools such as code 
browsers and we thus implemented access to source code via Class Rooms, spe
cial rooms that allow viewing individual selected classes in the Smalltalk li
brary. Class Rooms are an example of the use of Jersey's topological principle 
to organize project-related information. Tim's mission is to navigate Class 
Rooms, look for new code releases, and notify users who have registered an 
interest in them. 

To provide software development teams with a simple way to create virtual 
spaces to support individual and teamwork, we created a template of a basic 
floor plan called the Development Cluster. A Development Cluster is a collec
tion of rooms centered around a project room used mainly for meetings and pro
viding access to the offices of the developers working on the project, the leader 
of the team, and a documentation used. A Development Cluster also includes 
Class Rooms providing access to project software modules. 



www.manaraa.com

372 Tomek 

16.9 Jersey Evaluation 

Our observations can be divided into usage experience and design issue. The 
following two sections deal with both of these categories. 

16.9.1. Functional Issues 

When Jersey reached the state of a fully working environment, its functionality 
was still too primitive for industrial use and we thus had students in a senior 
Computer Science course use and evaluate it informally by completing a ques
tionnaire. The results can be divided into general MUD experiences and an 
evaluation of Jersey-specific issues. 

On the MUD side, we found that the powerful and user-friendly interfaces 
described above made the use of Jersey much easier to use than the original 
Telnet interface. It is worth noting, that other studies did not consider the effect 
of user interfaces--Churchill (Churchill and Bly, 1999a; 1999b) found that users 
considered even MUDs with primitive Telnet interfaces to be very useful. Our 
evaluation also showed that the use of the interface was surprisingly immersive 
in the sense that being in Jersey gave the physically separated users a profound 
sense of being together. We quickly got used to holding meetings in Jersey and 
recording them for later perusal and reference. After the initial chaotic experi
ences, we developed a meeting tool with simple support for agenda, chair and 
secretary roles, and floor control, and this greatly helped to make meetings more 
manageable and improve usability. 

The relatively slow speed of typing and the resulting occasional lack of co
herence of individual contributions complicate informal meetings in MUD. This, 
of course, is known for other forms of synchronous communication as well. 
Without some control, threads of communications quickly diverge, and follow
ing them becomes difficult. This problem has been noted and various ap
proaches attempted. As an example, Highsmith (Highsmith, 1999) reports that 
Project Community Software uses sidebars for side dialogs during team meet
ings. Sidebar dialogs between two members are, of course, different from 
threads evolving in a mUlti-person communication, but it is possible that a simi
lar approach might be used to deal with this problem as well. Another possibility 
is to banish multiple threads and follow a strict agenda as the Neometron prod
uct appears to expect. 

As we started using Jersey, we quickly discovered the need to extend it with 
new objects and new functionality. The ability to extend and modify the envi
ronment turned out to be essential, and one of the most important features dis
tinguishing MUDs from related environments such as chats, e-mail, or virtual 
environments based on predefined virtual space structures. This is because not 
even the most intelligent and creative designers can anticipate all the possibili
ties and create an environment that will satisfy all potential users in all possible 
applications, and provide all desirable features. Even providing users with a 



www.manaraa.com

16. Support for Geographically Dispersed Software Teams 373 

scripting language and customizable templates seems too restrictive in compari
son with freely modifiable MUD environments. 

Similar to other studies of MUDs in collaborative work, we found it useful to 
be able to use the same environment for both synchronous and asynchronous 
communication. Its persistence and continuous availability are two other impor
tant features. 

A shortcoming of our experiment was that our test group was too 
small--fewer than ten users--well below a critical size required for an objective 
groupware test. In addition, our users were students rather than the targeted pro
fessional developers. We have also failed to take full advantage of one of the 
most important benefits of a MUD-that it can provide continuous access to all 
members in the group. Churchill reports on a longitudinal study of a work team 
that used a MUD over a period of several years. It found that its users have a 
MUD window open 24 hours a day, occasionally checking the ongoing informal 
exchanges, and jumping in when a relevant topic was addressed or when they 
needed to ask a question. 

Among the weaknesses that Jersey shares with other MUDs is that it is iso
lated from other applications. To alleviate this shortcoming, we introduced the 
earlier-mentioned URL-based access to other forms of documents, but future 
MUDs should provide a seamless environment encompassing other applications 
such as word processors, spreadsheets, e-mail, and software development tools. 

16.9.2. Design Issues 

The design strengths of Jersey include its simple design resulting in relative un
derstandability, and the possibility to modify and extend the design even at run 
time. These features make Jersey highly suitable for testing new concepts. This 
is essential for CVEs, particularly at this relatively early stage of research. 

Our list of Jersey design weaknesses starts with its lack of uniform and uni
versal support for events. This precludes, for example, subscription to events, 
such as new releases of code modules, and automatic notification of subscribers 
when these events occur. As mentioned above, we had to resort to the concept of 
Class Rooms periodically scanned for new releases by a specialized agent to 
solve this problem. 

Another problem with Jersey is that, although its user interface is substan
tially more sophisticated than that of other MUDs, the client is still too primitive 
and the server does not provide any connection to the rest of the software envi
ronment. The lacks of support for shared viewing and shared manipulation of 
windows are also serious limitations. 

Jersey's text-only communication between the client and the server is too re
strictive since nothing but ASCII text can be downloaded. URL-based access to 
files alleviates this shortcoming but does not remove it. 

The centralized nature of the architecture with a single server storing the 
universe and performing all processing is also a shortcoming. It makes the envi-



www.manaraa.com

374 Tomek 

ronment too vulnerable and has the potential of overloading both the processor 
and the network connection. The fact that the universe database is, in fact, a part 
of the Smalltalk environment rather than a true database is also a limitation. 

As already mentioned, Jersey does not address security issues and leaves the 
whole system completely open to users who have full access to the source code 
of not only Jersey but of the whole Smalltalk environment. We did not consider 
this to be a problem because of the experimental nature of the project and the 
fact that more fundamental issues needed to be resolved first. Moreover, Jersey 
was intended for use in a limited and safe user community where security was 
not a problem. In a production environment, the question of reconciling security 
with openness and extendibility will be very important. 

Finally, Jersey does not attempt to support advanced CSCW features such as 
groups, roles, policies, work processes, and tasks. These seemingly exotic fea
tures are very important in team activities such as meetings, which require sup
port for roles such as chairperson, secretary, and meeting participant--sharing 
tools but having different authorizations. Another example of the need for 
CSCW features is code inspection where team members assume roles such as 
the moderator, reader, verifier, and developer and each uses both shared and 
individual tools but not with the same authorization. Concepts such as groups 
are also essential for creating flexible locking mechanism for rooms and objects, 
and for providing basic security. Questions of flexible specification of policies 
are being intensely explored by other researchers in projects such as COCO (Du 
and Muntz, 1999), and CVEs could use the proposed solutions. 

16.10 MUM: Multi-Universe MOO 

The previous section identified several of limitations of Jersey, but Jersey's ar
chitecture would make it too difficult to remove them. We thus decided to de
sign a new MUD and we called it MUM for Multi-Universe MOO. Its main 
features are described next and further details are available in Tomek and co
workers (1999c, 1999d, 2000). 

Clients. servers, and meta-servers. One of the limitations that we decided to 
explore was the fact that a MUD normally runs on a single server. We thus de
signed MUM as a network of interconnected clients and servers implemented as 
Smalltalk parcels (Cincom). Each parcel collection contains both a MUM server 
and a MUM client and each machine may thus be simultaneously a server pro
viding access to a MUD universe installed on the machine, and a client access
ing a universe implemented on the same or another machine. This means that 
while the avatar of the user of machine A may be in a universe on machine B, 
avatars of remote users may be using a universe on machine A. Since the uni
verses are interconnected (see below), avatars can also move from one universe 
to another with all their holdings. 



www.manaraa.com

16. Support for Geographically Dispersed Software Teams 375 

The possibility of having an unlimited number of servers and universes re
quires a higher-level coordinating server. This meta-server keeps track of the 
location of individual host machines and their universes. Information stored on 
the meta-server is dynamic, reflecting the momentary state of the network, and 
is automatically updated as host machines connect and disconnect their local 
universes. 

Another issue addressed by MUM is alleviating the potentially high loads on 
the server and the network by letting the clients do as much work as possible 
and providing a framework for creating flexible and customizable user inter
faces. This is achieved by creating tool libraries consisting of tool manuals and 
tool code on the server, and providing a mechanism for downloading them to the 
client and automatically extending the dictionary defining client-server commu
nication. More information about this aspect of MUM is provided later in this 
section. 

MUM also changes the nature communication between the client and the 
server and replaces text-based communication with a filter-based communica
tion of binary data. 

Our discussions with on software developers convinced us of the impor
tance of awareness of events. As discussed in the Conclusion, several other re
searchers independently reached the same conclusion. We have thus decided to 
make MUM fully event-driven This means that everything that happens in a 
virtual MUM universe is an event and everything in the universe happens as a 
result of passing an event from one object to another. In other words, there is no 
direct messaging among MUM universe objects. 

When everything happens by explicit processing of events by an event han
dier, any event associated with any object is subscribable. Any object, typically 
an agent representing a user, may then register interest in the occurrence of the 
event and is automatically notified when the event occurs. The notification has 
the form of a notification event that contains enough information to allow the 
subscriber's client to respond with an appropriate pre-programmed action. 

The ability to subscribe to events must be restricted to authorized users and 
this is achieved by groups, allowing the owner of an object to specify who can 
subscribe to the events processed by the object. Groups can also be used in 
locking objects to lock rooms, controlling communication, defining features 
restricted to universe administrators such as creation of new users, and letting 
the owner of an object specify who can send commands to it. By providing such 
fine-grain control, groups and event-based operation also provide a certain 
amount of security. 

The processing of an event may require a complicated sequence of opera
tions whose order of execution may depend on context. As an example, an at
tempt to enter a room requires sending an event to the destination room object 
requesting a permission to enter, and the positive or negative response event 
determines how the processing of the requesting event continues. To make this 
possible, each event is described by an event descriptor, a finite-state automaton 
(FSA) whose discrete states allow chunking of event execution and specification 



www.manaraa.com

376 Tomek 

of multiple alternative sequences of execution. This arrangement also solves the 
problem of asynchronous behaviours such as a request for a vote, which requires 
a response from one or more objects and cannot continue until the response 
(confirmation) events are received. 

An interesting question related to the processing of events is how to deal 
with situations that require multiple confirmations. In the current implementa
tion, the arrival of at least one confirmation event restarts the suspended event, 
but this solution cannot satisfy all situations. In the future, we will implement a 
more general mechanism in which each asynchronous state is associated with a 
confirmation policy that determines how to process incoming confirmation 
events. 

We mentioned earlier that the poor quality of user interfaces and lack of in
tegration with other applications are the main reasons why MUDs have not yet 
become a prominent groupware category (Churchill and Bly, 1999a; 1999b). 
Following the example of Jersey, MUM users may access the universe via 
commands displayed in the user interface. When activated, these commands 
dynamically create a user interface window to elicit required parameters, and 
produce events, which are then sent to the target object in the universe on the 
server side. More commonly, user actions are executed via specialized UIs. 
MUM thus goes beyond Jersey where users click commands and fill in argu
ments into message templates, and eliminates the need for a programming
language-based user interface. 

MUM's user interface is implemented with tools, whose definitions reside 
on the server. When a user enters a universe, the main window automatically 
displays all the available tools and allows the user to open a selected tool. If the 
tool is not installed on the client, the code is automatically downloaded from the 
server and installed. Alternatively, when a tool is required for interaction with an 
object selected by the user, the tool is opened automatically, after possibly being 
automatically downloaded. 

As MUM evolves, the user needs to use the latest versions of all code. MUM 
does this automatically as follows: When a user logs into a universe, the client 
notifies the server about its code versions and if the code is out of date, the 
server automatically downloads the new versions. 

Snapshots of two examples of MUM user interfaces are shown in the next 
two Figures. Figure 16.2 shows the launcher, which is used to connect to a re
mote or local universe, log in with a user name and password, and log out. The 
launcher also allows opening of tools displayed in the list on the right, and its 
text pane on the left displays system messages. 

Figure 16.3 shows the UniTool (the Universal Tool), the basic MUM user 
interface. The upper right list pane provides access to the essential information 
in the user's current virtual location and can be switched to show objects, occu
pants, or exits. When displaying occupants, the list also provides simple aware
ness support based on a server clock, which monitors the activity of each user 
and notifies the clients. The client's UniTool then uses different fonts to display 
user names and indicate their status. The bottom right list of the window dis-



www.manaraa.com

I 

16. Support for Geographically Dispersed Software Teams 377 

. . 

.1IW'lt.ioJIo " :.~ " " , ,,-' .... , . " 
~ ,.~ II . l.ofIIut 11 &it ··I II~TooI 111 1 9 -EDO Creation Tool 

Building Client universe, l_l_tO· EDO Property Tool 
Unking to MUMClient in client universe. 

Starting Client universe, 

PLEASE LOGIN USING THE LOGIN BUTTON. 

Altempting to contact MetaServer at moo.acadiau.ca 

Connected to moo.acadiau, ca - retrieving known servers 

A.ttemptinglo connecl lo server. 131 .162.129.82 

A.ttempting to authenticate 

Downloading tools ... 

LOGIN COMPLETE, USE HELP IF REQUIRED. 

I 
•• 

Figure 16.2. MUM Launcher. 

You say: Hi Dave, have you fixed the automatic 1001 update 
yet? 

Figure 16.3. MUM UniTool. 

. 

'Ii!!! 
' I ~ 



www.manaraa.com

378 Tomek 

Summary of current functionality. The existing functionality is still limited 
because most of our work to date focused on the development of the framework. 
MUM currently implements basic MOO operations such as communication, 
navigation, instantiation of a limited number of types of objects, and manage
ment of their properties. The current repertoire of objects and tools includes us
ers, groups, nested places, cameras for recording communication on tapes, tapes, 
a simple e-mail system and, most recently, a code management tool allowing 
versioning and code membership (Yang and Tomek, 2000). An electronic 
binder with pages using a variety of page styles to hold assorted forms of project 
information including UML diagrams (Alshepani, 2(00) is being integrated into 
MUM. Group definition, object creation, object properties, and the camera have 
their own tools with specialized windows. 

16.11 Current and Future Work 

Our current work and plans can be divided into three categories--design 
changes, extensions, and use and testing. Some of the anticipated design changes 
include the following: 

• Relaxing the fully event-based MUM operation to reduce execution over
head. 

• Moving from a collection of autonomous interconnected universe to a sin-
gle universe whose extensions can be hosted on arbitrary servers. 

• Better support for off-line operation. 
• Implementation of confirmation policies as described above. 
• Implementation of the CSCW concept of policies along the lines of COCO. 

After testing, we want to use MUM in a larger course. Eventually we will of
fer the software for testing to a team of software developers in an industrial set
ting and make it public. 

16.12 Conclusion 

Support for geographically dispersed work teams is one of the most pressing 
issues of current software development practice and subject of much CSCW 
research. Numerous meeting dealing with this subject, most recently the ICSE-
2000 workshop on software engineering over the Internet (ICSE, 2(00) is evi
dence of this. The main focus of study is the development of collaborative vir
tual environments of one type or another. Several research and commercial 
products are based on the premise that if physical and temporal collocation is 
impossible, emulation of physical co-presence is the next best thing. These proj
ects use the concepts introduced in recreational and educational MUDs and their 
extensions. Published studies of the use of even the most primitive existing text-



www.manaraa.com

16. Support for Geographically Dispersed Software Teams 379 

based MUDs in industrial settings confirm the potential of this largely untapped 
paradigm. 

In this chapter, we have described our exploration of the essential character
istics of MUDs that would make them useful for software development teams. 
We developed two functional environments including Jersey and MUM, Jer
sey's successor. Our work introduced several innovative concepts aimed at im
proving MUD usability including: 

• flexibility, 
• customizability, 
• event awareness, 
• subscribability, 
• new type of user interfaces, 
• the use of a powerful client to offload processing from the server and re-

lieving network traffic, 
• distribution of operation among multiple servers, 
• implementation of selected CSCW features such as event awareness, 
• and design for off-line operation. 

We pointed out that many design and conceptual issues still remain unresolved 
and extensive testing is required. 

To conclude, we will now survey some of the most recent published works 
to show how other researchers address issues of distributed software engineering 
and how their work relates to ours. 

In a publication at the ICSE-2000 workshop on Internet-based software de
velopment, Cook focuses on the management of the development process in 
DSE (Cook, 2(00). He stresses the role of monitoring of events and analysis of 
event traces and notes that because DSE is technology-based, automatic event 
capture and analysis are relatively easy. He describes several tools developed to 
test the usefulness of automatic analysis of events captured during the develop
ment process. In comparison with our holistic focus on support for team activi
ties in the development process, Cook focuses on its analysis. The two subjects 
are complementary and the importance attached to events and their automatic 
capture is shared in both studies. 

Another view of event-aware environments with shared distributed tools is 
presented by Grundy (Grundy, 2000). The project addresses issues including co
ordination, synchronous and asynchronous sharing and collaborative editing of a 
variety of artefacts, shared repositories, and integration of external components. 
It stresses the importance of flexibility and the role of events as a unifying 
mechanism. Event-handling and issues of formal and informal team communi
cation and support for social aspects of collaboration are not addressed. 

Harjumaa and Tervonen focus on software inspection in DSE (Harjumaa and 
Tervonen, 2000). Inspection is a prototypical social task and its implementation 
with geographically distributed teams is expensive and difficult because of the 
need for coordination, shared viewing of documents, communication, and en-



www.manaraa.com

380 Tomek 

forcement of process rigor. The authors describe two experimental tools for 
Web-based inspection, and propose a model of the inspection process modified 
for use in DSE. Due to the limited scope of the project, they do not address is
sues of communication and ignore the important aspect of event notification. In 
the context of this chapter, it presents an example of an important software de
velopment process that cannot be implemented in a traditional way in DSE and 
requires emulation of collocation. 

Kaiser (Kaiser, 2(00) addresses the use of multimedia in DSE, describing 
work being done within CHIME, the Columbia University Hypermedia IMmer
sion Environment. In the words of the project's Web page (CHIME), "users are 
immersed in a 3D MUD (Multi-User Domain)-style virtual world where they 
encounter and communicate with other users' avatars (representations in the 3D 
world)." Its focus is on supplementing conventional types of artefacts with vid
eos capturing, for example, requirements meetings with customers and team 
design meetings, replaying them collectively, and synchronizing their shared 
viewing across multiple platforms with varying connectivity and viewing pa
rameters. The aspects most relevant to our work are the fact that CHIME is a 
MUD and that the author explores integration of a new medium, thus extending 
the existing environment. It is interesting that CHIME uses 3D graphical repre
sentation; this can be attributed to the fact that the environment is also used in 
other collaborative contexts, for example, by chemists who require shared 
viewing of 3D information. We mentioned earlier that this paradigm seems dis
tracting in contexts where stress is on textual and diagrammatic artefacts, as in 
DSE. 

Another prominent relevant recent development is Project Community 
Software. PCSW is a new commercial environment marketed by Neometron 
based on the premise that decision-making is the determining factor of the suc
cess of any team project. In a recent article describing PCSW, Highsmith 
(Highsmith, 1999) argues that project success depends on effective dynamic 
decision-making, and that the decision-making process cannot improve without 
access to the full context in which decisions are made. The context itself consists 
of both the formal artefacts produced during the project's lifetime and the com
munications that surround their creation. The article argues that since every 
project is unique and the process of decision-making must continuously evolve, 
no single environment can fit all needs. This implies the need for flexible envi
ronments allowing integration of special-purpose tools with standard applica
tions and tools facilitating role-based communication, preserving project con
text, and allowing easy access to it. PCSW addresses these issues via project 
modelling including support for communication, interfacing to extemal tools, 
and scripting for automatic event capture and notification. Although PCSW 
deals with many of the issues listed in our introduction, it does not use the con
cept of customizable inteconnected and navigable spaces and easy extendibility. 

We conclude that reports on the most recent developments demonstrate that 
DSE research focuses on development and testing of new development envi
ronments that are 



www.manaraa.com

16. Support for Geographically Dispersed Software Teams 381 

• flexible and easily customizable, 
• support synchronous and asynchronous communication and sharing, 
• automatically capture and report events, 
• integrate special-purpose and commercial tools, 
• and capture and provide easy access to project context. 

Whereas most of the reported research deals with a selection of these issues, our 
research is holistic and attempts to address the same issues in an integrated 
fashion. As the surveyed literature indicates, little is known about the real needs 
of geographically distributed teams and the best way of supporting DSE con
cerns, and further experimentation and practical validation are required to pro
duce an environment that satisfies the needs of this increasingly common and 
important form of software development. 

16.13 Acknowledgements 

The first two-thirds of the project described in this chapter were undertaken in 
collaboration with Drs. Robin Nicholl and Rick Giles. For various reasons, they 
have not been able to participate in the writing of this chapter. Most of the im
plementation of Jersey has been done by a succession of students including 
Kenn Hussey, Francois Gagnon, Kevin Shu, Troy Saulnier, and Kevin Swan. 
Dave Murphy and Guang Yang implemented most of MUM. 

16.14 References 

Ackerman, M. S., and McDonald, D. W. (1996). Answer Garden 2: Merging 
organizational memory with collaborative help. In CSCW '96, Proceedings 
of ACM Conference on Computer Supported Cooperative Work, Pages 97-
105. 

Alshepani S. (2000). A UML Development Tool. MSc thesis, Acadia University. 

Ames A.L., Becks, J., and Ralph, T. (1996). VRML 2.0 Sourcebook, John Wiley 
& Sons, New York. 

Baecker R. M. (1993). Readings in Groupware and Computer-Supported Col
laborative Work, Morgan Kauffmann Publishers. 

Carmel E., (1999). Global Software Teams Collaborating Across Borders and 
Time Zones, Prentice-Hall, Englewood Cliffs, NJ. 

CHIME. Columbia University Hypermedia IMmersion Environment. 
http://www.cs.columbia.edul-sdossick/www/create.html 

Churchill, E., and Bly, S. (1999a). Virtual environments at work: Ongoing use 
of MUDs in the workplace. In Proceedings of WACC 99. 



www.manaraa.com

382 Tomek 

Churchill, E., and Bly S. (l999b) It's all in the words: Supporting work activi
ties with lightweight tools, In Proceedings of Group 99. 

Cincom. http://www.objectshare.com! 

Cook J.E. (2000). Internet-based software engineering enables and requires 
event-based management tools. In Proceedings of Third ICSE '2000 Work
shop on Software Engineering over the Internet. Available at: 

http://www.ul.ie/-icse2000/workshopsl.html#O 11. 

CRIWG 99 (1999). Fifth International Workshop on Groupware, Cancun, 
Mexico, September 22-24. 

CRIWG 2000 (2000). Fifth International Workshop on Groupware, Madeira 
Island, Portugal, 18-20 October. 

CSCW 96 (1996). ACM Conference on Computer Supported Cooperative Work, 
Boston, Massachusetts, November 16-20, Available at: 
http://www.acm.org/sigchilcscw96/ 

CSCW 98 (1998). ACM Conference on Computer Supported Cooperative Work, 
Seattle, Washington, November 14-18. http://www.acm.org/sigchi/cscw98/ 

CVE 98 (1998). Collaborative Virtual Environments, University of Manchester, 
UK, 17 -19June. http://www.crg.cs.nott.ac.ukl-dns/conf/vr/cve98/ 

Darners, B. (1998). Avatars! Peachpit Press. 

Du, Li., and Muntz, R.R., (1999) Runtime dynamics in collaborative systems. In 
Proceedings of Group '99. 

ECSCW 99 (1999). European Conference on Computer Supported Cooperative 
Work, Copenhagen, Denmark, 12-16 September, 
http://www.cti.dtu.dklCSCWIECSCW99.html 

ENVY!Developer (1998). Object Technology International Inc., 
http://www.oti.com! 

Fitzpatrick, G., Kaplan, S., and Mansfield, T. (1996). Physical spaces, virtual 
places and social worlds: A study of work in the virtual. In CSCW 96, Pro
ceedings of ACM Conference on Computer Supported Cooperative Work. 

Group 97, International Conference on Supporting Group Work, Phoenix, Ari
zona, USA, November 16-19,1997. 

Group 99, International Conference on Supporting Group Work, Phoenix, Ari
zona, USA, November 14-17, 1999. 

Grundy, J. (2000). Distributed component engineering using a decentralised, 
internet-based environment, In Proceedings of Third ICSE "2000 Workshop 
on Software Engineering over the Internet. 
http://www.ul.ie/-icse2000/workshopsl.html#0 11 



www.manaraa.com

16. Support for Geographically Dispersed Software Teams 383 

Harjumaa, L., and Tervonen, I. (2000). Virtual software inspections over the 
Internet. In Proceedings of Third ICSE 2000 Workshop on Software Engi
neering over the Internet. 
http://www.ul.ie/-icse2000/workshopsl.html#0 II 

Harrison, S., and Dourish, P. (1996). Re-Place-ing Space: The roles of place and 
space in collaborative systems. In CSCW '96, Proceedings of ACM Confer
ence on Computer Supported Cooperative Work. 

Haynes, e., and Holmevik, J. R. (1998). High Wired: On the Design, Use, and 
Theory of Educational MOOs, University of Michigan Press. 

Herbsleb, D., and Grinter, R.E., (1999). Architectures, coordination, and dis
tance: Conway's law and beyond. IEEE Software (September/October). 

Highsmith, J. (1999). Managing distributed project teams. E-Business Applica
tion Delivery, August 1999. http://cutter.comlead/ead9908.html 

Huxor, A. (1998). An Active Worlds interface for BSCW to enhance chance 
encounters. In Proceedings of CVE'98, pages 87-94. 
http://www.fxpal.comlcve/ 

ICSE 2000 (2000). Third ICSE 2000 Workshop on Software Engineering over 
the Internet. ICSE 2000, International Conference on Software Engineering, 
Limerick, Ireland, June 4-11, 
http://www.ul.ie/-icse2000/workshopsl.html#O 11. 

Isaacs, E.A., Tang, J.e., and Morris T. (1996). Piazza: A desktop environment 
supporting impromptu and planned interactions. In CSCW '96, Proceedings 
of ACM Conference on Computer Supported Cooperative Work. 

Journal of MUD Research. http://joumal.tinymush.org/-jomr/ 

Kaiser, G .. Ravages of Time: Synchronized Multimedia for Internet-Wide Proc
ess-Centered Software Engineering Environments, In Proceedings of Third 
ICSE 2000 Workshop on Software Engineering over the Internet. 
http://www.ul.ie/-icse2000/workshopsl.html#O 11 

Lindstaed, S., Schneider, K. (1997). Bridging the gap between face-to-face 
communication and long-term collaboration. In Proceedings of Group '97. 

IEEE (2000). Virtual Reality 2000. New Brunswick, NJ, USA, March 18-22, 
2000, http://www.caip.rutgers.edu/vr2000/ 

Neometron. PCSW: Project Communities Software. 
http://www.neometron.comlmain/maincommunities.html 

Poltrock, S.E., and Engelbeck, G. (1997). Requirements for a virtual collocation 
environment. In Proceedings of Group '97. 

Raybourn, E.M., and McGrath, A. (1999). Designing from the interaction out: 
Using intercultural communication as a framework to design interactions in 
collaborative virtual communities. In Proceedings of Group 99. 



www.manaraa.com

384 Tomek 

Roseman, M., and Greenberg, S. (1996). TeamRooms: Network places for col
laboration. In CSCW '96, Proceedings of ACM Conference on Computer 
Supported Cooperative Work. 

Spellman, P., Mosier J.N., Deus, L.M., and Carlson, J.A. (1997). Collaborative 
virtual workspace. In Proceedings of Group 97. 

Steed, A., and Tromp, J. (1998). Experiences with the evaluation of CVE appli
cations. In Proceedings of CVE 98 (D. Snowdon, E. Churchill, editors), 
pages 123-132. 

Steinfeld C., Chyng-Yang, J., and Pfaff, B., (1999). Supporting virtual team 
collaboration: The TeamSCOPE system, In Proceedings of Group 99. 

Team Wave. http://www.teamwave.coml 

Tollmar, K., Sandor 0., and Schomer A. (1996). Supporting social awareness @ 

work, design and experience. In CSCW 96, Proceedings of ACM Confer
ence on Computer Supported Cooperative Work, Pages 298-307. 

Tomek, I., Nicholl, R, and Giles, R (1998a). Supporting software development 
teams. In Proceedings of Advances in Concurrent Engineering, 5th ISPE 
International Conference on Concurrent Engineering, Tokyo, Japan, July 
15-17. 

Tomek, I., Nicholl, R., Giles R, Saulnier, T., and Zwicker J. (l998b). A virtual 
environment supporting software developers. In Proceedings of CVE 98. 

Tomek, I., Giles, R, (1999a). A Virtual environment to support software devel
opment teams, Journal of Concurrent Engineering Research and Applica
tions. 

Tomek, I., Giles R (1 999b). Virtual environments for work, study, and leisure. 
Virtual Reality 4(1). 

Tomek, I., Murphy, D., and Yang, G. (1 999c): MUM: A multi-universe MOO, 
In Proceedings of Web Net 99 (October). 

Tomek I., Murphy, D., and Yang, G. (1 999d). Multi-user object-oriented envi
ronments. Lecture Notes in Computer Science No. 174: Object-Oriented 
Technology ECOOP 99 Workshop Reader, Springer-Verlag. 

Tomek I. (2000). The Design of a MOO, Journal of Network and Computer Ap
plications. (To be published). 

TWUMOO (1999). Texas Woman's Moo. http://moo.twu.edu:70001 

VRAIS 98 (1998). Virtual Reality Annual International Symposium, Atlanta, 
Georgia, USA, March 14 - 18 1998, 
http://www.eece.unm.edu/eece/conf/vrais/ 

W ACC 99 (1999). International Joint Conference on Work Activities Coordina
tion and Collaboration, San Francisco, USA, February 22-25, 1999, 
http://www.cs.colorado.edu/wacc99/ 



www.manaraa.com

16. Support for Geographically Dispersed Software Teams 385 

WebNet 99, World Conference on the WWW and Internet, Honolulu, Hawaii 
October 25-28, 1999. 

Yang G., Tomek I. (2000). Team Lab: A Collaborative Environment for Soft
ware Developers, Proceeding of CRIWG 2000. 



www.manaraa.com

17 
Parsing C++ Code Despite 
Missing Declarations 

Gregory Knapen 
Bruno Lague 
Michel Dagenais 
Ettore Merlo 

17.1 Introduction 

This chapter addresses the problem of parsing a C++ software system that is 
known to compile correctly, but for which some header files are unavailable. A 
C++ program file typically depends on numerous included header files from the 
same system, a third party library, or the operating system standard libraries. It 
is not possible with a conventional parser to analyze C++ source code without 
obtaining the complete environment where the program is to be compiled. This 
chapter studies the parsing ambiguities resulting from missing header files and 
proposes a special parser which uses additional rules and type inference in order 
to determine the missing declarations. This new parser has achieved 100% accu
racy on a large system with numerous missing header files. 

This project was conducted at Bell Canada, a telecommunications service 
provider. Bell Canada performs software source code assessment as part of its 
acquisition process. The complete process is described in detail by Mayrand and 
Coallier (1996). One major aspect of this process is the static analysis of the 
source code. This requires parsing the source code to build an abstract syntax 
tree (AST) from which various metrics can be extracted. The AST is also used 
to build the control flow graph (CFG). 

Most systems being evaluated are written in C and C++, with C++ clearly 
becoming one of the main languages for system development. Over the course 
of a source code assessment, the supplier is responsible for providing all the files 
required for building the system. Very often, however, a certain number of files 
are missing. These are most often header files from third-party libraries or sys
tem-specific header files. These files are usually of little importance in the 
evaluation of the software, as they are usually beyond the scope of the software 



www.manaraa.com

388 Knapen et al. 

developed by the vendor of the system under consideration. Yet, in C++ these 
files are actually required to parse the code. 

Parsing C++ programs is a challenging task. The language is not context-free 
and contains many ambiguities. These ambiguities arise due to the fact that it is 
not always possible to distinguish a type from a simple identifier (function or 
variable) from the syntax alone. Traditional parsers (as implemented in compil
ers) are not very fault tolerant and must resort to using a symbol table to keep 
track of which identifiers are types. Compilers require that the compilation unit 
be complete (no missing header files) in order to parse the code. This chapter 
discusses parsing C++ source code with missing header files, thus with a poten
tially incomplete symbol table. 

17.2 Previous Work 

The topic of parsing incomplete C++ source code is relatively new. The term 
"Fuzzy Parser" was introduced by Bischofberger to describe a fault-tolerant 
parser "which can deal with incomplete software systems containing errors" 
(Bischofberger, 1995). The parser in question is said to have only a partial un
derstanding of C++. A more formal definition of Fuzzy Parsing is given by 
Koppler (Koppler, 1996). Both approaches allow only to recognize a subset of 
the language. This approach is fine for building a class browser or some other 
form of graphical representation of the class structure. But this is not adequate 
when trying to build an AST; the whole language must be considered in order to 
have an exact and complete abstract representation of the source code. 

17.3 Problem Description 

Parsing C++ is in itself a difficult task. It becomes even more difficult when 
header files are missing. In the context of this project, the suppliers are very 
often unable to provide the complete source code for the whole software system. 
The missing files are usually header files from third-party libraries or system 
specific header files. 

The root of the problem is in the C++ grammar. The current grammar of 
C++ is given by Stroustrup (1997); an older version is also available from the 
same author (Stroustrup, 1991). The same names for the grammar rules are used 
here. This grammar contains many syntactic ambiguities that must be resolved 
in order for the parser to apply the proper production; otherwise a parsing error 
may result. Therefore, C++ requires additional semantic information during 
parsing to resolve these ambiguities. 

Traditionally, C++ parsers keep most semantic information in a symbol ta
ble. In C++, an identifier can be a user defined type, a variable or a function. For 
the purpose of parsing, it is not always necessary to distinguish between a vari-



www.manaraa.com

17. Parsing C++ Code Despite Missing Declarations 389 

able and a function. From a practical point of view, a function can be considered 
a special case of a variable. In this chapter, the term variable is used loosely to 
refer to a variable or a function. In the grammar (Stroustrup, 1997), a function 
declaration is viewed simply as a variable declaration with an argument list. 
Each symbol (or identifier) can have two different semantics associated with it: 
type or variable. 

When a symbol is first declared, the symbol is saved in the symbol table 
along with its semantics. When the symbol is later encountered during parsing, it 
is possible to know if it is a type or a variable and then to select the correct pro
duction. The symbol table keeps track of the current scope since symbols from 
one scope can hide those of an outer scope. 

When header files are missing, it is not possible to trust the symbol table to 
be complete since some declarations may be missing. Semantic information 
might be missing, making some statements difficult to parse. Consider the C++ 
statement in the following example. 

Example 17. J. 

T (a) i 

Assume that this statement is found inside the scope of a function. This 
statement is syntactically correct ,but it is ambiguous because it can have two 
interpretations. In the C++ grammar referenced above, there are two possible 
rules that can interpret this statement. This statement can be parsed as a variable 
declaration or a function call. It is not possible to determine which rule to use 
based on the syntax alone. A semantic test has to be performed to remove any 
ambiguity. A simple test can be performed based on the semantics of the symbol 
T. If T is a type, the statement is parsed as a declaration. If T is a function, the 
statement is parsed as a function call. Note that this semantic test is not used to 
verify the semantics of the code, but to determine how to parse this statement 

It can be seen that if T was declared in a missing header file, T would be un
defined. The ambiguity would remain because it would not be possible to de
termine which rule to use based on the semantics of T. On the other hand, it is 
not true to say that semantic information is required to recognize all statements. 
For example, consider the following code fragment. 

T ai 

It is obvious from the syntax that this is a declaration with T being a type and 
a variable that is declared. Therefore it is not necessary to check in the symbol 
table that T is actually a type. Semantic information is only necessary to parse 
ambiguous constructs. 

An additional complication comes from the scope rules of C++. 

A class name may be hidden by the name of an object, function, or enu
merator declared in the same scope. If a class and an object, function, or 
enumerator is declared in the same scope (in any order) with the same name 
the class name is hidden. (Stroustrup, 1991) 



www.manaraa.com

390 Knapen et al. 

This statement implies that even if the symbol table appears to be complete, 
symbols in a missing header file could have hidden symbols in the current com
pilation unit. This is illustrated in the following example. 

Example 17.2. 

missing_header.h 
int T(int); 
extern int a; 
main.C 

#include <missing_header.h> 
class T { /* rest of code */ }; 

int main () 
T(a); /* parser would incorrectly interpret this 

as a declaration when header file is missing. This is 
in fact a function call! */ 

This means that we cannot guarantee that the name of a type that is present 
in the symbol table was not hidden by a function or variable defined in one of 
the missing header files. This means that any type could in fact be a variable (or 
function). Only variables are guaranteed to be variables, since they have prece
dence over a class (type) that has the same name as the variable. This can possi
bly cause problems when trying to resolve ambiguities and will be discussed in 
later sections. 

Also, it is not possible to parse C++ without infinite lookahead (or back
tracking) due to the difficulty in recognizing between expression-statements and 
declarations (Ellis and Stroustrup, 1990; Stroustrup, 1991). This means that the 
parser may need to look at a whole statement before deciding how to parse it. 

Another aspect that must be considered is the preprocessing. In the absence 
of header files, it is possible that some macro definitions will be missing. One of 
the consequences is that the undefined macros will not be expanded. This can 
result in syntax errors, if the syntax of the unexpanded macros are not recog
nized by the language. Another consequence is that source code in a conditional 
compilation block might be removed by the preprocessor because of a missing 
#define directive. 

Within the context of this paper, it is possible to assume that the code is se
mantically correct. This is a valid assumption since the systems inspected have 
always been compiled successfully beforehand. It cannot be assumed that the 
code is syntactically correct because of the possibility of unexpanded macros. So 
if a construct is valid syntactically, it is assumed to be semantically correct. This 
will allow to resolve certain ambiguities and will be discussed in later sections. 
Very little emphasis is put on error reporting. Instead the emphasis is put on 
parsing the code correctly to eventually build an AST. 



www.manaraa.com

17. Parsing C++ Code Despite Missing Declarations 391 

17.4 Impact of Missing Header Files on the 
Resolution of Ambiguities 

The concept of ambiguities was introduced in the previous section. Ambiguities 
are syntactically correct constructs from a recognition point of view (i.e., it is 
possible to determine if a given string belongs to the language). On the other 
hand, translation is not possible since there are two (or more) possible semantics 
associated with that construct. Consider the ambiguity in Example 17.1 when 
building an AST. It would not be possible to determine if a node representing a 
declaration or a function call should be added to the abstract syntax tree. If we 
only wanted to get the list of class declarations, this ambiguity would be irrele
vant since it has no effect on the translation. Therefore, this problem should not 
be considered a recognition problem but a translation problem. The distinction 
between recognition and translation was made informally by Parr (Parr and 
Quong, 1996). 

A list of ambiguities was compiled from various sources (Stroustrup, 1997; 
Parr, 1995; The Draft C++ Standard, 1996), as well as from the news group 
comp.std.c++. This list is given in Table 17.1. 

The first column defines the type of the ambiguity and the second column 
gives an example. Each ambiguity can include a large number of constructs. For 
example, ambiguity I also occurs in the following statements: T(*a); T(&a); 
T«a»; etc. Ambiguities are classified according to where they occur in the 
grammar, not according to a specific syntax. For example, even though the syn
tax for ambiguity 1 and 2 can be the same, they do not occur at the same point in 
the grammar and are two different ambiguities. Also different versions of the 
language may have different ambiguities. Ambiguity 2 only occurs in an older 
version of the grammar (Stroustrup, 1991) where it is not mandatory to specify 
the type of a variable in a global declaration. This ambiguity does not exist in 
the latest grammar (Stroustrup, 1997) since all variable and function declara
tions must have a type. 

The third column shows a possible semantic test that could be used to re
solve each ambiguity. In Table 17.1, it is assumed that the symbol table is com
plete, that iS,there are no missing header files. Therefore, all ambiguities can be 
resolved. In all cases, this is accomplished by checking whether a given identi
fier is a type or not. Most parser generators have a mechanism to report ambi
guities in a grammar. 

The list in Table 17.1 does not include syntactic ambiguities that are inherent 
to the language. These ambiguities are inconsistencies in the C++ grammar that 
arise even if the symbol table is complete. These ambiguities are discussed by 
Stroustrup (Stroustrup, 1991), and are resolved syntactically as defined by the 
language. This is illustrated in Example 17.3. 



www.manaraa.com

392 Knapen et al. 

Table 17.1. Most important ambiguities in the C++ language. 

Ambiguity 

I. Ambiguity between a 
function call and a vari
able declaration (at func
tion scope). 

2. Ambiguity between a 
typed variable declara
tion, an untyped function 
declaration and an un
typed variable declara
tion with initializer (at 
global scope) 

3. Ambiguity between a 
parameter list and an 
initializer 

4. Ambiguity between a 
C-style type cast and an 
expression. 

Example 

T(a); 

T(a); 

A f(T); 

a= (T) 

*b; 

5. Ambiguity between a A f(B(T)); 
declarator and an ab-
stract -declarator 

6. Ambiguity between a const T(x); 
type specifier and a 
declarator 

7. Ambiguity between a T * a; 
pointer declaration and a 
multiplicative expression 

8. Ambiguity between A < T > C; 
templates 

Example J 7.3. 

int b =3; 
float a(float(b)); 

Semantic Test 

If T is a type then it's a variable decla
ration, else it's a function call. 

1fT is a type then it's a variable decla
ration, else if a is a type then it's a 
function declaration, else it's an un
typed variable declaration with a as an 
initializer. 

If T is a type then it is a parameter list, 
and the whole statement becomes a 
function declaration. If not, it is an 
initializer, and the whole statement 
becomes a variable declaration ini
tialized with T. 

1fT is a type then it is a type cast, else 
it is a multiplication. 

Assume B is a type. If T is a type, it is 
an abstract declarator, else it is a 
declarator. 

If T is a type then it's a type specifier, 
else it is a declarator. 

If T is a type then it's a declaration, 
else it's a multiplicative expression. 

If A is a template (generic type) and T 
is a type then C is a template instan
tiation. Otherwise the whole state
ment is an expression. 

The second statement can be interpreted as a function declaration with a re
dundant parenthesis around the name of the argument, or a variable declaration 
initialized with a function style type cast. In reality, the language specifies that 
this construct should always be interpreted as function declaration. 



www.manaraa.com

17. Parsing C++ Code Despite Missing Declarations 393 

There are also more subtle ambiguities. Consider a call to an overloaded op
erator ( ) and function-style type casts. Both of these constructs have the same 
syntax as a function call. In this chapter, these are all parsed as a function call 
since the semantics are similar. Later, the actual case can be determined by ex
amining the type of the target of the call. 

There are also some pathological cases that are a combination or variation of 
the listed cases. Consider the syntax in Example 17.4. This can have three inter
pretations as given in Table 17.2. 

Example 17.4. 

A (B) (C); 

Table 17.1 showed how a traditional compiler can resolve ambiguities. It 
typically resolves the ambiguity based only on the type of the current symbol 
being parsed. Note that traditional parsers do not resolve ambiguities explicitly. 
This is done implicitly by determining the type of every symbol encountered by 
doing a table lookup in the symbol table. It is assumed that the symbol table is 
complete; in traditional compilers, an error is reported when an undefined sym
bol is encountered. 

When header files are missing, the symbol table is potentially incomplete. 
This will have an impact in the resolution of ambiguous constructs. The seman
tic tests shown in the third column of Table 17.1 are not valid anymore because 
they do not take into account the case where the symbol T is undefined. How
ever, when a symbol is undefined inside an ambiguous construct, it may still be 
possible to deduce the meaning of a statement from the semantics of other sym
bols inside that construct. This can be illustrated by an example. If we consider 
again the ambiguity between a function call and a variable declaration: 

T (a) ; 

Suppose symbol T is undefined because it is declared in a missing header 
file. If a is a variable previously declared in the same scope as the statement, 
then the statement can only be a function call since re-declaration of a variable 
in the same scope is not permitted. It is then possible to infer that T is the name 
of a variable (a function in this case). This resolution is based on the assumption 
that the source code is semantically correct, which is realistic in a reverse engi-

Table 17 .2. Various interpretations of Example 17.4. 

Semantics of A Semantics of B Semantics of C Inte!".2retation 

function Variable variable function call followed by call to 
operator 0 

type Variable variable variable declaration initialized 
withC 

type Variable Type function declaration 



www.manaraa.com

394 Knapen et al. 

neering context. It excludes the possibility that a was declared twice in the same 
scope which is an error. 

Table 17.3 shows how the semantic tests listed in Table 17.1 can be modi
fied to better cope with missing header files. The first and second columns re
main the same. In column three, the resolution of the ambiguities are based on 
the partial semantic information. The semantics of all symbols are considered in 
an attempt to resolve each ambiguity. It can be seen that the semantic test is not 

Table 17.3. Ambiguity resolution when header files are missing. 

Ambiguity Example 

I. Ambiguity between a T(a); 
function call and a vari-
able declaration (at 
function scope) 

2. Ambiguity between a T(a); 
typed variable declara-
tion, an untyped function 
declaration and an un-
typed variable declara-
tion with initializer (at 
global scope) 

3. Ambiguity between a A f(T); 
parameter list and an 
initializer 

4. Ambiguity between a a = (T)*b; 
C-style type-cast and an 
expression 

5. Ambiguity between a A f(B(T)); 
declarator and an ab-
stract -declarator 

6. Ambiguity between a const T(x); 
type specifier and a 
declarator 

7. Ambiguity between a T * a; 
pointer declaration and a 
multiplicative expression 

8. Ambiguity between a A < T > C; 
template instantiation 
and an expression 

Semantic Test 

If T is a type then it's a variable declaration; 
else if T is a function then it's a function call; 
else if a is an identifier declared in the same 
scope then it's a function call (i.e., T is un
known); else it's ambiguous (i.e., T and a are 
unknown). 

If T is a type then it's a variable declaration; 
else if a is a type then it's a function declara
tion; else if a is a variable then it's an untyped 
variable declaration with a as an initializer; 
else it's ambiguous. 

1fT is a type then it's a function declaration; 
else if T is a variable then the statement is a 
variable declaration; else it's ambiguous. 

If T is a type then it's a type-cast; else if T is a 
variable then it's an expression; else it's 
ambiguous. 

Assume B is a type. If T is a type then it's an 
abstract declarator; else it is ambiguous. 

1fT is a type then it's a type specifier; else if 
x is a type then T is a declarator; else if x is a 
variable then T is a declarator; else it's am
biguous ( i.e. T and x are undefined). 

If T is a type then it's a declaration. If T is a 
variable then it's an expression; else it's 
ambiguous. 

If A is a template (generic type) then it's a 
template instantiation; else if A is a variable 
then it's an expression; else if T is a type then 
it's a template instantiation; else it's ambigu
ous. 



www.manaraa.com

17. Parsing C++ Code Despite Missing Declarations 395 

guaranteed to resolve the ambiguity anymore. We ignore in Table 17.3 the pos
sibility that a type could have been hidden by a function or variable declared in a 
missing header file. If this assumption is not made, all cases where T is a type 
become undefined. Ambiguity 5 shows the limits of ambiguity resolution. The 
case where T is really a declarator is always theoretically ambiguous. Since T 
would be a parameter declarator, it would be the first time this symbol is en
countered and nothing can be deduced from it. There is always the possibility 
that there is a type T declared in one of the missing header files. In this case, the 
symbol table is complete, but because there are missing files we cannot exclude 
the ambiguous case. Therefore, some cases will always remain ambiguous. We 
could assume a default behavior, this will be discussed in the heuristics section. 
In ambiguity 5, it is important to note that if B is undefined it becomes a varia
tion of ambiguity 3. In this case, it is possible that variable f is being initialized 
with a function call to B. 

17.5 Parsing Incomplete Compilation Units 

It was shown so far that it is not possible to know the semantics of all symbols 
when header files are missing. Yet, a large portion of the language can be parsed 
without this information. The solution proposed here is to add special rules to 
the grammar that only recognize ambiguous constructs. For simplicity, these 
rules are referred to as ambiguity rules. With the addition of the ambiguity rules, 
the grammar will be even more ambiguous than before, since there is now one 
more rule that contains the ambiguity. 

Example 17.5 shows two simple ambiguity rules used to parse the ambiguity 
between a function call and a variable declaration. These rules are expressed in 
the syntax used in ANTLR (Parr, 1996), which is based on the BNF notation. 
The symbol I is used to separate alternatives and the parentheses are used to 
group symbols into subrules. The non-terminal symbol qualified_id is described 
in the C++ grammar (Stroustrup 1997). All symbols enclosed in double quotes 
represent terminal symbols. ID is a terminal symbol representing any non
qualified identifier in the C++ grammar. 

Example 17.5. 

func_call_or_var decl : 
qualified_id "(" init_or_var_decl ")" "i" 

init_or_var_decl : 
10 I (" &" I "*,, ) ini t_or_var_decl 
"(" init_or_var_decl ")" 

The parser first checks if a given language construct is ambiguous. If it is not 
ambiguous, then it is possible to parse this construct based on the syntax alone. 
If the construct is ambiguous, then there are two possibilities. The ambiguity 
could be simply reported by the parser. The second alternative is to try to re-



www.manaraa.com

396 Knapen et al. 

solve the ambiguity based on the partial infonnation available. Since ambigui
ties are parsed by special rules, semantic actions can be associated with these 
rules. The rules shown in Table 17.3 could be used to try to resolve the ambigu
ous constructs. In this case, a symbol table is needed, but only to resolve the 
ambiguous cases. This yields a simple algorithm: 

I. if the syntax is ambiguous, perfonn special treatment; 
2. else try other applicable rules; 
3. else it is a syntax error. 

Very often the parser will not be able to detennine using finite lookahead if a 
construct is ambiguous or not. For this reason, the parser must be able to per
fonn backtracking. 

If no resolution of ambiguities is perfonned, the problem has been reduced. 
Translation could be perfonned only on the syntactically unambiguous con
structs. This becomes a fonn of Fuzzy parsing since only the non-ambiguous 
subset of the language is considered. 

It was shown that some ambiguous constructs will always remain ambiguous 
even if all the necessary semantic infonnation is available. But other ambiguous 
constructs can be resolved with very little partial infonnation. Consider the fol
lowing example. 

Example 17.6. 

T x{A,B,C)i 

If we discover during parsing that C is a type then the parenthesized list be
comes a parameter-declaration list, and the whole statement becomes a function 
declaration. Again, it is assumed that the code being parsed is semantically cor
rect. 

Generally, symbols are added to the symbol table only when they are de
clared. But since header files are missing, not all declarations will be available. 
Furthennore, if we assume that the source code is semantically correct, it is 
possible to obtain the type of a symbol from its use in a non-ambiguous con
struct. 

Therefore, if an undeclared symbol is encountered in a non-ambiguous con
struct, it is possible to infer the type of that symbol, and add it to the symbol 
table. If the same symbol is later encountered in an ambiguous context, its type 
will be known and it will be possible to resolve the ambiguity. Of course, if the 
first encounter with the symbol is in an ambiguous context, it will not be possi
ble to detennine the type right away. 

This concept can be illustrated in the following example. 

Example 17.7. 

T ai II non-ambiguous, T added to symbol table as type 
a = (T) *bi II this is a type cast (ambiguity 4) 



www.manaraa.com

17. Parsing C++ Code Despite Missing Declarations 397 

Assume that T is declared in a missing header file. From the first statement, 
it can be Seen that T is a type. Therefore, T can be added to the symbol table as a 
type. Even though the declaration of T was never seen by the parser, it was de
duced that T was a type. This allows to resolve the ambiguity of the second 
statement. 

It is also possible that symbols encountered later, will resolve previous am
biguities. 

Example 17.8. 

int x(v); II ambiguous 
b = x+2; II x is a variable 

In this example, it can be inferred from the second statement that x is a 
variable. This would make the first statement non-ambiguous. I.e., a variable 
declaration initialized with v. 

From the point of view of ambiguity resolution, parsing incomplete sourCe 
code can be done in one or two passes. In the one-pass approach, the ambigu
ity resolution is done during parsing. In the two-pass approach, an AST is built 
in the first pass, and the ambiguities are resolved during the second pass by 
performing some tree transformation operations on the AST. This requires 
AST nodes to represent ambiguous constructs. 

17.6 Heuristics 

It was shown in Table 17.3 that some constructs will remain ambiguous. Either 
because there is not enough information in the symbol table or because that case 
is always ambiguous. It is still possible to make an educated guess about what a 
given construct means. With this approach, heuristics have to be used to resolve 
the ambiguity. The heuristics are generally based on the syntax and the scope of 
a given ambiguous construct. But the partial symbol table information can also 
be used to try to determine the most likely meaning for that construct. Also 
heuristics could be based on known programming idioms and coding standards. 

For example, consider the ambiguity between a declaration and a function 
call again. This syntax is generally used to write a function call. Parenthesis are 
usually only used around a declarator to declare a pointer to a function which is 
not ambiguous. Suppose the ambiguous function call or declaration is not in the 
global scope and that all symbols are undefined, then a good assumption would 
be to say that it's a function call. This heuristic is based on the syntax and the 
scope of the construct. 

A second heuristic can be used to resolve the ambiguity between a parameter 
list and an initializer. If the ambiguity is in the global scope, assume it is a pa
rameter list, since most functions are declared in the global scope. If the ambi
guity is encountered in a local Scope (function or block), assume it is an initial
izer since functions are rarely declared inside a function scope. These two heu-



www.manaraa.com

398 Knapen et al. 

ristics are summarized in Table 17.4. The approach used in this paper was to use 
heuristics when it was not possible to resolve the ambiguity from the informa
tion available in the symbol table. 

17.7 Implementation 

A parser was generated with a tool called ANTLR (previously known as 
PCCTS). ANTLR is a predicated LL(k) parser generator. This tool was chosen 
because it allowed building parsers that perform backtracking through a mecha
nism called syntactic predicates. It was also possible to select rules according to 
semantic information with the help of semantic predicates. This made ANTLR 
appropriate to build a C++ parser. ANTLR is described by Parr and Quong 
(Parr, 1996; Parr and Quong, 1995). The parser was generated from a modified 
public domain C++ grammar. This grammar was modified to parse C++ as 
much as possible without the help of a symbol table. 

The emphasis was put on the parsing phase. The one-pass approach was used 
for the prototype, and no AST was built. Rules were added to the grammar to 
recognize the ambiguous cases. Certain simplifications were made. Referring to 
Table 17.3, only ambiguities 1 to 6 were recognized. In the case of ambiguity 7, 
it was always assumed to be a declaration when T is undefined. Ambiguity 8 
was always considered a template declaration. Also, problems due to the scope 
rules of C++ were ignored. Thus, if a type is present in the symbol table, it is 
assumed that it is not hidden by a function or variable in a missing header file. 
These simplifications can be considered as a priori heuristics. The rules shown 
in Table 17.3 were used to try to resolve the ambiguities. 

Since they usually apply to very specific constructs, the ambiguities were 
easy to express and the associated grammar rules were easy to write. The reso
lution of ambiguities was performed directly during parsing, it was necessary to 
check in each ambiguity rule if enough semantic information was available to 
resolve the ambiguity. If enough information was available, the context would 
be non-ambiguous and the ambiguous rule would fail. Backtracking would be 
performed and the next non-ambiguous rule would be tried. 

The problem with this approach is that it relies heavily on backtracking. 
Also, all rules that can match syntactically an ambiguous construct must perform 

Table 17.4. Heuristics. 

Ambiguity Heuristic 

Ambiguity between a function call and Always a function call. 
a variable declaration (function scope) 

Ambiguity between a parameter list 
and an initializer 

If it's in the global scope, it's a parameter list. 
If it's in a function scope, it's an initializer. 



www.manaraa.com

17. Parsing C++ Code Despite Missing Declarations 399 

many semantic checks. For example, if an ambiguous rule fails because enough 
information is available to resolve the ambiguity, then the next rule must check 
again all semantic conditions to make sure it applies. 

Our symbol table did not take inheritance into account. Therefore symbols 
from a base class were not accessible to a derived class. This means that a public 
variable declared in a base class is not visible from the derived class. This only 
limits the amount ambiguity resolution that can be done. 

The preprocessing step is still required. Unexpanded macros used to repre
sent constants were interpreted as variables. Unexpanded macros that had a 
function style syntax were interpreted as function calls when their syntax was 
recognizable by C++; otherwise they were considered as syntax errors. Little 
emphasis was put on error reporting. Only the line where the error occurred was 
reported along with the line of the grammar rule that failed. Also, the parser was 
able resynchronize itself and continue parsing. 

17.8 Experimental Work 

A real system that had been evaluated before was used to test the prototype. This 
system was originally incomplete due to missing header files (as were all cur
rently examined systems). The characteristics of the system are given below. 

• 380 KLOC approximately 
• 657 source (.C) files 
• 740 header (.h) files 
• 1238 classes 
• at least 7 header files were known to be missing 

The lines of code were counted by simply counting non-empty lines. The 
preprocessing was done as a separate step using the GNU preprocessor. The 
files that were reported missing were counted. Each unique header file was 
counted only once. Also, the number of compilation units that reported missing 
files was counted. The preprocessed files were then parsed using the experi
mental parser. 

Three configurations were used to test the parser, as shown in Table 17.5. 
These configurations differ in the number of header files of the system made 
available for parsing. 

In configuration 1, no header files were included except header files in the 
same directory as the C file. This configuration represents the extreme case, and 
was used to see how well the parser would perform in such circumstances. 

In configuration 2, 104 header files were missing. These files were removed 
from the initial system. The files removed were the standard C++ files, the 
header files for the GUI, the operating system header files and other utility li
brary files. These files are at the top of the dependency graph, as a lot of compi-



www.manaraa.com

400 Knapen et al. 

Table 17.5. Configurations used to test the parser. 

Configuration 1 

• No headers 
• 654/657 compilation 

units were affected. 
• Total preprocessed 

size: 532 loc 

Configuration 2 
• Some header missing 
• 1041740 missing header 

files 
• 650/657 compilation 

units were affected 
• Total preprocessed 

size: 5M loc 

Configuration 3 
• Initial configuration 
• Most complete 
• 7 missing header files 
• 17 compilation units 

were affected 
• Total preprocessed size: 

8Mloc 

lation units would include these files. This can be seen in the numerous compi
lation units affected. This configuration represents a possible scenario, where 
none of the third-party libraries or system files are available. 

The third configuration represents the most complete system available. Even 
in that case, 7 files are known to be missing (note that the exact count cannot be 
known, as the identified missing include files may also require other header 
files). It took several iterations with the system vendor to obtain this almost 
complete system. In reality, most systems analyzed would lie somewhere be
tween configuration 2 and 3. 

Before doing the test, it was verified that the source code did not contain any 
of the pathological cases. This was done using UNIX tools such as grep, awk 
and a modified version of the parser used only to detect potentially difficult 
patterns. No such cases were discovered. 

It should be mentioned that we selected this system for this empirical 
evaluation of the parser because its anterior source code analysis revealed many 
serious weaknesses. Of particular interest in the current context is that it lacked 
well-defined interfaces (no layering), it had a complex inheritance graph and 
showed a lack of coding standards. For these reasons, this system was particu
larly well suited to test the parser. It showed many different styles of program
ming and displayed many dependencies between the files. The tests were per
formed on a SUN Ultra-l with one CPU running at 143 MHz and 64 MB of 
RAM, running Solaris 2.5. 

17.9 Results and Discussion 

The results for the various configurations are given in Tables 17.6 to 17.9. The 
first column indicates the type of the ambiguity found. Note that only three types 
of ambiguities were found in the code. These correspond to ambiguities 1, 3 and 
4 from Table 17.3. The rules from Table 17.3 were used to resolve these ambi
guities. 

The second column indicates the total number of occurrences of each ambi
guity. Since it is possible that many compilation units include the same header 



www.manaraa.com

17. Parsing C++ Code Despite Missing Declarations 401 

files, if ambiguities exists in those files, they will be repeated across all compi
lation units. This explains the large numbers obtained in the second column. The 
third column gives the number of ambiguities left unresolved. These are the 
ambiguities that could not be resolved from the information in the symbol table. 
The fourth column gives the distribution for each ambiguity. The fifth column 
gives the accuracy of the heuristic when applying it to all occurrences of each 
ambiguity. First, each case left unresolved after querying the symbol table was 
verified by visual inspection, in order to determine if the heuristic made the right 
choice. Second, it was possible to determine from the data whether the heuristics 
alone would have produced the same results as those obtained from the approach 
based on the queries to the symbol table. 

Several observations arise from Tables 17.6 and 17.7. All cases of the first 
ambiguity are function calls and the heuristic is 100% accurate. This shows that 
even though the grammar is ambiguous, programmers tend to always use the 
same syntax. In this case, the variable declaration with redundant parentheses 
never occurs, as it is not intuitive and it makes the code less readable. The heu
ristic for the second ambiguity was similarly accurate. No function declarations 
were found inside function bodies. All function declarations were in the global 

Ambiguity 

Function call or 
variable declaration 

Parameter or 
initializer 

Type-cast or 
expression 

Ambiguity 

Function call or 
variable declaration 

Parameter or 
initializer 

Type-cast or 
eXQression 

Table 17.6. Results for configuration I. 

No. of No. of Distribution 
occurrences unresolvabIe 

cases 

2579 240 all were func-
tion calls 

441 II 9 parameter 
lists; 432 ini-
tializer lists 

5 0 I type cast; 
4 expressions 

Table 17.7. Results for configuration 2. 

No. of 
No. of unresolvable 
occurrences cases Distribution 

3,648 36 all were func-
tion calls 

441 II 9 parameter 
lists; 432 
initializer lists 

5 0 I type cast; 
4 eXQressions 

Accuracy of 
heuristic for all 
occurrences 

100% 

100% 

No heuristic 

Accuracy of 
heuristic for 
all occurrences 

100% 

100% 

No heuristic 



www.manaraa.com

402 Knapen et al. 

scope. All initializer lists were found inside function bodies to initialize local 
variables. This allows ambiguity resolution based on the scope. Configuration 2 
has the same values as configuration I for the second and third type of ambigu
ity. The number of occurrences of ambiguity I is lower in configuration I than 
in configuration 2. This may seem contradictory at first, given that the configu
ration with the most missing headers (and the least complete symbol table) has 
the least amount of ambiguities. The difference in the number of ambiguities is 
found in the header files. There were a lot of function calls with the ambiguous 
syntax inside inline functions in the header files. Since these were not included 
in configuration I, the number of reported occurrences for ambiguity I was 
lower. It is possible that the number of non-resolvable cases could have been 
lower, had we used a more sophisticated symbol table. Remember that inheri
tance was not taken into account, and that this system had a very complex in
heritance graph. 

It is interesting to point out that only three syntax errors were reported due to 
syntactically incorrect macros that were not expanded. The parser was able to 
recover from these errors and continue parsing. 

Even though configuration 3 had the least amount of missing header files, 
this configuration contained the most ambiguities. It can be noticed from 
Table 17.8 that most occurrences are of the type ambiguity between a parameter 
and an initializer (ambiguity 2). Again, these come from the declaration of inline 
functions and free functions in header files. Since the layering was poor, these 
ambiguities would be repeated across numerous compilation units. The 107 
unresolvable cases are the result of the symbol table not being able to take in
heritance into account. When a member variable from a parent class is used to 
initialize a local variable in an ambiguous way, the ambiguity can not be re
solved. Had we used a more sophisticated symbol table, more ambiguities would 
have been resolved. 

Since we are using the experimental parser to parse all compilation units, it 
is assumed that they are all incomplete. This is not true and it would suggest a 

Table 17.8. Results for configuration 3.a (parsing all files with the experimental parser). 

No of Accuracy of 
No of unresolvable heuristic for all 

Ambiguity occurrences cases Distribution occurrences 

Function call or 3648 0 all were 100% 
variable function 
decIaration calls 

Parameter or 36803 107 432 initial- 100% 
initializer izer; rest 

parameter 

Type-cast or 8 0 4 type cast; No heuristic 
expression 4 expres-

sions 



www.manaraa.com

17. Parsing C++ Code Despite Missing Declarations 403 

hybrid parser that would be able to parse complete and incomplete source code. 
A second test based on configuration 3 was done by parsing only the incomplete 
compilation units. It was assumed that a traditional parser (or a hybrid parser) 
would be able to parse all other complete compilation units. The results are 
shown in Table 17.9. 

This configuration produced fewer ambiguities. All ambiguities were re
solved from the symbol table information and heuristics would not have been 
necessary. This is the ideal scenario where only a few header files are missing 
and only a few compilation units are incomplete. 

The heuristics seem to apply very well to the code analyzed. Initially heuris
tics were incorporated into this project to try to resolve the cases that were not 
resolvable from the information available in the symbol table. But it was found 
that they were 100% accurate in resolving all ambiguities of a given type. The 
heuristics used seem to work well because they coincide with common pro
gramming idioms. For example, the syntax of ambiguity I was always used to 
make a function call. This syntax is used for function calls, so it will not be used 
for any other purpose. Violating this idiom would result in making the code less 
readable. This means that the two heuristics could potentially replace the se
mantic tests 1 and 3 in Table 17.3. A symbol table would not be necessary to 
resolve those two ambiguities. 

No heuristic for the ambiguity between a type cast and an expression was 
developed at the time because all such ambiguities could be resolved from the 
symbol table information. Also, no heuristics were developed for the other am
biguities since there were no such ambiguities in the code to compare them 
against. 

Although the two heuristics used did not rely on the symbol table to make 
their guess, this does not necessarily have to be the case. Consider the ambiguity 
between a C-style type cast and expression. It is not possible to guess the true 
meaning from the syntax alone. And since a type cast and an expression both 
occur at function scope, the scope cannot be used to discriminate among the 

Table 17.9. Results for Configuration 3.b (parsing only the affected compilation units). 

Accuracy of 
No. of heuristic for 

No. of unresolvable all 
Ambiguity occurrences cases Distribution occurrences 

Function call or 80 0 all were func- 100% 
variable declaration tion calls 

Parameter or 481 0 20 initializer; 100% 
initializer 461 parameter 

Type-cast or 0 0 N.A. No heuristic 
expression 



www.manaraa.com

404 Knapen et al. 

two. From Table 17.8, we can see that both possibilities are just as likely. So we 
cannot assume that it is always a type cast or always an expression. Yet, we can 
still develop a simple heuristic that takes into account the semantic information 
available. 

Consider the rule in Table 17.3 used to resolve the ambiguity between a C
style type cast and an expression (ambiguity 4). If T is undefined, we could 
assume that it's a type cast since it is more likely that a type was declared in a 
header file (missing in this case). For this heuristic, a symbol table is still re
quired. The assumption made is based on the fact that the symbol is undefined 
because it was declared in a missing header file, not because this information 
was not properly extracted. This shows that knowing that a symbol comes from 
a missing header is still valuable information that can be used to resolve ambi
guities. 

Ironically, this heuristic is not that useful. This can be observed from the re
sults. All ambiguities between a type cast and an expression could be resolved 
from the information available in the symbol table. This has a very simple ex
planation. In all cases, when a type cast is present in a function, a variable of 
that type was previously declared in the same function. This results in the addi
tion of the type in the symbol table prior to the parsing of the type cast, as illus
trated in Example 17.7. 

As mentioned previously, no other type of ambiguity was found. This is an 
interesting result that implies that only certain types of ambiguities arise in 
practice. While it might be interesting to detect all ambiguities, it is probably 
worthwhile to only try to resolve the frequent ones. The ideal solution (from an 
accuracy point of view) would be to first use the resolution based on the infor
mation available and then resort to heuristics when symbols are undefined. 

The approach used was to parse the code in one single pass. The ambiguities 
were resolved with the current information available. If more semantic informa
tion would become available later, it was not possible to go back and make an 
ambiguous construct non-ambiguous. This is due to the fact that no AST was 
being built at the time. 

Another disadvantage of this approach is that of complexity. For each type 
of ambiguity, there are at least three rules that apply, the ambiguous rule and the 
other potential rules. Since the resolution of ambiguities is done during parsing, 
the syntax and the semantics must be checked together. This can result in com
plicated predicates. In this case, backtracking occurs either when the construct is 
syntactically incorrect or semantically incorrect. Even with extensive back
tracking, the performance was acceptable. It took around 2 minutes to parse all 
the files for configuration 1 and about 20 minutes for configuration 3. 

With the two-pass approach, as soon as an ambiguous case is detected the 
ambiguous rule would be selected and an ambiguous AST node would be built. 
Backtracking would only be done to detect ambiguous constructs and to recog
nize certain difficult C++ constructs. 



www.manaraa.com

17. Parsing C++ Code Despite Missing Declarations 405 

17.10 Conclusions 

This paper demonstrates the ability to parse C++ compilation units despite 
missing header files. The proposed approach uses special grammar rules to han
dle ambiguities. All non-ambiguous constructs are parsed based on the syntax 
alone, eliminating the need to see all symbol declarations. Furthermore, symbols 
were added to the symbol table not only from declarations but from any non
ambiguous construct, helping to resolve more ambiguities. 

Backtracking is necessary to check if a given construct is ambiguous or not. 
Most ambiguities can be resolved using the rules shown in Table 17.3 and a 
symbol table. This is confirmed by the results. The cases that can't be resolved 
from the information available in the symbol table can be resolved using heuris
tics. The simple heuristics used in this paper were 100% accurate, and could 
replace the corresponding semantic tests defined in Table 17.3. 

As discussed earlier, heuristics could not entirely replace the approach based 
on the symbol table. Yet, heuristics can be used to make the parsing simpler and 
to resolve the difficult cases. Both approaches are complementary. 

The parser could keep track of the number of ambiguities detected. From a 
metrics point of view, the number of ambiguities could be used as an indicator 
of the readability of the source code. Since it is possible for heuristics to guess 
wrong, it can be a good idea to have a metric that records the number of times a 
heuristic is used. It would then be possible to know the percentage of ambigui
ties resolved by heuristics, thus providing a confidence level for the results. 

In the future, the second approach based on the AST should be tried. This 
approach would be simpler from the parsing point of view. Also it would be 
instructive to compare metrics extracted by a traditional parser and the ones 
obtained form the experimental parser when header files are missing. This could 
help determine the influence of missing headers on the resulting metrics. 

In the discussion, a hybrid parser was suggested. If all the header files are 
available, all compilation units are complete, and the parser can make the same 
assumptions as a compiler. In this case, all symbols will be defined and all am
biguities should be resolvable. As soon as a header file is missing, the parser 
would work in the manner described. Such a parser would need to know if the 
preprocessor was able to include all files or not. This can be easily achieved 
using a #pragma directive, that is, the preprocessor would issue the directive in 
its output telling the parser that a header file is missing. The parser would use 
the rules in Table 17.1 when the compilation unit is complete and would switch 
to the rules in Table 17.3 when header files are missing. 

© 1999 IEEE. Reprinted. with permission, from the Proceedings of the Seventh Interna
tional Conference on Program Comprehension. 



www.manaraa.com

406 Knapen et al. 

17.11 References 

Aho, A.V., Sethi, R., and Ullman, J.D. (1986). Compilers-Principles. Tech
niques and Tools, Addison-Wesley, Reading, MA. 

Bischofberger, W.R. (1995). Sniff-A Pragmatic Approach to a C++ Program
ming Environment. In Proceedings of the 4th International Workshop on 
Parsing Technologies (Prague, Czech Republic). 

Ellis, M.A., and Stroustrup, B. (1990). The Annotated C++ Reference Manual, 
Addison-Wesley, Reading, MA. 

Koppler, R. (1996). A Systematic Approach to Fuzzy Parsing. Software-Prac
tice & Experience (27)6: 637-649. 

Mayrand, J., and Coallier, F. (1996). System Acquisition Based on Software 
Product Assessment. In Proceedings of the 18th International Conference 
on Software Engineering (Berlin, March 25-29). 

Parr, T.J. (1996). Language Translation Using PCCTS & C++: A Reference 
Guide, Automata Publishing Company, San Jose, CA. 

Parr, T.J., and Quong, R.W. (1996). LL and LR Translators Need k >1 Looka
head. SIGPLAN Notices 31 (2). 

Parr, T.J., and Quong, R.W. (1995). ANTLR: A Predicated-LL(k) Parser Gen
erator. Software-Practice & Experience 25(7): 789-810. 

Parr, TJ. (1995) PCCTS Workshop. 
Available at http://www.antlr.org/l.33/workshop95 

Sametinger, J., and Schiffer, S. (1995). Design and Implementation Aspects of 
an Experimental C++ Programming Environment Software-Practice & 
Experience 25(2): 111-128. 

Stroustrup, B. (1997). The C++ Programming Language, Addison-Wesley, 
Reading, MA. 

Stroustrup, B. (1991). The C++ Programming Language, Second Edition, 
Addison-Wesley, Reading, MA. 

Stroustrup, B. (1994). The Design and Evolution of C++. Addison-Wesley, 
Reading, MA. 

The Draft C++ Standard (1996). Working Paper for Draft Proposed Interna
tional Standard for Information Systems-Programming Language C++. 
(ANSI Document X3J16/96-0225, ISO Document WG21INI043.) 



www.manaraa.com

18 
Towards Environment Retargetable 
Parser Generators 

Kostas Kontogiannis 
John Mylopoulos 
Suchun Wu 

18.1 Introduction 

One of the most fundamental issues in program understanding is the issue of 
representing the source code at a higher level of abstraction. Even though many 
researchers have investigated a variety of program representation schemes, one 
particular scheme, the Abstract Syntax Tree (AST), is of particular interest for 
its simplicity, generality, and completeness of the information it contains. In this 
chapter, we investigate ways to generate Abstract Syntax Trees that conform with 
a user-defined domain model, can be easily ported to different CASE tools, and 
can be generated using publicly available parser generators. The work discussed 
in this chapter uses PCCTS and yacc as parser generators, and provides an inte
gration mechanism with the conceptual language Telos, and the CASE tools Rigi, 
PBS, and Refine™. 

Extracting and representing the syntactic structure of source code is generally 
acknowledged to be one of the most important activities in program understand
ing. This activity is considered a prerequisite to both maintenance and reverse 
engineering of legacy source code (Tilley and Smith, 1996). Traditionally, the 
activity consists of two steps, parsing and lexical analysis. However, unlike tradi
tional syntax-directed approaches used by compilers, parsing and lexical analysis 
for program understanding purposes are carried out with respect to a language
specific domain model which describes the syntactic and semantic constructs of 
the underlying programming languages. The use of domain models by parsers 
and parser generators is not new. Arango and Prietro-Diaz (1991) and Markosian 
(1994) discuss source code analysis techniques for legacy code that produce Ab
stract Syntax Trees (AST) on the basis of domain models. 

In the literature one can find a wealth of parser generator environments (PC
CTS, Yacc, Eli, TXL, LLGen, Pgs, Cola, Lark, Genoa, and Dialect, to mention a 
few) (Malton, 1993; Fischer and LeBlanc, 1991; Breuer and Bowen, 1993; Parr, 



www.manaraa.com

408 Kontogiannis et al. 

1996). All of these environments provide a formalism to represent grammatical 
rules, and a mechanism to trigger semantic actions when a rule is applied suc
cessfully during the parsing process. Kotik and Markosian's (1989) Refine re
engineering environment allows for the development of parsers based on domain 
models. Similarly, GENOA, discussed in Devambu (1992) and Devambu et al. 
(1994), is a language independent application generator that can be interfaced to 
the front-end of a compiler, which produces an attributed parse tree. This can 
be achieved by writing an interface specification using a companion system to 
GENOA, called GENII. The advantage of GENOA/GENII is that tools for pro
gram understanding, metrics, reverse engineering and other applications can be 
built without having to write a complete parser/linker for the source language in 
which the application is written. Moreover, earlier versions of the yacc (Breuer 
and Bowen, 1992) parser generator allowed for the creation of a walkable data 
structure that represented an abstraction of the AST in dynamic memory. The ma
jor difference of the proposed approach with the one applied in yacc is that in 
the approach presented here, the user can customize the domain model and there
fore the annotations and the shape of the generated AST to fit specific analysis 
objectives. 

However, most commercial tools do not provide a programming interface (API) 
and therefore the generated Abstract Syntax Trees can only accessed and pro
cessed in a limited way for any complex re-engineering or program understand
ing task. Within this framework, the objectives of this chapter focus on three 
directions. 

The first is to report on techniques which make it possible to generate annotated 
Abstract Syntax Trees at various levels of granularity with respect to the parsed 
source code. 

The second is to propose a methodology for simplifying the process of devel
oping a grammar and a parser for a given programming language. 

The third is to report on an architecture that facilitates the exchange of source
code-related information, between different software engineering analysis tools 
through the use of domain models, schemata, and persistent software repositories. 

Towards these objectives, we experimented with the use of domain models by 
different parser generator environments. The first one is the PCCTS (Parr, 1996; 
Stanchfield, 1997) parser generator environment. The second is the C public do
main parser generator yacc. Ongoing work reported also in this chapter involves 
the use of XML for annotating source code using the JavaCC parser generator 
(Sun Microsystems, 20(0). 

The work discussed here was carried out within the context of a software re
engineering project whose ultimate objective is to establish a generic and open 
software re-engineering environment. The environment should allow for different 
CASE tools to be integrated in terms of suitable intermediate representations and 
a persistent repository of multi-faceted information about a legacy system. Earlier 
reports on this project can be found in Buss et al. (1994) and Finnigan et al. 
(1997). 



www.manaraa.com

18. Towards Environment Retargetable Parser Generators 409 

This chapter is organized as follows. In Section 18.2 we report on different 
techniques for producing source code representations tailored for program analy
sis and program understanding. In Section 18.3 we discuss the rationale behind the 
use of the Abstract Syntax Trees CASTs) as a representation of source code struc
ture. In Section 18.4 we outline the approach we adopted in order to construct cus
tomizable and domain re-targetable ASTs, and discuss how our approach works 
by applying it to a small C code fragment. In Section 18.5, we discuss advantages 
and limitations of our approach. In Section 18.6 we present alternative parsing 
techniques based on XML. In Section 18.7 we discuss the design of an integra
tion environment for communicating data between the system presented in this 
chapter and various CASE tools and offer experimental results by using the pro
posed approach. Finally in Section 18.8 we summarize the chapter and we provide 
a perspective for further work. 

18.2 Parsing for Program Analysis 

Traditionally, parsing has been seen as a tool for producing internal represen
tations of source code with the purpose of generating executable binaries for a 
specific target operating platform. In contrast, parsing for program understand
ing aims on producing representations of the source code that can be used for 
program analysis and design recovery purposes. In this respect, program repre
sentation aims on facilitating source code analysis that can be applied at various 
levels of abstraction and detail, namely at: 

• the physical level where code artifacts are represented as tokens, syntax 
trees, and lexemes, 

• the logical level where the software is represented as a collection of mod
ules and interfaces, in the form of a program design language, annotated 
tuples, aggregate data and control flow relations, 

• the conceptual level where software is represented in the form of abstract 
entities such as, objects, abstract data types, and communicating processes. 

These representations are achieved by parsing the source code of the sys
tem being analyzed at various levels of detail and granularity. Specifically, over 
the past years a number of parsing tools have been proposed and used for re
documentation, design recovery and, architectural analysis. Overall, the parsing 
technology for program understanding can be classified in three main categories. 

The first category, deals with full parsers that produce complete ASTs of a 
given code fragment. The second category focuses on scanners that produce par
tial ASTs or emit facts related to control and data flow properties of a given source 
code fragment. Finally, the third category deals with regular expression analyz
ers that extract high-level syntactic information from the source code of a given 
system. 



www.manaraa.com

410 Kontogiannis et al. 

Full parsers are used for detailed source code analysis as they provide low
level detailed information that can be obtained from the source code. This in
cludes data type information, linking information, conditional compilation direc
tives, and pre-processed libraries and macros. 

In this context, a full parser generator called Dialect is proposed in Kotik and 
Markosian (1989). The approach uses a domain model as well as yacc and lex 
to produce a parser, given a BNF grammar. The AST is represented in terms of 
CLOS objects in dynamic memory, and can be accessed by a LISP-like program
ming interface (API) written for the CASE tool Refine. 

Datrix (Bell Canada, 2000) is another full parser for C++ source code. The 
parser emits an AST representation that is suitable for source code analysis and 
reverse engineering of systems written in C++. A domain model for C++ pro
vides the schema that describes the structure of the generated AST. Moreover, 
programming interface provides access to the AST and the ability to export de
tailed information in the form of RSF tuples (MUlIer, 1993). 

Similar to the approach above, Devambu (1992) presents a C/C++ parser gen
erator that produces a fully annotated AST representation of the code. The source 
code representation can be accessed by GEN++ for specifying C++ analysis and 
GENOA that provides a language-independent parse tree querying framework. 

Finally, another technique that is gaining popUlarity due to the emergence of 
mark-up languages is to annotate the source code using XML. Document Type 
Definitions (DTDs) can be automatically built by analyzing the grammar of a 
given programming language. Parser generators such as JavaCC can be used to 
emit XML annotated source code by altering the semantic actions in a given 
grammar specification. Currently, DTDs for C, C++, and Java have been proposed 
(Mamas, 2000) and are available through the Consortium for Software Engineer
ing Research (CSER). Once XML annotated source code is parsed, AST-like rep
resentations can be generated. These AST-like structures are called DOM trees. 

In the second category of parsing techniques, scanners are used for extracting 
high-level information from a software system. This includes information related 
to declarations, calls, fetches and stores of program variables as well as, high level 
directory and source code organizational information. Data obtained from scan
ners are particularly useful for high level architectural recovery of large systems 
and can be readily used by various visualization and analysis tools. 

MUller (1993) proposes a source code representation scheme that is based on 
relation entity-relation tuples (RSF). The approach is based on parsers for which 
their semantic actions are modified and applied only to a selected set of grammar 
rules to emit facts in the form of entity-relation tuples. As a result information 
pertaining only to specific syntactic construct (i.e., declarations, function calls) is 
presented and the rest of the source code is treated effectively as whitespace to be 
skipped. 

Similarly, Holt (1997) describes a modified gnu C parser that allows for at
tributed tuples to be emitted. The modified parser called CFX produces high-level 
source code representations that comply with the TA syntactic form and can be 



www.manaraa.com

18. Towards Environment Retargetable Parser Generators 41 1 

directly used by the PBS visualization toolkit described in Chapter 14. 
In the third category, regular expression analyzers provide high-level syntactic 

infonnation of a system. Their major strength is their simplicity and availability as 
they can be implemented using scripting languages such as Peri, TCL, and Awk. 

18.3 Rationale for Using AST Representations 

As programming languages become more and more complex, one-pass compilers 
which don't produce any intennediate fonn of the compiled code are becoming 
very rare. This is also true in the area of program understanding and software 
re-engineering (Tilley and Smith, 1996). This has led to a variety of intennediate 
representations of the syntactic structure of source code. 

For program understanding and re-engineering purposes, a suitable represen
tation must be able to represent syntactic infonnation which persists and evolves 
through the entire life-cycle of a software system. This life-cycle typically begins 
with source code analysis during development, and continues throughout succes
sive maintenance, reverse engineering and re-engineering phases (Chikofsky and 
Cross, 1990). 

Often, such a representation limits what can be expressed and described within 
it for the source code. Hence, generating an intennediate representation is an ex
tremely important aspect for program understanding. 

Kontogiannis (1993) surveyed common program representations, such as Ab
stract Syntax Trees (AST), Directed Acyclic Graphs (DAG), Prolog rules, code 
and concept objects, and control and data flow graphs. Among these, the AST is 
the representation that is most advantageous, and is most widely used by software 
developers. The reason for the popularity of the AST as a program representation 
scheme is its ability to capture all the necessary infonnation for perfonning any 
type of code analysis, as well as the neutral representation of the source code it 
offers with respect to data flow and control flow source code properties. 

To justify the AST representation used here, we need to distinguish first be
tween a parse tree and an AST. 

A parser explicitly or implicitly uses a parse tree to represent the structure of 
the source program (Aho et aI., 1986). In Figure 18.l(a) such a parse tree for an 
arithmetic expression is illustrated. 

An AST is a compressed representation of the parse tree where the operators 
appear as nodes, and operands of the operator are the children of the node rep
resenting that operator. Figure 18.l(b) illustrates the AST for the the expression 
whose parse tree is given in Figure 18.1. 

Figure 18.l(c) illustrates an annotated AST where the tree edges become anno
tated attributes between nodes. 

The AST we adopted for our project is a variation of the AST shown above, 
called annotated AST. The following is an example of an annotated AST for the 
PLiX If-Statement illustrated in Figure 18.2: 



www.manaraa.com

412 Kontogiannis et al. 

(a) (b) (c) 

Add ...... ...... 

/1\ /\ -I \kg, 
+ 2 2 2 

ParaaTree Abstract Syntax Tree Annotated Abstract Syntax Tree 

Figure 18.1. Parse tree and AST representation for the expression "1 + 2". 

IF (OPTION> 0) THEN 
SHOW_MENU(OPTION) 

ELSE 
SHOW_ERROR("InValid option ••• ") 

Links of the AST are represented as attributes associated with (node) ob
jects. In the If-Statement example, three attributes, are associated with the 
If-Statement node, and hold the fact that there are three components to an 
If-Statement (condition, then-part, else-part). The tree in Fig
ure 18.2 is also annotated with a fanout attribute that denotes the number of func
tion calls that appear in the AST node corresponding source code entity. The 
fanout attribute can be computed compositionally from the leaves to the root of 
the AST as illustrated in Figure 18.2. In the subsequent discussion, we use the 
term AST to denote an annotated AST. 

18.4 The Domain Model Approach 

In this section, we describe a domain-model based technique of generating an 
AST. The process of developing a domain model based parser is illustrated in 
Figure 18.3 and consists of three phases: 

1. Identification and modeling of the syntactic structures of a programming 
language in the form of object classes in a domain model. Instances of the 
object classes along with their corresponding attributes form the actual AST 
nodes and edges, respectively, 

2. Development of a grammar for the programming language by using the 
domain model object classes as grammar nonterminal symbols, 

3. Integration of semantic actions with grammar rules so that the AST can be 
built during parsing in a customizable way. 



www.manaraa.com

18. Towards Environment Retargetable Parser Generators 413 

'aoouI 

_'-name "'_""We de""""""""", b --

~6clJ~ 
Legend ---------, 

'-_~_~_.). = AST node 

I .............. , = Unk from parenl 
10 child via a 
named attribute. 

= Fanout anMOOle 
conlalning integer 
value V. 

IonouI 

........ ,"1J 
'O£NT.AEA ~ITERAl REFERENCE STRING 

'''-

_'-name b --
.~ 

8 

Figure 18.2. Annotated AST for an If-Statement. 



www.manaraa.com

414 Kontogiannis et al. 

For the overall AST generation process there are two levels of abstraction. The 
higher level focuses on the definition of the domain model using a modeling lan
guage and the specification of grammar rules using EBNF. 

The lower level of abstraction focuses on utilities that allow for the generation 
of an AST in terms of a concrete programming formalism. For our work we have 
chosen to represent ASTs in terms of C++ objects, and the grammar to be speci
fied in an off-the-shelf parser generator (i.e., PCCTS). Finally, the domain model 
is designed and implemented using the conceptual language Telos (Mylopoulos 
et aI., 1990). 

As indicated in the introduction, the domain model-based approach aims at 
the development of parsers that are easy to develop, and can be integrated with 
a variety of CASE tools. For this chapter, we examine how the domain model 
approach can be applied so that: 

• the grammar specifications can be represented in a simple way, 

• the communication between the parser and the lexical analyzer can be en
hanced, and finally, 

• the structure of the generated AST can be customized and controlled by the 
user. 

18.4.1 Developing a Domain Model 

There are two basic methods for building a domain model for a given program
ming language. One method is bottom-up, in the sense that it uses the nontermi
nals in the language grammar to obtain the classes of the domain model. In this 
approach each nonterminal symbol has a close relationship with the objects in a 
parse tree (Aho et aI., 1986). 

The other basic method for building domain models is top-down. In this ap
proach, domain models are built in an incremental way where the higher-level 
schemata (domain model entities) are specified first, and then they are refined ac
cording to the syntactic and structural elements and relations of the programming 
language being modeled. The domain model schemata provide the specification 
for the objects with which ASTs are generated and composed. 

In this context, a domain model defines a set of objects and the interrelation
ships among them. Overall, the domain model must be expressed in an envi
ronment which offers modeling capabilities and some persistent storage for the 
classes and objects of the domam model (which represent generated AST). For 
our work, we adopt Telos (Mylopoulos et aI., 1990) to represent domain mod
els, primarily because of its expressiveness and portability. Among other features, 
Telos allows an arbitrary number of meta-class hierarchy levels to be defined. 
This feature is exploited in dealing with different versions of the same language. 
Moreover, the AST generated by the parser generator can be persistently stored in 
a Telos repository or any other commercial database and exported to other tools 



www.manaraa.com

18. Towards Environment Retargetable Parser Generators 415 

-
Domain 
Model 

Translation 

Domain Model 

Implementation 

Input 

-
Grmmar 

Rules 

-
Translation 

urammar 
Rules with 

Input 

Semantic i+-----j 
Actions 

Parser Generator 

Semantic 
Actions & 

Utilities 

[

Input Output Annotated 

1----------+iL_p_a_rs_e_r ----'I------t Abstract 
Syntax Tree 

Source Code 

Figure 18.3. The AST domain-model based generation process. 

for subsequent analysis (Buss et al., 1994). Modeling the application domain in
volves the discovery of objects classes that represent the AST nodes and their 
relationships which represent the AST branches. 

For example, in the case of the C programming language, we may consider 
the following categories of schemata (classes) as part of the C domain model 
(Reasoning Systems, 1990(a); Kernighan and Ritchie, 1988}: 

Telos-Object 
- Program 
- Declaration-Object 
- File 
- Function 
- Statement 

For each language domain model, there is an object hierarchy that can be im
plicitly imposed on schema entities by the structure of the programming language 
itself. Along these lines, further refinement of the C language object domain hier
archy is shown below (Kernighan and Ritchie, 1988): 

ObjectClass 
••. Container 
.•• Attribute 
••• C-object 
•••••• Program 
•••••• Declaration-Object 



www.manaraa.com

416 Kontogiannis et al. 

•....•.•. Function 
•••••• Expression 
•••••.••• Identifier-Ref 
.••••.••• Function-Call 
.•.•.. File 
.••••. Statement 
..••••..• If-Statement 
••••••••• Assign-Statement 

The task of defining relationships among objects is emanating from the syntax 
of a programming language itself. This task is directly related to identifying the 
edges of the AST. For example, an If-Statement domain-model class as il
lustrated below may have three attributes. The one is the condition attribute 
which maps to an Expression class, and the other two are the then-part 
and the else-part attributes which map to a Statement. In the domain 
model, one can specify the If-Statement class and its corresponding at
tributes in Telos as follows: 

SimpleClass If-Statement 
in ObjectClass 
isA Statement 
with 

attributes 
condition 
then-part 
else-part 

Expression; 
Statement; 
Statement; 

end 

This can be read as follows: the class If-Statement is a subclass of a 
Statement domain model class; it has three arguments two of them map to the 
class Statement and one to the class Expression. A simple transformation 
program can translate the above domain model class definition to corresponding 
c++ classes, two of which are illustrated in the example below: 

class If-Statement: public Statement, 
ObjectClass 

{ 
private: 
Condition *condition; 
Then-part *then-part; 
Else-part *else-part; 

public: 
Condition *getCondition(); 
Then-Part *getThen-Part(); 
Else-Part *getElse-Part(); 
void *putCondition(Condition *aCond); 
void *putThen-Part(Statement *aStat); 
void *putElse-Part(Statement *aStat); 



www.manaraa.com

18. Towards Environment Retargetable Parser Generators 417 

} ; 

and the sample attribute: 

class Condition: public Attribute, ObjectClass 
{ 
private: 
If-Statement *from; 
Expression *to; 

public: 
C-Object 
Container 
void 

*getFrom( ) 

void 

*getTo( ) 
*putFrom(If-Statement *aStat) 
*putTO(Expression *aExpr) 

} ; 

The instantiations of the above C++ classes can be generated at parse time and 
form the nodes of the AST. 

18.4.2 Defining the Grammar 

To understand how the grammar specification associates with the domain 
model, consider the development of a grammar for three C language constructs 
(If-Statement, Assign-Statement, Block-Statement). 

A domain model for the above constructs is specified in terms of an hierarchical 
schema as: 

Statement 
••• If-Statememt 
••• Assign-Statement 
••• Block-Statement 

In Telos,the constructs are specified as follows: 

SimpleClass Statement 
in ObjectClass 
isA C-Object 

end 

SimpleClass If-Statement 
in ObjectClass 
isA Statement 
with 

end 

attributes 
condition 
then-part 
else-part 

Expression; 
Statement; 
Statement; 



www.manaraa.com

418 Kontogiannis et al. 

SimpleClass Assign-Statement 
in ObjectClass 
isA Statement 
with 

end 

attributes 
assign-lhs 
assign-rhs 

Identifier-Ref; 
Expression; 

SimpleClass Block-Statement 
in ObjectClass 
isA Statement 
with 

attributes 
stat-list sequence-of(Statement); 

end 

The grammar for a given language can be built in two phases. The first phase 
is automatic and is used for emitting grammar rules that can be directly inferred 
from the domain model. These include rules that involve nonterminals that corre
spond to class-subclass hierarchies and to class-attribute relations in the domain 
model. An example is the rule R. 4 and rules R. 5-R.I0 respectively as illus
trated below. 

The second phase is user-assisted and involves the user writing the grammar 
for a given programming language provided that he of she uses as non-terminals 
entities specified in the language domain model. Examples are the rules R. 1-
R.3 illustrated below. For example, the Assign-Statement domain entity, is 
used as a non-terminal in rule R. 2 along with its attributes as s ign-lhs and 
assign-rhs. Attributes for which their target domain is a sequence of entities 
(such as in the case of stat-list attribute), are transformed into rules that 
involve the closure operations * or + as illustrated in the case of rule R. 3. 

Given these classes, the following grammatical rules can be specified as: 1 

R.l If-Statement "if" "(" condition ")" "then" 
the-part {["else" else-part)}; 

R.2 Assign-Statement : assign-lhs "=" assign-rhs; 

R.3 Block-Statement: stat-list +; 

IThe grammar rules are given for clarity at a higher level that the one they will appear 
at the original PCCTS specification. An automatic translation to PCCTS or yacc rules 
from the given high-level rule specification is also possible. In these rules, curly brackets 
denote optional choice while square brackets indicate sequencing. 



www.manaraa.com

18. Towards Environment Retargetable Parser Generators 419 

while the rules the following rules are generated automatically by the domain 
model, 

R.4 Statement If-Statement I Assign-Statement 
Block-Statement; 

R.S condition Expression; 

R.6 then-part Statement; 
R.7 else-part Statement; 

R.B assign-lhs Identifier-Ref; 
R.9 assign-rhs Expression; 

R.I0 stat-list : Statement; 

The coordination of grammar rules and the domain model in order to generate 
the desired AST is achieved only with a set of semantic actions that are invoked 
from within the parser generator. We do not put any restriction on the parser gen
erator and therefore the same semantic actions can be invoked by a variety of 
parser generator tools requiring only minor or no modifications. 

Defining a parser for a programming language can be a tedious exercise espe
cially if the language contains context-sensitive structures. 

18.4.3 Generating the AST 

In order to fulfill the task of AST generation by using the machine described 
above, we need appropriate semantic actions to be inserted into the grammar. 

We have defined three semantic actions that are associated with each rule. 
These are: BuildRule, BuildTerm, and BuildAttr. These actions oper
ate on two global stacks RuleStack and NodeStack. The first stack keeps 
track of the current rule applied while the second stack stores the generated AST 
nodes that have still to be linked with their parent node during the AST generation 
phase. The semantic actions are automatically inserted in the grammar rules given 
the domain model specification. Only the rules for which their left-hand size part 
(i.e., the head of the grammar rule) corresponds to a domain model class that does 
not have any subclasses need to be annotated by the semantic actions described 
below. The reason is that all other rules are not used to generate AST nodes and 
are simply used to facilitate the parsing process for a given top-level non-terminal 
starting grammar symbol. These semantic actions are discussed in detail below: 

BuildRule (Rule): This action takes as a parameter the current rule name 
(i.e., the name of the non-terminal in the head of a rule). This action is inserted as 
the first semantic action to be carried out at the right-hand side of a given rule. It is 
actually invoked before the rule components are tried. In other words, the action is 



www.manaraa.com

420 Kontogiannis et al. 

invoked before a rule recognizes anything in the input stream. More specifically, 
this action registers the rule as the current rule applied. Concretely, it creates an 
instance of the class Ru le the pointer of which is pushed onto a RuleStack. 

Once the rule succeeds (i.e., all right-hand-side non-terminals or terminal sym
bols have been resolved against the source text), the reference for this rule is 
popped from the RuleStack indicating that this is not anymore the current rule be
ing tried. Hence, the only purpose of the BuildRule ( ) action is to keep track 
which is the current rule being tried. In this respect, a stack data structure allows 
for keeping track of multiple nested invocations of the same rule-a frequent case 
that occurs during the parsing process. 

As an example consider the rule: 

Assign-Statement : 
assign-lhs "=" assign-rhs~ 

The rule above has two nonterminals (assign-lhs, assign-rhs) and one 
terminal (the token "="). 

By examining the domain model, two more rules are automatically added. 
These are: 

assign-lhs Identifier-Ref~ 

assign-rhs Expression~ 

The domain model is also used to recognize if a non-terminal is an at
tribute or a class. For the example domain model given in Section 18.4.2, 
Assign-Statement is defined as a class entity, while assign-lhs and 
assign-rhs are defined as attributes of the Assign-Statement class. The 
Assign-Statement rule shown above enhanced with the BuildRule se
mantic action and the additional rules obtained by the domain model becomes: 

Assign-Statement: 
« BuildRUle(ASsign-Statement)~ » 

assign-lhs "=" assign-rhs ~ 

assign-lhs: 
« BuildRule(assign-lhs)~ » 
Identifier-Ref~ 

assign-rhs: 
« BuildRUle(assign-rhs)~ » 
Expression~ 

BuildTerm( Term): This action takes as a parameter the name of the non
terminal symbol at the head of the rule as well. This semantic action is placed 
at the end of a rule, provided that the head of the rule is a class that has no 



www.manaraa.com

18. Towards Environment Retargetable Parser Generators 421 

subclasses in the domain model. If the head of the rule is an attribute then the 
BuildAttr semantic action is applied instead. The BuildAttr(Attr) ac
tion is discussed below. Examining whether or not a term corresponds to a Class 
or an Attribute takes only a simple look-up operation on the domain model 
specification. The BuildTerm( Term) action aims at building the AST node 
that corresponds to the latest term (head of the rule) succeeded. This action is 
implemented by incorporating a globally available stack called NodeStack. 

Once the rule is successfully parsed the BuildTerm (Term) semantic action 
is invoked. An instance of an object of type Term is constructed and is pushed 
on the TermStack indicating that this is the most recent rule successfully tried. If 
the rule fails then a cleanup of the stacks occurs up to the last rule that had been 
successfully tried. 

Augmented with both actions BuildRule (Rule) and BuildTerm (term) , 
our example rule looks like the following: 

Assign-Statement: 
« BuildRule(Assign-Statement)~ » 

assign-lhs "-" assign-rhs ~ 

« BuildTerm(Assign-Statement)~ » 

In our example the BuildTerm(Assign-Statement) action will create 
an instance of the class Assign-Statement. 

BuildA t tr ( At tr ) : This action is placed at the end of a rule, provided that 
the head of the rule is recognized as an Attribute in the domain model and 
not as a class. The BuildAttr (Attr) action is used for creating the annotated 
edges of the AST. The most recent attribute created by the process becomes an 
incoming edge to the most recent created node. Augmented with the semantic ac
tions BuildRule(Rule) , BuildTerm(Term), and BuildAttr(Attr) 
our example rules become: 

assign-lhs : 
« BuildRUle(assign-lhs)~ » 

Identifier-Ref 
« BuildAttr(assign-lhs)~ » 

assign-rhs : 
« BuildRule(assign-rhs)~ » 

Expression 
« BuildAttr(assign-rhs)~ » 

For the above example the AST which will be created for the C statement 
.. a = 1" is illustrated in Figure 18.42 • 

2We assume a domain model that contains Identifier-Ref,and Integer classes 
with attributes name and value, respectively 



www.manaraa.com

422 Kontogiannis et al. 

Assign-Statement 

assign-Ihs assign-rhs 

Identifier-Ref Integer 

name value 

a 

Figure 18.4. AST representation for the statement a=l. 

This process allows for a customizable way to impose a structure in the AST, 
which can be used to port AST structures from one tool to another with minimal 
effort. In practice, the programmer is not even required to specify the actions 
BuildRule (Rule), BuildTerm( Term), and BuildAttr (Attr). These 
can be generated automatically by a transformation program that takes abstract 
grammar rules and generates legal code for the parser generator. 

The following sections discuss the functionality of the semantic actions in more 
detail. 

18.4.4 Semantic Actions 
The three semantic actions sketched in the previous session are used in coordi
nation with two global stacks to create the Annotated Abstract Syntax Tree. The 
following algorithms describe how the semantic actions are used in the AST gen
eration process for a rule of the form NTHead : NT1NT2 ••• NTk, where NTi 
is a a non-terminal. For clarity we omit terminals in our rule descriptions. 

Procedure Initialize 

Step 1 RuleStack f- NULL 

Step 2 NodeStack f- NULL 

Step 3 Exit 

Procedure BuildTerm(NThead) 

Step 1 RuiePtr f- CreateRuleObject(NTHead) 



www.manaraa.com

18. Towards Environment Retargetable Parser Generators 423 

Step 2 Ru\ePtr.count <-- 0 

Step 3 Push(RulePtr, RuleStack) 

Step 4 Exit 

Procedure BuildAttr(NThead) 

Step 1 Pop(RuleStack) 

Step 2 Top(RuleStack).count++ 

Step 3 Exit 

Procedure BuildTenn(NThead) 

Step 1 Term <-- CREATE-TERM(NTHead); 
TheNonTerm <-- Pop(RuleStack); 

Step 2 IF RuleStack =I- NULL THEN 

AnAttr <-- Top(RuleStack); 

CurrentAttr <-- CREATE-ATTR(AnAttr); 

1* CREATE-ATTR builds a labeled AST edge *1 
1* with information obtained from CurrentAttr *1 
Term.lncomingAttr <-- CurrentAttr 

END IF 

Step 3 FOR i = 1 TO TheNonTerm.count DO 

aNode <-- Top(NodeStack); 

1* Link the incoming attribute to aNode *1 
1* with the parent of aNode, which is Term *1 
LinkIncomingWith(aNode, Term) 

Pop(NodeStack) 

END DO 

Step 4 Push(Term, NodeStack); 

Step 5 Retum(Term) 

18.5 Advantages and Limitations 

In Section 18.4.4, we described a technique for incorporating the semantic actions 
for AST generation into a grammar. The basic difference between traditional ap
proaches and the domain-model based approach is the level where the actions are 
embedded. Traditional approaches can be thought as syntax-directed while the 
domain-model approach as rule-directed. 



www.manaraa.com

424 Kontogiannis et al. 

In this section, we take a look at the grammars written by using the two different 
approaches, and we discuss the advantages and limitations of the domain model 
approach. 

A version of grammar rules for generating an AST for a Block-Statement 
and an Assignment-Statement are shown below: 

Block-Statement > 
« List* stat-list NULL; 

Statememt * Stat; int i=O;» 
(LC:LEFT-CURLY 

( Statement >[Stat] SE:SEMICOLON 
« if (i==O) 

{stat-list=new List(Stat); i=i+l;} 
else stat-list -> append(Stat); »)+ 

RC:RIGHT-CURLY) 

Assign-Statement > 
[Assign-Statement * Assign]; 
« Expression* Expr; Identifier-Ref* Id-Ref;» 

ID: ID-REF 
«Ident=new Identifier-Ref($ID->getText(»;» 

AS:ASSIGN-SIGN 
Expression> [Expression] 

« $Assign=new Assign-Statement(Id-Ref,Expr);» 

For the cases where the programming language has context-sensitive constructs 
the grammar above can be even more complex to design and develop. With the 
domain-model approach, by using the semantic actions discussed above the sam
ple grammar can be rewritten and still perform the same task. 

Block-Statement > 
« BuildRUle("Block-Statement"); » 

(LC:LEFT-CURLY 
( stat-list SE:SEMICOLON )+ 

RC:RIGHT-CURLY) 
« BuildTerm("Block-Statement"; » 

Assign-Statement > 
« RuleCount( "Assign"); » 

assign-lhs AS:ASSIGN-SIGN assign-rhs 
« BuildTerm("Assign-Statement") » ; 

A translation process takes the simplified grammar specification and generates 
peeTS code (above) or yacc code. The translation process will generate valid 
peeTS or yacc code using the simplified grammar and the domain model, and 
by adding more rules and attaching the semantic actions discussed above at the 
beginning and the end of each rule. 



www.manaraa.com

18. Towards Environment Retargetable Parser Generators 425 

Therefore, in practice, the programmer needs only to define the following 
/break grammar: 

Block-Statement 
(LC:LEFT-CURLY 

(stat-list SE:SEMICOLON)+ 
RC:RIGHT-CURLY) 

Assign-Statement : 
assign-lhs AS:ASSIGN-SIGN assign-rhs; 

The domain model is also used to automatically generate the header files that 
contain the C++ class instances which represent AST nodes. Our experiments 
suggest the following major advantages for the domain model approach. 

First, the AST generation process can be easily applied to accommodate dif
ferent programming languages. Most programming languages constructs can be 
modeled using the domain-model approach and any parser generator can be used 
when augmented with the proper semantic actions. 

Second, once the AST is created, it is easy to make tree analyzers and pretty 
print utilities. This is of particular importance for re-engineering projects aimed 
at the migration of programs from one language version to another. 

Third, the approach effectively hides implementation details for generating 
AST. It is notable that the domain-model-based grammar specification is much 
more concise than that generated by the traditional approach. 

Finally, context-sensitive languages can be specified easier as the structure of 
the rules is simpler. This is of particular importance, since many programs that 
have to be re-engineered or migrated are written in highly specialized, context
sensitive languages. 

The proposed approach has the limitation that when used with an LL parser 
generator, it may give rise to complex rules in the implementation due to the left
recursion restrictions (Aho et aI., 1986). In this case the user has to be careful 
to write grammar rules, as discussed above, that are not subject to left-recursion. 
However, these restrictions do not apply when the proposed domain-model ap
proach is used with an LALR parser. Moreover, an algorithmic process for elimi
nating left recursion in grammar rules has been presented in Aho et a1. (1986). 

18.6 Alternative Techniques 

In this section we present alternative techniques for customizable domain-driven 
parsing using the extensible Mark-up Language (XML) (Mamas, 2000). 

The objective is to develop program representations based on XML that pro
vides information at the same level as ASTs. This alternative representation is 
simple but detailed enough to represent the complete syntax of a specific pro
gramming language. This mark-up language based approach aims on developing 



www.manaraa.com

426 Kontogiannis et al. 

more generic representations suitable for domains with similar characteristics. 

18.6.1 Annotating Source Code Using XML 

Mapping ASTs to DTDs 

Given a specific programming language we need to define a representation in 
which every valid source code program can be mapped to. To accomplish this 
mapping from ASTs to XML DOM trees we need to define a method to map the 
grammar of the programming language structure to a Document Type Definition 
(DTD). The mapping at this level will guarantee that all possible syntax trees 
defined by the grammar (and therefore any source code program), can be mapped 
to XML trees defined by the DTD. One of the requirements when defining new 
XML representations is to make them as easy to use as possible. Proposing a 
generic algorithm that maps a grammar to a DTD is something that result in hard 
to use representations. Instead, an alternative is to provide general guidelines that 
assist in implementing a good mapping from a grammar to a DTD. 

Once a grammar is mapped to a DTD, the ASTs for a specific program can be 
mapped to XML files. These XML files can then be used in place of the ASTs or 
the original source files for maintenance tasks. 

Java Mark-up Language (JavaML) 

The generation of a program representation for Java is based on a parser genera
tor tool called Java Compiler Compiler or JavaCC (Sun Microsystems, 20(0) in 
short. This tool was initially developed by Sun Microsystems and it is the one 
of the most popular parser generators for Java. The popularity of JavaCC is most 
probably due to the grammar for Java that is shipped with the tool. The majority 
of Java source code parsers are built using JavaCC and the Java 1.1 grammar. The 
Java 1.1 grammar was developed by Sriram Sankar at Sun Microsystems and a 
copy of this grammar can be found in the distribution of JavaCC. 

The complete DTD that we generated based on the Java 1.1 grammar is pre
sented in Mamas (2000) and can be found at ''http://swen.uwaterloo.caldocs/ 
javaml.html". Below we present a small example of a Java source file and its 
corresponding JavaML representation. 

Java Source Code 

public class Car{ 

} 

int color; 

public int getColor(){ 
return color;} 



www.manaraa.com

18. Towards Environment Retargetable Parser Generators 427 

JavaML Representation 

<ClassDeclaration Identifier="Car"> 
<FieldDeclaration> 

<PrimitiveType Type="int"></primitiveType> 
<VariableDeclaratorld Identifier="color"/> 

</FieldDeclaration> 

<MethodDeclaration Identifier="getColor"> 
<ResultType> 

<PrimitiveType Type="int"/> 
</ResultType> 
<Block> 

<ReturnStatement> 
<PrimaryExpression> 

<Name Identifier="color"></Name> 
</PrimaryExpression> 

</Block> 
</MethodDeclaration> 

</ClassDeclaration> 

The above annotated source code can be parsed by an XML parser such as 
IBM's XML4J parser and produce a DOM tree that corresponds in this context to 
an Annotated Abstract Syntax Tree. 

c++ Markup Language (CppML) 

The generation of a representation for the C++ programming language is based 
on a different approach than that for Java. Instead of using a parser generator 
such as JavaCC, we took advantage of a compiler product that maintains the in
termediate representation of the code and provides access to it through an API. 
This product is the IBM VisualAge C++ (IBM Corp., 1999) IDE which is devel
oped at the IBM Toronto lab. VisualAge contains a repository which is called 
Codes tore in which all the information generated during the compilation pro
cess is stored. Parsing, processing and code generation information can all be 
accessed using the provided APIs. The goal behind the architecture of VisualAge 
is to allow developers to maintain and analyze C++ source code. Our goal in 
using VisualAge is to demonstrate that a commercial product can be integrated 
and used as a tool in a more complex environment. The complete representa
tion for C++ that was generated using IBM's VisualAge C++ can be found at 
''http://swen.uwaterloo.caJdocs/cppml.html''. Sample source files and their repre
sentations are also available. The grammar on which CppML is based was im
plicitly extracted from the Codestore APIs, which was in tum obtained from the 
VisualAge development team. This grammar is expressive enough to represent 
ANSI C++ compliant source files. 



www.manaraa.com

428 Kontogiannis et al. 

18.7 Experiments 

In this section we provide experimental results related both to the performance 
of the generated parser using the proposed domain-model-based approach, and to 
the performance of the architecture used for tool integration. 

18.7.1 Parser Performance 
The experimental results presented here focus on two main categories namely, 
parse time performance and, space requirements for the generated Abstract Syn
tax Tree. The results were obtained by evaluating a parser developed for the C pro
gramming language, using the domain-model approach discussed in this chapter. 
Ongoing work focuses on developing parsers for PLIIX, PLlX, and PLII. 

In Table.l8.l, the time and space performance statistics for the C parser are 
illustrated. These results indicate that the parser developed is scalable with respect 
to the time required to parse source code and build the corresponding Abstract 
Syntax Tree. 

In particular, the results indicate a linear complexity between the number of 
statements to be parsed and the time spent to actually parse these statements. The 
same linear relationship holds between the number of lines of code to be parsed 
and the actual parse time. On average, the parser parsed 44.43 statements, or 235 
lines of code (LOC) per second, on a Sparc 128 MB Ultra 1 machine. 

Similarly, the space requirements for the generated Abstract Syntax Tree in
dicate that the size of the tree in terms of the number of nodes is linear when 
compared to against the number of source code statements and the lines of source 
code (LaC) parsed. 

Ongoing work focuses on the use of XML and DaM for representing the Ab
stract Syntax Trees and DTD domain models have already built for Java and C++. 

18.7.2 Tool Integration 

In developing a portable program representation environment, the following prob
lems have to be considered: 

• Data integration is essential to ensure data exchange between tools. 

• Control integration enhances inter-operability and data integrity among dif
ferent tools. 

The first can be accomplished through a common schema, while the second can 
be accomplished with a server that handles requests and responses between tools 
in the environment. 

A solution to the data integration problem is based on a system architecture 
in which all tools communicate through a central software repository that stores, 



www.manaraa.com

18. Towards Environment Retargetable Parser Generators 429 

Table 18.1. Time and space statistics for the prototype parser. 

Parse Time # AST Nodes 
LOC # of Statements (sec) (thousands) 

I 0.04 0.008 
15 0.05 0.005 
49 0.14 0.038 
40 0.2 0.068 
101 0.32 0.1 I3 
203 0.92 0.409 
371 1.71 0.713 
302 I 2.41 1.085 
76 2 0.85 0.406 
122 4 0.23 0.068 
38 16 0.16 0.055 
54 25 0.38 0.165 
65 50 0.46 0.202 
196 89 1.28 0.603 
178 110 1.46 0.701 
240 131 1,92 0.907 
238 153 1.59 0.846 
365 248 2.86 1.401 
960 476 8.52 4.214 

1,002 728 8.07 4.125 
8,050 4,723 92.99 39.89 
16,203 7,486 149.1 63.53 
34,271 14,240 277.19 114.622 

normalizes and makes available analysis results, design concepts, links to graph 
structures, and other control and message passing mechanisms required for the 
communication and cooperative invocation of different tools. Such integration is 
achieved by using a local workspace for each individual parser or tool in which 
specific results and artifacts are stored, and a translation program for transforming 
tool-specific software entities into a common and compatible form for all environ
ments entities. 

The translation program generates appropriate images in the central repository 
of objects shared with local workspaces. For the program representation scheme 
proposed in this chapter (i.e., annotated ASTs based on a domain model) this 
translation is a straightforward process, as the AST nodes and links correspond 
to classes that can be mapped from one tool to the other (CLOS in Refine, C++ 
for PCCTS etc.) A system architecture for such an integrated reverse engineer
ing environment that uses common program representation interchange data is 
iIIustrated in Figure 18.5 

Communication in this distributed environment is achieved by scripts under
stood by each tool using a shared schema data model for representing data from 
the individual local workspaces of each tool and, a message passing mechanism 



www.manaraa.com

430 Kontogiannis et al. 

Conlrol Integration 

T 
Dala Inlegralion I Objecl Base .. 1-----i'--R_epos_TooI_~_ory _ _' 

Figure 18.5. The implemented system architecture for tool integration. Dashed lines dis
tinguish computing environments, usually running on different machines. 

for each tool to request and respond to services. 
A message server allows all tools to communicate both with the repository and 

with each other, using the common schema. These messages form the basis for all 
communication in the system. 

The central repository is responsible for normalizing these representations, 
making them available to other tools, and linking them with the other relevant 
software artifacts already stored in the repository (e.g., documentation, architec
tural descriptions). 

Finally, communication scripts are in the form of s-expressions. Each s
expression is wrapped in packets called network objects and sent via a message 
server to the appropriate target machine (Buss et aI., 1994). The message server 
uses UNIX sockets for the communication and utilizes the TCP/IP network in
frastructure. 



www.manaraa.com

18. Towards Environment Retargetable Parser Generators 431 

An example s-expression for a Function called hostnames-matching 
is given below. 

This s-expression is used to represent an annotated (yet simplified) AST node 
corresponding to a C Function. Annotations in this example include call infor
mation, metrics information and, data flow information. 

(Function-176 Token 
(Function) 
( ) 

« (objectId) 
«"#176"») 

«cyclomaticComplexity) 
«5.0») 

« calls) 
( (Function-1 75) 
(Function-174») 

( (definesLocals) 
«"word") 
("yylval"») 

«definesGlobals) 
«"shell-input-line") 
("shell-input-line-index"») 

«functionName) 
«"hostnames-matching"»») 

The shared schema facilitates data integration and encodes program artifacts 
(i.e., the AST), as well as analysis results (e.g., the call graph, the metrics analy
sis). 

The schema has been implemented in Telos and allows for multiple inheritance 
and specialization of the attribute categories for each object. In this way, an AST 
entity (i.e., File) may have attributes that are classified as Refine-Attributes, Rigi
Attributes, and PBS-Attributes. The schema is populated by tools that may add, or 
retrieve values for the attributes in the objects to which it has access to. 

Similarly, data integration for analysis results was achieved by designing 
schema classes for every type of analysis a tool is able to perform. Each such 
class is linked via attributes to the actual AST entities and this is visible to all the 
other tools that may request it. 

At run-time, the user may request and select repository entities according to 
specific object types or attribute values. 

In addition to the Data Integration aspects discussed above, Control Integration 
is based on designing and developing a mechanism for: 

• uniquely registering tool sessions and corresponding services, 

• representing requests and responses, 



www.manaraa.com

432 Kontogiannis et al. 

Table 18.2. Storage statistics (only File and Function object types are stored). 

LOC # of Functions # of Files # of Objects 
943 38 3 920 

13,615 235 39 1,089 
27,393 632 63 1,606 
32,807 705 40 1,694 
44,754 658 46 3,340 

• transferring object entities to and from the repository, and 

• performing error recovery. 

At the Application layer (Stallings, 1991) a message server is used to facilitate 
inter-networking. The message server, offers an environment to manage the trans
fer of data via TCP/IP using a higher-level language to represent source and des
tination points, processes, and data. Essentially, the server offers an environment 
to access lower-level UNIX communication primitives (Le., sockets), in order to 
manage the transfer of data via TCP/IP using a higher-level language to represent 
source and destination points, processes, and data. 

Each tool generates a stream of network objects encoded as a stream of s
expressions. A parser analyzes the contents of each it network object and per
forms the appropriate actions (e.g., respond to a request, acknowledge the suc
cessful reception of a network object). 

Tool integration statistics are discussed and in particular the relationship be
tween source code size, total number of repository-generated objects, data re
trieval performance as well as upload and download times. 

Our experiments for time and space statistics related to the integration architec
ture involved five software systems. For each system we have measured the num
ber of objects generated for the reduced AST as well as the upload and download 
times from the repository to the individual tools. 

The total number of objects generated for the reduced AST that correspond to 
files, functions and declarations is illustrated in Table 18.2. These measurements 
indicate that the approach of storing only the necessary parts of the AST results in 
a large potential for scalability, as major increases in the size of the source code 
do not affect dramatically the total number of objects generated. 

The upload times are illustrated in Figure 18.6. These statistics indicate a rel
atively linear relation between the upload time and the total number of objects to 
be loaded in the repository. 

Similarly, the download statistics are shown in Figure 18.7. These statistics 
indicate that download time relates in a linear manner to the number of objects 
dowloaded from the repository to the CASE tool. This is an important observation 
as it is directly connected with the scalability of the system. 

The server has been extended to handle more complex messages and re
spond automatically to events using a rule base and the Event, Condition, Action 



www.manaraa.com

18. Towards Environment Retargetable Parser Generators 433 

Upload Performance 
120 

100 

80 

~ 
~60 
." 

i 
:> 

40 

20 

°0~----~~-----~~-----6000~-----8000~-----1-0000~----1-~~----1~~ 
Number of Objects 

Figure 18.6. Upload AST performance. 

Download Perfonnance 
18 

16 

14 

12 

! 
~ 10 
F 

~ 
A 

8 

6 

~L-------~200~------400~-------600~-------600L--------'000~------'~200 

Number of 0bjec1s 

Figure 18.7. Download AST performance. 



www.manaraa.com

434 Kontogiannis et al. 

paradigm (Mylopoulos et aI., 1996). 
A prototype system that allows for the integration of the CASE tools Refine, 

Rigi, Telos, and data obtained from domain-model based Abstract Syntax Trees 
has been implemented at the University of Waterloo, and the IBM Canada, Center 
for Advanced Studies (Mamas, 2000). 

This architecture has also been used to facilitate control and data integration 
between different tools and processes in a Cooperative Information System Envi
ronment, as presented in (Mylopoulos et aI., 1996). 

18.8 Summary 

This chapter examines the use of domain models for generating AST representa
tions of code fragments in order to facilitate environment re-targetable represen
tation of the source code as well as data and control integration between different 
CASE tools. 

The system is re-targetable in the sense that: 

• The ASTs generated by the technique discussed in this chapter can be easily 
traversed, and can easily be ported to another tool or stored in an object
oriented database or relational database. 

• The level of granularity source code parsed can be easily modified by selec
tively applying the semantic actions to specific grammar rules and by omit
ting them from the others. A grammar with the semantic actions applied to 
every rule will create a full AST for the whole source parsed. However, if 
the user decides to apply selectively the semantic actions then a lightweight 
partial AST can be created. This type of lightweight AST is most useful 
for analysis related to the recovery of high level architectural views of the 
code. 

• The development and the specification of the grammar is greatly simpli
fied and the approach can be used with most parser generators requiring 
minimum modifications to accommodate the semantic actions. 

Domain models are used to infer the semantic information required by the 
parsing process for transforming the parsed input into an annotated AST, and 
provide a common schema for different tools to share. To make such a com
mon schema usable by different tools, we have adopted language-independent 
and tool-independent representations for ASTs as well as for the domain model 
itself. Such representations constitute a foundation for portability. Such portabil
ity is of particular importance as it allows different parsers to export the generated 
AST to CASE tools that are very powerful on analyzing source code. 

Ongoing work for this project includes stress-testing the control and data in
tegration of different reverse engineering tools by using the common data inter-



www.manaraa.com

18. Towards Environment Retargetable Par~er Generators 435 

change fonnats such as XML, RSF, TA, and ASTs as well as enhancements for 
the AST and DOM tree traversal,and pattern matching utilities. 

18.9 Acknowledgements 

The authors would like to thank Bill O'Farrell and Steve Perelgut of IBM Canada 
Ltd., Center for Advanced Studies, for their support and valuable insights related 
to this work. Also the authors would like to thank Adam Zimmer and Evan Ma
mas of University of Waterloo, for the implementation of the prototype parser 
generator, and their technical views related to the use of XML as source code rep
resentation fonnalism for program understanding. Finally the authors would like 
to extend their gratitude to the Center for Infonnation Technology Ontario and 
Fonnal Systems, Inc. for their financial support. 

NOTE: Refine is a trademark of Reasoning Systems, Inc. 

18.10 References 
Aho, A.V., Sethi, R., and Ullman, J.D. (1986). Compiler Principles, Techniques, 

and Tools. Addison-Wesley Publishing Company, Reading, MA. 

Arango, G., and Prieto-Diaz, R. (1991). Domain Analysis Concepts and Research 
Directions. In Domain Analysis and Software Systems Modeling. Prieto-Diaz 
and Arango (eds.). IEEE Computer Society Press. 

Bell Canada Datrix Group. (2000). Abstract Semantic Graph: Reference Manual. 
Bell Canada Ltd., Version 1.3, January. 

Breuer, P.T. and Bowen, J.P. (1993). The PRECC Compiler-Compiler. In Proceed
ings UKUUGISUKUG Joint New Year 1993 Conference. St. Cross Centre, 
Oxford, UK, January 6-8. 

Breuer, P.T., and Bowen, J.P. (1992). A PREttier Compiler-Compiler: Generating 
Higher Order Parsers in C. Oxford University Computing Laboratory Tech
nical Report PRG-TR-20-92. November. 

Buss, E., De Mori, R., Gentleman, W.M., Henshaw, J., Johnson, H., Kontogian
nis, K., Merlo, E., MUller, H., Mylopoulos, J., Paul, S., Prakash, A., Stanley, 
M., Tilley, S.R., Troster, J., and Wong, K. (1994). Investigating Reverse En
gineering Technologies for the CAS Program Understanding Project. IBM 
Systems Journal, 33(3). 

Chikofsky, EJ., and Cross, J.H. (1990). Reverse Engineering and Design Recov
ery: A Taxonomy. IEEE Software, January. 



www.manaraa.com

436 Kontogiannis et al. 

DeBaud, J., and Rugaber, S. (1995). A Software Re-Engineering Method using 
Domain Models. Technical Report, College of Computing, Georgia Institute 
of Technology, Atlanta, GA. 

Devambu, P., Rosenblum, D., and Wolf, A. (1994). Automated construction of 
testing and analysis tools. In Proceedings of 16th, International Con! on 
Software Engineering, Los Alamitos, CA. IEEE Computer Society Press, 
May. 

Devambu, P. (1992). Genoa-A language and front-end independent source code 
analyzer generator. In Proceedings of 14th, International Conf. on Software 
Engineering, Los Alamitos, CA. IEEE Computer Society Press, May. 

Fischer, C. and LeBlanc, R. (1991). Crafting a Compiler With C. Addison-Wesley, 
Reading, MA. 

Holt, R. (1997). An Introduction to TA: The Tuple-Attribute Language. 
http://plg.uwaterloo.ca/holtlcv/papers.html. Dept. of Computer Science, 
University of Waterloo, March. 

IBM Corporation. (1999). Visual Age C++. 
Online at http://www.ibm.com/software/adlvacpp. 

Kernighan, B., and Ritchie, D. (1988). The C Programming Language. Prentice 
Hall, Englewood Cliffs, NJ. 

Kontogiannis, K. (1993). Program Representation and Behavioural Matching 
for Localizing Similar Code Fragments. In Proceedings of CASCON'93. 
Toronto, Ontario, Canada, October. 

Kotik, G., and Markosian, L. (1989). Automating Software Analysis and Test
ing Using a Program Transformation System. Reasoning Systems, Inc., Palo 
Alto, CA. 

Malton, A. (1993). The Denotational Semantics of a Functional Tree
Manipulation Language. Computer Languages, 19(3). 

Mamas, E. (2000). Design and Development of a Code Base Management Sys
tem. M.Sc. Thesis, Dept. of Electrical & Computer Engineering, University 
of Waterloo, Canada, June. 

Markosian, L. (1994). Using an Enabling Technology to Reengineer Legacy Sys
tems. Communications of the ACM, 37(5). 

Muller, H. (1993). Understanding Software Systems Using Reverse Engineering 
Technology Perspectives from the Rigi Project. In Proceedings of CASCON 
'93, Toronto, Canada, October 22-24. pp. 217-226. 



www.manaraa.com

18. Towards Environment Retargetable Parser Generators 437 

Mylopoulos, J., Borgida, A., Jarke, M., and Koubarakis, M. (1990). Telos: Rep
resenting Knowledge About Information Systems. ACM Transactions on In
formation Systems, 8(4). 

Mylopoulos, J., Gal, A., Kontogiannis, K., and Stanley, M. (1996). A Generic In
tegration Architecture for Cooperative Information Systems. In Proceedings 
of Co-operative Information Systems '96, Brussels, Belgium. 

Parr, T. (1996). Language Translation Using PCCTS & C++ - A Reference Guide. 
Automata Publishing Company. 

Purtilo, J. and Callahan, J. (1989). Parse-Tree Annotations. (1989). Communica
tions of the ACM, 32(12). 

Reasoning Systems, Inc. (1990a). Dialect User's Guide, Version 2.0. Palo Alto, 
CA,July. 

Stanchfield, S. (1997). A PCCTS Tutorial. 
Online at http://www.scruz.netltheticklpcctstutl. 

Stallings, W. (1991). Data and Computer Communications. MacMillan, Toronto, 
Canada. 

Sun Microsystems. (2000) JavaCC: The Parser Generator. Online at 
http://www.metamamta.com/JavaCC. Sun Microsystems. 

Tilley, S., and Smith, D. (1996). Coming Attractions in Program Understand
ing. Technical Report CMU/SEI-96-TR-019 ESC-TR-96-019, Software En
gineering Institute, Carnegie-Mellon University, Pittsburgh, PA, December. 



www.manaraa.com

Annotated Bibliography 

Abo, A., Sethi, R., and Ullman, J.D. (1986). Compilers: Principles, Techniques, 
and Tools. (Addison-Wesley). This classic text provides a detailed perspec
tive on compiler construction with an emphasis on parsing techniques, lexi
cal analysis, data flow analysis, optimization, and code generation. The the
ory behind parsing is well described, but there is little information on back
tracking. 

Anquetil, N., and Lethbridge, T.C. (1999b). A comparative study of clustering 
algorithms and abstract representations for software remodularization. In 
Proceedings of the Working Conference on Reverse Engineering. (IEEE 
Press). pp. 235-255. Presents more details of many experiments with hier
archical clustering algorithms for remodularization. The two main aspects 
of this article are that it is specifically geared toward remodularization and 
it is an experimental study. 

Baker, S.B. (1995). On finding duplication and near duplication in large soft
ware systems. In Proceedings of the Working Conference on Reverse Engi
neering, Toronto, Canada. This paper describes Dup, which is the program 
developed at AT&T to locate instances of duplication or near-duplication in 
software systems. Dup detects sections of code which are textually identical 
or which are mostly textually identical but with systematic substitutions of 
one set of variable names and constants for another. Further processing lo
cates longer sections of code which are the same except for other small 
modifications. Experimental results from running Dup on millions of LOC's 
from two large software systems show the effectiveness and the execution 
speed of the tool. 

Basili, V.R., Briand, L.C., and Melo, W.L. (1996). A validation of object
oriented design metrics as quality indicators. IEEE Transactions on Soft
ware Engineering. 22(10). pp. 751-761. This work is an attempt to validate 
the C&K metrics as indicators of fault proneness. While the experiment was 
carried out only on small software systems, developed by students, the re
sults are nonetheless encouraging. The authors show that some of the met
rics in the suite can be used as fault-proneness predictors. An interesting 
feature of the paper is the rigor of the statistical approach. 

Booch, G., Jacobson, I., and Rumbaugh, 1. (1999). The Unified Modeling Lan
guage User Guide. (Addison-Wesley). Reference manual and guide book 
alike. The principal authors of the UML (sometimes referred to as ''the three 
amigos") describe the UML modeling language. 

Buhr, R.J.A. (1998). Use case maps as architectural entities for complex sys
tems. IEEE Trans. Software Engineering. 24(12). pp. 1131-1155. A concise 
and extremely readable introduction to Use Case Maps. Those who want to 



www.manaraa.com

440 Annotated Bibliography 

leam about case maps without reading an entire book can read this first. It 
includes some updates to the notation and some interesting examples. 

Buhr, R.J.A. and Casselman, R.S. (1996). Use Case Maps for Object-Oriented 
Systems. (Prentice-Hall). The definitive book by the originators of Use Case 
Maps (UCMs). Describes the Use Case Map notation in detail and gives 
many examples. The preface to the book shows an example of a UCM used 
for a human activity (reading the book). 

Buschmann, Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996). 
Pattern-Oriented Software Architecture-A System of Patterns. (Wiley). 
Well-known book on patterns and similar concepts, covering architectural 
patterns, design patterns, idioms, pattern systems, and their relation to soft
ware architecture. Compared to the Gang-of-Four pattern book, the empha
sis is on patterns at a higher-level of abstraction, i.e., on architectural pat
terns, and coarse-grained design patterns. 

Buss, E. (1994). Investigating reverse engineering technologies for the CAS 
program understanding project. IBM Systems Journal, 33(3). 

Buss, E., DeMori, R., Gentleman, W.M., Henshaw, J., Johnson, H., Kontogian
nis, K., Merlo, E., Miiller, H.A., Mylopoulos, J., Paul, S., Prakash, A., 
Stanley, M., Tilley, S.R., Troster, J. and Wong, K. (1994). Investigating re
verse engineering technologies for the CAS program understanding project. 
IBM Systems Journal. 33(3). pp. 477-500. This paper discusses techniques 
related to reverse engineering, automatic defect filtering, and automatic 
clone detection. It summarizes the experiences on analyzing large legacy 
systems, focussing on IBM's database management system UDBIDB2. It 
also describes the scope and results of a research project on program under
standing undertaken by the IBM Toronto Software Solutions Laboratory 
Centre for Advanced Studies (CAS). The project involved a team from CAS 
and five research groups working cooperatively on complementary reverse 
engineering approaches. All the groups were using the source code of 
SQLIDS· (a multimillion-line relational database system) as the reference 
legacy system. Also discussed is an approach adopted to integrate the vari
ous tools under a single reverse engineering environment. 

Chaumun, M.A. (1998). Change impact analysis in object-oriented systems: 
conceptual model and application to C++. Master's Thesis. Universite de 
Montreal, Canada. (November). This report, in French, describes in detail 
the change impact model presented in this book. The C++ expressions de
fining every change are described as are the impact formulas before and af
ter simplification. The proof of feasibility experiment presented in Chapter 
lOis also described in detail. 

Chidamber, S.R. and Kemerer, C.F. (1994). A metrics suite for object-oriented 
design. IEEE Transactions on Software Engineering. 20(6). pp. 476-493. 
This is the last of a series of papers describing the Chidamber and Kemerer 
(C&K) suite of metrics. The theoretical foundations of the metrics are pre-



www.manaraa.com

Annotated Bibliography 441 

sented. Details of the metrics are described and validated on two industrial
strength systems. This is recommended reading for any work in object
oriented design metrics. 

Chikofsky, E.J., and Cross, J. (1990). Reverse engineering and design recovery: 
a taxonomy. IEEE Software, 7(1). pp. 13-17. This article provides defini
tions and terminology used in software reverse engineering and related 
fields. The definitions given in this paper are widely adopted by the re
search community and officially adopted by IEEE. 

CHIME, the Columbia Hypermedia IMmersion Environment. Online at: 
http://www.cs.columbia.edul-sdossick/www/create.htrnl. The main value of 
CHIME in the context of this article is that it illustrates a MUD environ
ment designed and used for collaboration. An interesting aspect of CHIME 
is that it is built on top of an extensible, XML-based Metadata server. Thus 
artifacts in CHIME virtual worlds continue to reside in their originalloca
tions, be they legacy database systems, document management systems, or 
source code configuration management repositories. 

Churchill, E. and Bly, S. (1999). It's all in the words: Supporting work activities 
with lightweight tools. In Proceedings of Group '99. Describes and analyzes 
long-term work experience with a simple text-based MUD and provides 
evidence of the usefulness of the concept for collaborative work in geo
graphically dispersed teams. 

Denzin, N.K., and Lincoln, Y.S. (eds.). (1994). Handbook of Qualitative Re
search. (Sage). This book is an edited collection of readings on the practice 
of qualitative research. The handbook gives an excellent overview of the 
various paradigms for doing qualitative work, the strategies developed for 
studying people in their natural settings, and a variety of techniques for 
collecting, analyzing, interpreting, and reporting results. It covers every
thing from theoretical approaches to ethical issues. Contributing authors 
were selected from a variety of disciplines. 

El-Emam, K., Benlarbi, S., Goel, N., and Rai, S. (2001). The confounding effect 
of class size on the validity of object-oriented metrics. IEEE Transactions 
on Software Engineering. (To appear). This paper conjectures that size has a 
confounding effect in most past validation studies of 00 metrics, and 
comments on the methodology of these studies. It argues that future empiri
cal validation should control for the correlation between size and the metric 
being evaluated to eliminate this effect. 

Gamma, E., Helm, R., Johnson, R., and Vlissedes, J. (1995). Design Patterns: 
Elements of Reusable Object-Oriented Software. (Addison-Wesley). Cap
turing a wealth of experience about the design of object-oriented software, 
the four authors (often referred to as the Gang-of-Four) present a catalog of 
proven and succinct solutions to commonly occurring design problems. 
Previously undocumented, these 23 patterns allow designers to create more 



www.manaraa.com

442 Annotated Bibliography 

flexible, elegant, and ultimately reusable designs without having to redis
cover the design solutions themselves. 

German, D.M., Cowan, D.D., and Alencar, P.S.c. (1998). A Framework for 
formal design of hypertext applications. In Proceedings of the 4th Brazilian 
Symposium on Multimedia and Hypermedia. The design of hypertext appli
cations is currently specified in notations, which are not formal. The result 
is the inability to verify their correctness. In this paper, the authors propose 
a formal specification language for hypertext design, Hades, which sepa
rates content, organization, linking and typesetting information. This lan
guage permits the verification of properties such as completeness, referen
tial integrity, node layout of a hypertext application. Hades will permit the 
analysis of hypertext applications before these are actually implemented. 

Gropp, W., Lusk, E., and Skjellum, A. (1994). Using MPI: Portable Parallel 
Programming with the Message-Passing Interface. (MIT Press). This book 
is a good introduction to the Message Passing Interface (MPI), the pro
posed standard for writing message-passing programs. MPI aims at estab
lishing a practical, portable, efficient and flexible standard for message 
passing. 

Harrison, S., and Dourish, P. (1996). Re-Place-ing Space: The roles of place and 
space in collaborative systems. In Proceedings of CSCW '96. A classical 
paper using experimental evidence to justify the usefulness of communica
tion scopes in collaborative work. 

Henderson-Sellers, B. (1996). Object-Oriented Metrics: Measures of Complex
ity. (Prentice-Hall). This book gives an overview of object-oriented metrics 
and proposes new ones. It is one of the few books that proposes a cognitive 
theory for their justification. Includes references to work on cognitive com
plexity. 

Herrera, F. (1999). A Usability Study of the "TkSee" Software Exploration Tool. 
M.Sc. Thesis. School of Information Technology and Engineering, Univer
sity of Ottawa, Canada. Online at: http://www.site.uottawa.ca/ 
-tcVgradtheseslfherreral. This thesis discusses in much more depth the us
ability evaluation work presented in this book. 

Highsmith, J. (1999). Managing distributed project teams. E-business Applica
tion Delivery (August). Online at: http://cutter.com/ead/ ead9908.html. Ex
plains motivation, conceptual foundation, and architecture of Project Com
munities Software, a current state-of-the-art CSCW product by Neometron 
designed for use in collaborative applications including possibly Distributed 
Software Engineering. 

Hutchens, D.H., and Basili, V.R. (1985). System structure analysis: clustering 
with data bindings. IEEE Transactions on Software Engineerin (August). 
pp. 749-757. One of the early works that used structural information (data 
bindings) and a hierarchical algorithm to cluster software systems. The re
sults were compared to the developer's mental image of the system's struc-



www.manaraa.com

Annotated Bibliography 443 

ture. They categorize different systems depending on the output of their al
gorithm on them. Interesting issues such as algorithm stability and modu
larity deterioration are raised. 

Jain, A., and Dubes, R. (1988). Algorithmsfor Clustering Data. (Prentice-Hall). 
One of the best texts on cluster analysis. A good book for someone that 
wants to understand the issues and difficulties a clustering project presents. 
They present a comprehensive survey of algorithms found in the cluster 
analysis literature, including hierarchical, partitional, and graph-theoretic 
ones. They discuss issues such as cluster validity and stability. They also 
present a framework for a cluster analysis project. 

Johnson, J.H. (1993). IdentifYing redundancy in source code using fingerprints. 
In Proceedings of the 1994 Centre for Advanced Studies Conference (CAS
CON' 93), Toronto, Canada. (IBM and NRC). This paper reports about the 
implementation of a mechanism, which uses fingerprints to identify exact 
repetitions of text in large programs. Fingerprints have been defined as 
short strings which can be used for comparison purposes to stand in for 
larger data objects. A fingerprint is a mapping function from some data ob
ject domain into the set of fingerprints. Experiments involved the construc
tion of source trees and the successful identification of repetitions in a leg
acy software system of over 300 megabytes. This redundancy identification 
system has provided useful information as well as establishing the scalabil
ity of the approach, which may form the basis of a suit of tools for the visu
alization and understanding of programs. The paper employs a technique 
similar to a string searching method of Karp and Rabin. 

Johnson, J.H. (1994). Substring matching for clone detection and change 
tracking. In Proceedings of International Conference on Software Mainte
nance (ICSM), Victoria, Canada. (September 19-23). pp. 120-126. This pa
per elaborates the method of textual redundancy to include clusters and 
components. Components become a useful way to structure the searches for 
interesting matches in an example based on gcc. 

Johnson, J.H. (1994). Visualizing textual redundancy in legacy source. In Pro
ceedings of 1994 Centre for Advanced Studies Conference (CASCON '94), 
Toronto, Canada. (IBM and NRC). pp. 9-18. Introduces a method ofvisu
alizing the structure of components and clusters is presented. The method 
explores some more complex features of the gcc example. 

Keller, R.K., and Schauer, R. (1998). Design components: towards software 
composition at the design level. In Proceedings of 20th International Con
ference on Software Engineering, Kyoto, Japan (April). pp. 302-310. Intro
duces the notion of design component. Design components are reified de
sign elements, such as patterns, idioms, or application-specific solutions, 
and their provision as software components. Design components playa key 
role in the SPOOL approach to design pattern recovery and engineering. 



www.manaraa.com

444 Annotated Bibliography 

Kontogiannis, K. Program representation and behavioral matching for localizing 
similar code fragments. In Proceedings of the Centre for Advanced Studies 
Annual Conference (CASCON '93), Toronto, Canada (IBM and NRC). 
This paper presents pattern matching techniques for the identification of 
cloned components in very large software systems. The pattern matching is 
based on dynamic programming, data flow and source code properties, and 
software metrics. 

Kontogiannis, K., et al. (1998). Code Migration Through Transfonnations: An 
Experience Report. In Proceedings of Centre for Advanced Studies Confer
ence (CASCON '98), Toronto, Canada (IBM and NRC). One approach to 
dealing with spiraling maintenance costs, manpower shortages and frequent 
breakdowns for legacy code is to migrate the code into a new platfonn or 
programming language. This paper explores the feasibility of semi
automating such a migration process in the presence of performance and 
other constraints for the migrant code. In particular, the paper reports on an 
experiment involving the migration of several modules of a medium-size 
software system from PUIX to C++. The paper reports on the transforma
tion techniques used by the transformation process, the effectiveness of the 
prototype tools developed, and some preliminary evaluations of the experi
ment. 

Kung, D., et al. (1994). Change impact identification in object-oriented software 
maintenance. In Proceedings of International Conference on Software 
Maintenance (lCSM), Victoria, Canada (September). pp. 202-211. One of 
the few papers dealing with change impact in object-oriented systems, al
though with a different purpose in mind. The objective here is to define the 
testing set. Changes are enumerated, a classification of impacts is provided, 
and the change impacts are calculated by using a firewall calculation ap
proach. 

Lague, B., Proulx, D., Mayrand, J., Merlo, E., and Hudepohl, J. (1997). Assess
ing the benefits of incorporating function clone detection in a development 
process. In Proceedings of International Conference on Software Mainte
nance (ICSM). The objective of the experiments presented in this paper is to 
bring insights in the evaluation of the potential benefits of introducing 
function clone detection in an industrial software development process. 
Two modifications to the software development process are presented 
namely preventive control and problem mining. Experiments are presented 
that consists of evaluating the impact of proposed changes on a large tele
communication software system of a about 89 MLOC of analyzed code. 
The studies are applied over a three years development period in which six 
subsequent versions of the software under study were released consuming 
an effort of about 10,000 person-months. Results showed that a significant 
number of clones are removed from the system over time. However, this 
clone reduction is not enough to prevent the growth of the overall number 
of clones in the system under study. In this context, preventive control 
would have been very appropriate. Experiments also indicate that problem 



www.manaraa.com

Annotated Bibliography 445 

mining would have provided programmers with a significant number of op
portunities for correcting problems before customers experience them. 
These results show a potential for improving the software system quality 
and customer satisfaction. 

Lakhotia, A. (1997). A unified framework for expressing software subsystem 
classification techniques. Journal of Systems and Software, 36(3). pp. 211-
231. Presents an excellent framework for comparing various aspects of 
clustering in the context of software remodularization including clustering 
algorithms and descriptive features. 

Lethbridge, T., Singer, J., Vinson, N., and Anquetil, N. (1997). An Examination 
of Software engineering work practices. In Proceedings of Centre for Ad
vanced Studies Conference (CASCON '97), Toronto, Canada (IBM and 
NRC). pp. 209-223. This paper presents work practice data of the daily ac
tivities of software engineers. Four separate studies are presented; one 
looking longitudinally at an individual SE; two looking at a software engi
neering group; and one looking at company-wide tool usage statistics. The 
paper also discusses the advantages in considering work practices in de
signing tools for software engineers. 

Lethbridge, T.C., Lyon, S., Perry, P. (2001). The management of university
industry collaborations involving empirical studies of software engineering 
In Empirical Studies in Software Engineering, Khaled EI-Eman and Janice 
Singer (eds.) (MIT Press). This chapter discusses the pragmatic considera
tions that university researchers and companies should consider when es
tablishing collaborative software engineering research projects; in particu
lar, those involving empirical studies of software engineers. The chapter is 
illustrated with a case study describing the research collaboration between 
the authors, one of whom is an academic and the other two are from indus-
try. 

Li, W., and Henry, S. (1993). Object-oriented metrics that predict maintainabil
ity. Journal of Systems and Software, 23. pp. 111-122. The work presented 
in this paper is one of the first attempts to relate some object-oriented de
sign metrics to maintainability. The metrics considered are a prior version 
of the C&K suite, enhanced by several metrics proposed by the authors. An 
empirical study on two industrial-strength software systems enabled them to 
show that a subset of the metrics is indeed a predictor of maintainability. 

Markosian, L. (1994). Using an enabling technology to reengineer legacy sys
tems. In Communications of the ACM, 37(5). This paper provides experi
mental results from the analysis and re-engineering of COBOL legacy sys
tems. The analysis tool presented is based on Annotated Abstract Syntax 
Trees and a specialized language called Refine. 

Mayrand, J., Leblanc, C., and Merlo E. (1996). Experiment on the automatic 
detection of function clones in a software system using metrics. In Proeed
ings of the International Conference on Software Maintenance (ICSM). 



www.manaraa.com

446 Annotated Bibliography 

This paper introduces the basic philosophy of detecting clones by using 
metrics and the Datrix environment. The clone identification technique, pre
sented in this paper, uses 21 function metrics grouped into four points of 
comparison. Each point of comparison is used to compare functions and 
determine their cloning levels. An ordinal scale of eight cloning levels is de
fined. The levels represent clones ranging from exact copies to distinct 
functions. The metrics used, the thresholds employed and the detection pro
cess are fully described. Results of applying the clone detection technique 
to two telecommunication-monitoring systems of about one MLOC in size 
are provided as examples. 

Meszaros, G., and Doble, J. (1997). A pattern language for pattern writing. In 
Pattern Languages of Program Design-3, Software Patterns Series. 
(Addison-Wesley). The article discusses the commonly accepted format 
presently used for writing patterns. The "Pattern Languages of Program De
sign'" series of books are good references for anyone interested in pattern
related tOpics that cover a diverse range of disciplines. 

Miiller, H., Orgun, M., Tilley, S., and UbI, J. (1993). A reverse engineering ap
proach to subsystem structure identification Journal of Software Mainte
nance: Research and Practice, 5(4). pp. 181-204. This paper describes a re
verse engineering approach to creating higher-level abstract representations 
of a subject system, which involves the identification of related components 
and dependencies, the construction of layered subsystem structures, and the 
computation of exact interfaces among subsystems. The authors show how 
top-down decompositions of a subject system can be (re)constructed via 
bottom-up subsystem composition. This process involves identifying groups 
of building blocks (e.g., variables, procedures, modules, and subsystems) 
using composition operations based on software engineering principles such 
as low coupling and high cohesion. The result is an architecture of layered 
subsystem structures. 

Mylopoulos, J. (1990). Telos: representing knowledge about information sys
tems. ACM Transactions on Information Systems, 8(4). This paper discusses 
a conceptual modeling language that allows for schemata and domain mod
els to be specified. The language allows for schemata or meta-schemata to 
be specified in terms of object-like entities. Attributes can be classified in 
categories and treated as first class entities. 

Mylopoulos, J. (1996). A generic integration architecture for cooperative in
formation systems. In Proceedings of Co-operative Information Systems. 
This paper discusses a data and control integration system that allows for 
CASE tools to coordinate in order to assist software engineers perform 
software maintenance tasks. 

Nielsen, J. (1994). Heuristic evaluation. In Usability Inspection Methods, J. 
Nielsen and R. L. Mack (eds.) (Wiley). pp. 25-62. An easy-to-read over
view of heuristic evaluation, in a book that covers a wide range of issues 
related to usability evaluation. 



www.manaraa.com

Annotated Bibliography 447 

Opdyke, K. (1992). Refactoring object-oriented frameworks. Ph.D. Thesis. Uni
versity of Illinois at Urbana-Champaign. This thesis defines a set of pro
gram restructuring operations (refactorings) that support the design, evolu
tion and reuse of object-oriented application frameworks. Its focus is on the 
automation of these refactorings that preserve the behavior of a program. It 
provides a catalog of refactorings, explains under what circumstances they 
are behavior preserving (preconditions) and defines three complex refac
torings in detail. 

Parr, T. (1996). Language Translation Using PCCTS and C++: A Reference 
Guide. (Automata Publishing Company). This book provides an overview 
of compilation and parsing technology and focuses on the inner workings 
of a novel top-down parser generator called PCCTS. 

Parr, TJ. and Quong, R.W. (1995). ANTLR: A predicated-LL(k) parser gen
erator. Software: Practice & Experience, 25(7). pp. 789-810. This article 
describes the parser generator ANTLR. It discusses the use of predicates as 
form of backtracking. 

Schwanke, R.W. (1991). An intelligent tool for re-engineering software modu
larity. Proceedings of the 13th International Conference on Software En
gineering (lCSE '91). pp. 83-92. This paper presents ARCH, a software tool 
that provides heuristic modularization advice for improving existing code. 
It introduces the shared neighbors principle. The tool learns and adapts to 
the architect's preferences. It can also perform corrective clustering through 
its maverick analysis. 

Singh, A., Schaeffer, J., and Szafron, D. (1998). Experience with parallel pro
gramming using code templates. Concurrency: Practice and Experience, 
10(2). pp. 91-120. The authors of this paper have been working on pattern
based models and systems in parallel computing for over a decade. The pa
per outlines their experiences in developing and using these systems. A list 
of desirable characteristics of pattern-based approaches in parallel comput
ing is also discussed. The observations are discussed from the perspective 
of their own systems, Frameworks and Enterprise. They are equally relevant 
to other pattern-based parallel programming models and systems. 

Sneath, P.H.A. and Sokal, R.R. (1973). Numerical Taxonomy. (W.H. Freeman 
and Company). San Francisco. A book that presents many aspects of clus
tering in depth. Algorithms are described and their statistical properties dis
cussed, many distance metrics are p resented, etc. The viewpoint is that of 
taxonomy (the mother area of clustering), but many conclusions apply to 
remodularization. 

Stallings, W. (1991). Data and Computer Communications. (MacMillan). This 
book provides a comprehensive view of networking technology and com
munication protocols. Particular emphasis is placed on Internet protocols 
and inter-process communication mechanisms. The definitive work on us
ability engineering by the leader of the field. 



www.manaraa.com

448 Annotated Bibliography 

Tilley, S., Wong, K., Storey, M.A., and Muller H. (1994). Programmable re
verse engineering. International Journal of Software Engineering and 
Knowledge Engineering, 4(4). pp. 501-520. This paper describes a pro
grammable approach to reverse engineering. The approach uses a scripting 
language that enables users to write their own routines for common reverse 
engineering activities such as graph layout, metrics, and subsystem decom
position, thereby extending the capabilities of the reverse engineering tool 
set to better suit their needs. A programmable environment supported by 
this approach subsumes existing reverse engineering systems by being able 
to simulate facets of each one. 

Weinand, A., Gamma, A., and Marty, R. (1989). Design and implementation of 
ET++, a seamless object-oriented application framework. Structured Pro
gramming, 10(2). pp. 63-87. ET++ is a well-known object-oriented applica
tion framework that is based on the architecture of MacApp and imple
mented in C++. It was one of the fIrst of its kind, excels in the application 
of design patterns, and is available in the public domain. These characteris
tics make it a prime guinea pig system in the domain of design pattern re
covery and engineering. 

Wiggerts, T. (1997). Using clustering algorithms in legacy systems remodulari
zation, In Proceedings of the Working Conference on Reverse Engineering. 
(IEEE Press). pp. 33-43. Presents an overview of the general literature of 
clustering as applied to remodularization. Lists and describes the principal 
choices in the domains of clustering algorithms, distance metrics and link
age rules. The approach is theoretical as opposed to experimental. 

Wiggerts, T.A (1997). Using clustering algorithms in legacy systems remodu
larization. In Proceedings of the Fourth Working Conference on Reverse 
Engineering. (IEEE Computer Society Press). pp. 33-43. A very good sur
vey of cluster analysis techniques covering the most important classic clus
tering algorithms, as well as publications on software clustering. A good 
starting point for someone interested in learning more about software clus
tering. Contains a number of good references. 

Zobel, J., Wilkinson, R., Mackie, E., Thorn, J., Sacks-Davis, R., Kent, A., and 
Fuller, M. (1991). An architecture for hyperbase systems. In Proceedigns of 
First Australian Multi-Media Communications Applications and Technol
ogy Workshop, Sydney (July). In this paper, the authors propose a struc
tured architecture for hyperbase systems. A hyperbase system is a system 
that manages databases that store hypermedia information. Amongst its ad
vantages, the proposed architecture is based on the well-established data
base techniques. 



www.manaraa.com

Glossary 

Abstract Syntax Tree (AST}--A tree that offers a translation of an input 
stream in terms of operands and operators, omitting superficial details such 
as which grammar productions were used and syntactic properties of the in
put string. 

Agglomerative clustering algorithms-A type of hierarchical clustering algo
rithms that operate in a bottom-up fashion; i.e., they initially assign each 
object to a cluster, and then they start joining the most similar clusters. 

Ambiguity-The situation that results when two or more grammar rules can be 
applied at the same time when parsing a language construct. To decide 
which rule to apply, we need additional rules (usually based on semantics of 
the language) to resolve the ambiguity. 

Backus-Naur form-A grammar whose production rules are of the form 
A ~ AI. ... , An, or of the form A ~ Al 1 ... 1 An, where Ai are terminal or 
non-terminal symbols. 

Black hole configuration-A pathological situation in clustering in which an 
algorithm continuously adds elements to one large cluster instead of creat
ing smaller clusters of more moderate size. See also gas cloud configura
tion. 

Bottom-up parser-A parser that generates parse trees starting from their 
leaves and working towards the root. See also parser generator and parse 
tree. 

Browser-A tool for viewing and navigating hypertext documents. In particu
lar, Web pp. are meant to be viewed through an interactive browser. 

C&K suite of metrics-Chidamber-and-Kemerer suite of metrics. Chidamber 
and Kemerer are the authors of an object-oriented design metrics suite that 
has become a benchmark in the field. 

CASE-See Computer-Aided Software Engineering Environment. 

Change impact-The set of classes which have to be changed if a given class is 
modified. 

Changeability-The extent to which a piece of software can be easily modified, 
regardless of the purpose ofthe change. 

Clone(s}--Sections of program source code, often complete functions, which 
are nearly identical. Clones are typically created when programmers copy 
functions or files which they need for a new application, perhaps with slight 
modifications. During the maintenance of large software systems under 
time pressure, it is often quicker to copy and modify a working software 



www.manaraa.com

450 Glossary 

component. Cloning leads, over time, to systems that grow exponentially as 
a function of time, and consequently, have serious difficulties with mainte
nance. 

Clustering-The process of grouping together similar entities. In the context of 
software engineering, it is used for remodularization. 

Code Base Management System-A computer-sided software engineering 
(CASE) environment (CASE) that allows for the integration of various tools 
that facilitate software maintenance tasks. 

Cognitive complexity-The mental burden ofthe individuals (for example, the 
developers, testers, inspectors, and maintainers) who have to deal with a 
particular software component or subsystem. 

Cohesion-The extent to which aspects of a software system that are logically 
related are kept closer together, and are therefore easier to find and ma
nipulate. High cohesion is a goal of good design. 

Cohesion metric-A value that measures the extent of cohesion in a software 
component. 

Collaborative Virtual Environment (CVE}--Networked environment de
signed for team collaboration and providing a semblance of collocation 

Common Gateway Interface (CGI}--A mec'·anism that allows a Web server 
to launch and convey requests to arbitrary external programs. 

Computer-Aided Software Engineering (CASE}--Refers to a support envi
ronment or a set of tools. The support of software development through a 
set of (often-integrated) software tools that help automate certain tasks and 
processes and manage the underlying complexity. These may include sup
port for editing, compilation and linking; management of dependencies 
among software artifacts; visualization of software artifacts; navigation 
through software artifacts; access control; documentation production; detect 
ion of inconsistencies and error reporting; and reverse engineering. 

Control integration-The process of allowing tools to be synchronized with 
respect to their invocation in order to perform a given task. 

Corrective c1ustering-A procedure that refines an existing taxonomy by rear
ranging some of the objects. 

Coupling-The amount of linkage among various components of a software 
system. Lower coupling is a goal of good design. 

Coupling metric-A value that measures the extent of coupling in a software 
component. 

Cyclomatic number-Measure of a code section's, e.g., a function's, control 
flow graph complexity, defined as the number of regions in the planar 
graph. 



www.manaraa.com

Glossary 451 

Data integration-The process of allowing tools and processes to exchange 
data in a transparent way. 

Descriptive feature---The characteristic used to describe entities to be clustered 
(see also similarity metric). In the context ofremodularization, types of de
scriptive feature include software components referred to by an entity (e.g., 
inclusion of files, calls to routines) and words contained in the entity's 
name. For each entity, data corresponding to the descriptive feature is repre
sented as a vector of attributes. 

Design component-A design component is the reification of design elements, 
such as patterns, idioms, or application-specific solutions, and their provi
sion as software components (JavaBeans, COM objects, or the like), which 
are manipulated via specialization, adaptation, assembly, and revision. For 
the purpose of Chapter 8, the term design component is used as a package of 
structural model descriptions together with informal documentation, such as 
intent, applicability, or known uses. 

Design pattern-Design patterns capture the rationale behind proven design 
solutions and illuminate the trade-offs that are inherent in solutions to a 
non-trivial, recurring design problem. The notion of design pattern has be
come widely popular by the book on that subject written by Gamma et al. 

Design pattern recovery-Detection and description of instantiations of design 
patterns occurring in a software system. Note the difference from design 
pattern mining, where the goal is to identify recurring design solutions and 
provide them as design pattern templates. 

Design repository-See repository. 

Distributed Software Engineering (DSE}-Software development performed 
by geographically distributed teams. 

Divisive clustering algorithms-A type of hierarchical clustering algorithms 
that operate in a top-down fashion, i.e., they start with all the objects in one 
cluster, and then they start splitting it. 

Domain model-A schema for the conceptual modeling of a given domain (i.e., 
the syntactic structures of a programming language). 

Empirical study-The study of a phenomenon through observation or meas
urement. 

Extensible Markup Language---A W3C standard for marking text so that se
mantic content can be associated with syntactic text entities. 

First-degree empirical study-An empirical study in which those being stud
ied are directly involved, for example, by answering questions. 

Fuzzy parser-A fault-tolerant parser. 



www.manaraa.com

452 Glossary 

Gas cloud configuration-A pathological situation in clustering in which an 
algorithm leaves many leftover unclustered elements. See also black hole 
configuration. 

Heuristic evaluation-A technique for evaluating the usability of software in 
which one or more usability experts walk through the software, determining 
whether a set of guidelines have been adhered to. The technique was in
vented by J. Nielsen. 

Hierarchical clustering algorithm-An approach to clustering in which a hier
archy of clusters is formed, with all the elements in a single cluster at the 
root, and all the elements as singleton clusters at the leaves. A category of 
algorithms that produce a nested sequence of partitions, and then choose 
one of them as their output. 

Hypermedia-Hypertext systems where the nodes can contain multimedia data, 
such as text, graphics, audio, video, as well as source code or other forms of 
data. See also hypertext. 

Hypertext-An approach to information management in which text is stored in 
a network of document nodes connected by links (also called hyperlinks). A 
link is something that connects a piece of text to a destination piece of text; 
the source and destination areas are usually marked on a display by high
lighting or special graphics. The World Wide Web (WWW) is an example 
of a set of distributed hypertext documents. See also hypertext and World 
Wide Web. 

Hypertext Markup Language (HTML}-A composite document model. The 
document may contain references to other documents that are rendered in 
line by the client (e.g., tags, pictures, audio, video) and links to external 
documents. See also markup language and hypertext. 

Hypertext Transfer Protocol (HTTP}-The common protocol for client
server communication on the Web. See also hypertext and World Wide 
Web. 

Incremental clustering-A procedure that adjusts an existing taxonomy when 
the object set is modified. 

Internet-A world-wide network of interconnected networks that supports host
to-host communication that adhere to open protocols and procedures de
fined by Internet standards. The Internet is based on the TCPIIP protocol 
suite, a set of protocols that allow multiples networks to be connected to
gether in a seamless way. 

Left recursion-The problem of creating infinitely long parse tree branches 
when top-down parsing is involved in rules of the form A ~ A, B. 

Legacy software system-A large, old, and mature software system that con
stitutes a massive asset to a business. The proper functioning of the software 



www.manaraa.com

Glossary 453 

and the ability to add functionality is essential for the survival of the busi
ness. 

Linkage rule-A rule used in clustering to determine how to compute the dis
tance between two clusters. Two extreme cases are single linkage, which 
uses the distance between the closest elements in the two clusters, and com
plete linkage, which uses the furthest elements. 

Logistic regression-A statistical modeling technique that is used when the 
dependent variable is binary. 

Maintenance-The set of activities involved in modifying a piece of software 
once it is in operation. The modification can be of any kind and for any 
purpose. 

Markup Language-A language that uses tags or labels to mark or distinguish 
different types of text in a document. These tags add information to the text 
indicating the logical components of a document, or instructions for layout 
of the text on the page. The word markup originated from the words and 
symbols that editors wrote on the printed page as instructions to the typog
raphers. 

Message Passing Interface Forum (MPIF)---An organization formed with the 
participation of over 40 organizations . The forum has been meeting since 
January, 1993 to discuss and define a set of library interface standards for 
message passing. See http://www.mpi-forum.orgl. 

MIMD (Multiple Instruction Multiple Data)---A computer architecture for 
parallel processing, defined by Flynn's taxonomy. A multiple-instruction 
multiple-data stream (MIMD) computer is a multi-processor system where 
each processor is capable of executing a different program independent of 
the other processors. 

Model/View/ControUer (MVC) -A software architecture, or design pattern, 
first described for Smalltalk, in which the parts of the software are divided 
into the model, holding the actual data; the view, which displays the data; 
and the controller, which allows the data to be manipulated. 

Module-Source code file, which is at the same time a lexical scoping unit. 

MOO (MUD Object-Oriented)---A MUD implemented with object-oriented 
technology 

MPI (Message Passing Interface)---A communication standard for writing 
parallel programs. It aims at establishing a practical, portable, efficient and 
flexible standard for communication among parallel programs using the 
message -passing paradigm. 

MUD (Multi-User Domains)---Collaborative virtual environment emulating 
selected features of the real world such as places, objects, tools, and in
habitants, designed for social or work interactions of multiple users over a 
network. 



www.manaraa.com

454 Glossary 

Multimedia-Multimedia usually refers to computer presentation of documents 
involving text, graphics, voice, video, and other types of media. 

Multipurpose Internet Mail Extensions (MIME~Refers to an Internet stan
dard that specifies how messages must be formatted so that they can be ex
changed between different email systems. Specifically, MIME messages 
can contain text, images, audio, video, or other application-specific data. 

Object-oriented database management system (OODBS~A database man
agement system that stores, retrieves, and updates objects using transaction 
control, queries, locking, and versioning. 

Package-Set of modules forming a library or program. and possibly relying on 
other library packages. 

Parse tree-A parse tree for a grammar G with terminal symbols T, and non
terminal symbols V, applied to text S is a labeled ordered tree such that: (a) 
its root is the start symbol of G; (b) every leaf node has a label from the set 
T; (c) every internal node has a label from the set V; (d) if there is an inter
nal node labeled A and its children are labeled ah a2, ... , a", there must be a 
production rule of the form A ~ ah a2,"" a" in the grammar G; and (e) if a 
leaf is labeled by an empty label then it must be the only child of its parent. 

Parser generator-A tool that generates a parser from a grammar. 

Parsing-The process of determining if a string of tokens can be generated by a 
grammar. See also parse tree. 

Partitioning (partitional) clustering algorithms--A category of algorithms 
that start with an initial partition, and attempt to modify it in order to opti
mize certain measures that represent the quality of the given partition. 

Precision-A metric from information retrieval that measures the percentage of 
retrieved data items that are valid. See also recall. 

Product metriC-Usually refers to a quantitative description of an internal at
tribute of a piece of software, such as level of coupling between subsys
tems, cohesion within subsystems, and depth of the inheritance hierarchy. 
See software metric. 

Program representation-A collection of techniques and methodologies to 
represent the source code at a higher level of abstraction than source text. 
These include among others, Abstract Syntax Trees, call graphs, data flow 
graphs, control flow graphs, program dependency graphs, program sum
mary graphs. 

Qualified identifier-Identifier (e.g., type, variable or procedure name) quali
fied with the module name (e.g., M1.P2 for procedure P2 in module MI). 
The module name can be omitted when the identifier is used within the 
module where it is defined. 



www.manaraa.com

Glossary 455 

Quality metric-Usually refers to a quantitative description of an external at
tribute of a piece of software, such as number of faults, down-time, speed of 
computation, and maintenance effort. See software metric. 

Quality model-A quantitative model relating software product metrics with 
measures of external quality attributes, such as number of faults and main
tenance effort. 

RecaU-A metric from information retrieval that measures the percentage of 
valid data items that are retrieved. See also precision. 

Re-engineering-As applied to software. The examination and alteration of the 
subject system to re-constitute it in a new form and subsequent implemen
tation of that form. 

Refactoring-A restructuring operation that supports the design, evolution and 
reuse of object-oriented application frameworks. This restructuring opera
tion preserves the behavior of a program. 

Relational database management system (RDBMS}-A software system that 
supports the construction and management of relational databases. An 
RDBMS allows the definition of data structures, storage and retrieval op
erations, and integrity constraints using the relational model. DB2, IN
GRES, Sybase, and Oracle are well known examples. 

Relational database-A database based on Codd's relational model. Such a 
database has its data and relations between them organized in tables. 

Remodularization-The process of dividing software into a more understand
able set of modules or subsystems. 

Repository-A centralized database that contains all diagrams, form and report 
definitions, data structure, data definitions, process flows and logic, and 
definitions of other organizational and system components; it provides a set 
of mechanisms and structures to achieve seamless data-to-tool and data-to
data integration. The term design repository refers to an object-oriented da
tabase management system, together with a repository schema of reverse 
engineered models that comprise structure, behavior, and mechanisms at the 
design level. 

Reverse engineering-As applied to a software system. The process of ana
lyzing a subject system to (a) identify the system's components and inter
relationships among the components, and (b) create representations of the 
system in another form or at a higher level of abstraction. The analysis of a 
given system in order to understand its structure and its behavior. 

Safe programming language-Language for which the runtime system cannot 
be corrupted, thus insuring that the execution is faithful to the language se
mantics. 



www.manaraa.com

456 Glossary 

Second-degree empirical study-An empirical study in which those being 
studied are only indirectly involved, for example, by logging the use of 
tools. 

Similarity metric (measure)--A class ofmetrics used in clustering to compute 
the similarity of two elements by comparing vectors of each element's at
tributes. Important types of similarity metrics include association coeffi
cients, distance coefficients and correlation coefficients. 

Software clone(s)--See clone(s). 

Software documentation-The task of producing a set of documents describ
ing the construction, operation and use of software and produced throughout 
the software development lifecycle. 

Software metric-A quantitative description of a piece of software, of a design 
artifact, or of the process of its development or maintenance. May refer to 
an internal attribute (such as internal complexity, coupling, cohesion) that is 
measured through analysis of the source code or another software artifact, 
or an external attribute (such as reliability, maintainability, performance) 
that is measured during development, operation, or maintenance of the 
software in its intended environment. See also product metric and quality 
metric. 

Synchronized shadowing-A technique for observation wherein two people 
using clock-synchronized laptop computers record different aspects of peo
ple's work. The recording is done using a program that provides a set of 
buttons that allow specific information to be recorded and time-stamped. 
The output of the two computers is later combined and analyzed to discover 
work patterns. 

Think-aloud usability testing-A technique for evaluating the usability of 
software in which one or more users is asked to perform specific tasks with 
the software while constantly talking about what they are thinking and do
ing. The sessions are normally videotaped and later analyzed to detect us
ability problems. 

Third-degree empirical study-An empirical study in which information is 
gathered by studying artifacts left by those being studied, for example, 
looking at reports written by people being studied. 

Three-tier architecture-A software architecture proposed back in the 1970s 
providing a storage (internal) schema, which is the database design; an ex
ternal schema representing the applications; and a conceptual schema, 
which constitutes the domain tier and captures the semantics of the enter
prise. 

Threshold-A metric value below which the probability of a fault in a software 
component is steady, and above which the probability of a fault in the com
ponent increases. 



www.manaraa.com

Glossary 457 

Tool integration-The process of allowing tools and processes to collaborate 
for accomplishing a given task. Tool integration entails data and control in
tegration. 

Top-down parser-A parser that generates parse trees starting from the root 
and working towards the leafs. 

Transliteration-The conversion of a software system at the source code level, 
from one programming language into another. Transliterations maintain the 
original architecture and data and control flow in the target system to a 
high degree. 

UML metamodel-A metamodel is a model that includes types whose in
stances are also types. Metamodels are often used to specify other models. 
Specifically, the UML metamodel defines the types ModelElement, Class, 
Method, Feature, Package, and many others, as found in the UML notation. 

Unified Modeling Language (UML)---The UML is an international standard 
for capturing analysis and design information through a set of well-defined 
models and diagrams. It comprises use cases, class and scenario diagrams, 
state and activity diagrams, as well as component and deployment dia
grams. The UML is specified by the UML metamodel. See also UML 
metamodel. 

Uniform Resource Locator (URL)---A link that designates the location and the 
identity of a resource on the World Wide Web. 

Usability-The ability of software to be easily learned, to be efficiently ex
ploited, to handle errors effectively and to satisfy users when used by par
ticular classes of users performing particular classes of tasks. An important 
factor contributing to a software system's usefulness that should be consid
ered independently of utility. 

Use Case Map (UCM)---A graphical notation invented by R.J.A. Buhr showing 
multiple causal flows of responsibilities (paths) interacting with various 
contexts (shown as boxes, possibly nested). The notation was designed to 
represent the high-level architecture of real-time systems, but it can be used 
in other contexts, such as representing work patterns. 

Utility-An abstract measure of the degree to which software has the computa
tional capabilities to perform a given task, independent of its usability. An 
important factor contributing to software's usefulness. 

Validation-Validation is the process of evaluating software during all phases 
of the software development process to ensure compliance with software 
requirements. 

Variant-Variants of software components are developed to meet the require
ments of different platforms. Often they express the same or similar func
tionality in different languages or in different environments. 



www.manaraa.com

458 Glossary 

Verification-Verification is the process of determining whether a software 
system retains specific properties when development moves from one phase 
to another in the software development lifecycle. 

Version-Versions of software components are brought together to form a re
lease of a system. A version is a frozen-in-time snapshot of the component. 
Maintenance activities produce new versions by making corrections to older 
versions. 

VR (Virtual Reality}--Usually, interactive software typically modeling 3D 
aspects of the real world. 

Work pattern-A sequence or graph of activities that occurs repeatedly in the 
work of an individual or group. Identifying work patterns can help in the 
process of automating or facilitating it. 

World Wide Web (WWW}-A software application developed in 1989 at 
CERN (the European Center for Nuclear Studies) aimed at providing hy
pertext-style access to information from a wide range of distributed sources. 
The WWW can be seen as a web of linked documents distributed world
wide. See also hypertext. 



www.manaraa.com

Index 

Abstract module, defined, 247-248 
Abstract semantics graph, 209 
Abstract Syntax Tree (AST) 

annotated, 408, 422 
defined,449 
domain models and, 407-408 
generation of, 13,316,419 
graphs and, 411-412 
nodes of, 397 
parsing and. See Parsing 
representations, 411-412 
space requirements for, 428 
use of, 411-412 

ACE. See Adaptive Communication 
Environment 

Action class 
semantic, 422-423 
UML and, 281-282 

Adaptive Communication Environment 
(ACE),243 

Agglomerative algorithms, 144,449 
Aggregation algorithms, 168,201 
Ambiguity, 391, 449 
Analyzability,197 
Animation, 10,255-258 
Annotated Abstract Syntax Tree, 408, 422 
Annotation, 422, 426 
ANOVA. See Variance analysis approach 
ANTLR tool, 398 
Architectural clustering, 8, 159-173 
Architectural skeleton model, 246-250 
Artificial environments, 54-55 
Artificial intelligence, 114 
ASCII files, 215 
Association coefficient, 145, 146, 165 
Association relationship, 280 
AST. See Abstract Syntax Tree 
Autogrep, 82 

Backtracking, 398, 403-404 
Backus-Naur form, 449 
Behavior classes, 280-282 
Black hole pattern, 154 
Bottom-up structure, 160, 449 
Bridge pattern, 127-129 
Bunch algorithms, 144, 151, 154 

C++ language, 10, 11, 132, 179 
ambiguities in, 391-395 
change analysis, 202 
change impact model, 197 
compilation units, 405 
CppML and, 427 
data types, 189 
GENOA and, 209 
incomplete compilation units, 395-397 
Java and, 97, 190 
legacy systems and, 9 
links and, 203 
missing declarations, 387-406 
MPI standard, 250 
parsing of, 387-406 
PLiI and, 296 
scope rules of, 389 
usage patterns, 9 
VisualAge IDE and, 428 

C&K metrics. See Chidamer-Kemerer 
metrics 

Call graph, 327 
Camberra coefficient, 145 
CAS/IBM. See Centre for Advanced Studies 
CASE. See Computer-Aided Software 

Engineering 
Categorization schemes, 83 
CBO. See Coupling between objects 
Centre for Advanced Studies (CAS/IBM), 

296 
Centre for Software Engineering Research 

(CSER),296 
CFX parser, 410 
CGI. See Common Gateway Interface 
Change impact 

C++ and, 197 
change,defined,200 
defined,449 
model of, 200-208 
ripple effects, 199,202 
truth table, 204 
See also Changeability 

Changeability, 197,280 
defined,449 
general design-level indicator, 219-220 
influence of design on, 199 
maintainability and, 197 
polymorphism and, 203 



www.manaraa.com

460 Index 

ripple effect, 202 
See also Change impact 

Chidamber-Kemerer (C&K) metrics, 28, 
449 

CHIME system, 380 
Chunking, 33, 41 
Class 

core, 276--278 
extension, 283-284 
hierarchy in, 9 
repository, 269-291 
top-level, 274-275 
See also Object-oriented systems 

Classifier element, 277 
Client-server architecture, 305 
Clique algorithms, 168 
Cloning, 7, 226--227 

defined, 449 
detection, 4, 7, 99 
direction of, 236 
Java and, 107 
maintainability and, 4 
Modula-3 and, 105, 106 
procedures, 96 

Clustering, 139 
algorithms, 143-144, 149,452 
analysis of, 169 
attributes and, 151 
automatic, 139-140, 162 
black hole configuration, 449-450 
classic, 164-169 
cohesion and, 8, 137 
complexity and, 161 
components in, 230 
concept analysis, 163 
congruence and, 148 
corrective, 450 
coupling and, 8, 137 
criteria for, 147 
defined, 449 
design quality criterion, 148-149 
devisive,451 
evaluation of, 147, 151 
features and, 164 
hierarchical algorithms, 155 
incremental, 452 
linkage rules, 146, 151-153 
natural groups, 160 
objects in, 164 
optimization problem, 163 
partitioning algorithms, 454 
program comprehension and, 8, 137-

156 
relationships for, 140-141 
remodularization and, 8,137,137-156 
representing information, 141-143 
similarity metrics, 145-146 
small interfaces and, 162 

snips, 230 
source code, 113 
stability and, 161 
techniques, 164-170 

C++Markup Language (CppML), 427 
Code Base Management System, 450 
Cognitive theory, 28-33, 450 
Cohesion, 162 

defined, 450 
hierarchies and, 138 
metrics for, 28, 41, 450 

Collaboration classes, 282-283 
Collaborative virtual environment (CVE), 

12,361 
defined, 450 
requirements on, 363-365 
types of, 365-366 

Common Gateway Interface (CGI), 305, 
313,317,450 

Common Object Request Broker 
Architecture (CORBA) standard, 
329 

Communication-synchronization behavior, 
246 

Complexity, 33, 450 
analysis of, 326--327 
clustering and, 161 
cognitive, 29, 450 
cyclomatic number, 100,263,327,450 
efficiency and, 185-186 
faults and, 36 
metrics, 27, 36,106,161,263,325-327 
object-oriented software and, 33-36 
understanding, 33 

Composite patterns, 251,279. See also 
Composition of patterns; Design 
patterns 

Composite skeleton, 253, 255, 260 
Composition of patterns, 260-261. See also 

Composite patterns, Design 
patterns 

Comprehension, 2, 6, 80, 137-156 
Compression, 113 
Computer-Aided Software Engineering 

(CASE), 13,434,450 
Computer supportive collaborative work 

(CSCW),364 
Concept analysis, 144, 163 
Conceptual modules, 131 
Concrete modules, 247, 249 
Conditional views, 353 
Congruence, 148 
Connectivity algorithms, 168 
Consortium for Software Engineering 

Research (CSER), 14-19 
Constraint-based recognition, 330 
Context-sensitive constructs, 424 
Control integration, 450 



www.manaraa.com

CORBA. See Common Object Request 
Broker Architecture standard 

Core class, 276-278 
Core redundancy, 325 
Corrective clustering, 450 
Correlation coefficient, 145 
Costs, 6, 7,10 
Coupling 

clusters, 137 
defined,450 
faults and, 199 
hierarchies and, 138 
low, 162 
metrics and, 28, 199,450 
objects and, 198 
programs, 40 
thresholds, 37 

Coupling between objects (CBO), 198 
CppML. See C++ Markup Language 
CSCW. See Computer supportive 

collaborative work 
CSER. See Consortium for Software 

Engineering Research 
CYE. See Collaborative virtual environment 
Cyclomatic number, 100,263,327,450 

DAG. See Directed Acyclic Graph 
Data binding, defined, 161 
Data flow diagram, 64 
Data gathering, 56-60 
Datrix, 282, 410 
Dendrogram, 166 
Dependency analysis, 119,279,285 
Depth of inheritance (DIT) tree, 198 
Descriptive feature, 140-141,451 
Design patterns, 4, 5, 113 

black hole, 154 
bridge, 127-129 
component recovery, 8, I 13-133, 451 
composite, 251,279 
composition of, 260-261 
defined,451 
design components, 130 
design recovery, 8,113-133 
detecting, 60-61 
forward engineering, 113-115 
master-slave, 244 
metrics. See Metrics 
object-oriented systems and, 9, 197-224 
parallel applications and, 10, 243-263 
quality criterion, 147-149 
parallel computing and, 244--245, 246 
repository, 11, 116,269-295,455 
reverse engineering and, 8, 12l-130 
SPOOL and, 115-121, 119-120,269-

295 
trade-offs, 8 
See also Reverse engineering 

Index 461 

Directed Acyclic Graphs (DAG), 411 
Disjoint domain, 368 
Dispersion of support, 361-381 
Distance coefficient, 145 
Distributed multimedia systems, 331 
Distributed software engineering (DS E), 

361,380,451 
DIT. See Depth of inheritance tree 
Divide-conquer tree, 260 
Document type definitions (DTDs), 410, 

426 
Documentation, 9, 296, 341-360, 456 
Domain model approach, 412--423, 428, 451 
Domain-specific functionality, 270 
DSE. See Distributed software engineering 
DSSSL,347 
DTDs. See Document type definitions 
Dynamic content, 313-314 
Dynamic documents, 341-360 
Dynamic metrics, 26 
Dynamic relationship, 140 
Dynamic replication, 251-252 

Efficiency, and complexity, 185-186 
Empirical studies, 3, 54-56, 451, 456 
Encapsulation, and memory, 37 
End-user tools, 10 
Enterprise system, 244 
Entity-relation tuples, 410 
Environment-retargetable parser, 407-435 
ESDA. See Exploratory Sequential Data 

Analysis 
ESPRIT system, 13 
Ethnographic methods, 52 
Event-aware environments, 375-379 
Evolvability, 9, 197-224 
Experimentation, 54-56 
Expert criterion, 147-148 
Exploratory Sequential Data Analysis 

(ESDA),61 
Extensibility, 262, 346 
Extensible Markup Language (XML), 425-

426,451 
Extension class, 283-284 
External attributes, 23 
External metrics, 35 

Factory method, 123-127 
Faults 

complexity and, 36 
coupling metrics, 199 
minimal,42 
object-oriented metrics and, 38 
thresholds and, 41,456 

Features 
association coefficients, 165 
clustering and, 164. See also Clustering 



www.manaraa.com

462 Index 

objects and, 164-165 
properties of, 278 
See also Object-oriented systems 

Field study, 69 
Finite-state automaton (FSA), 375 
Flat program, 39 
Flex parser generator, 13 
Flow relationship, 280 
Forward engineering, 5,113 
Framework systems, 215, 244 
Friendship links, 203, 280 
FSA. See Finite-state automaton 
Function pointers, 191 
Functionality, 31-32, 80 
Fuzzy parsing, 388, 451 

Gas cloud configuration, 452 
GEN++ system, 209 
Genericity,260 
GENII system, 408 
GENOA system, 209, 408 
Global stack,422 
Global variable, 150 
Grammar, 422-424, 449. 
Granularity,434 
Graph theory, 161,449 

abstract semantics and, 209 
acyclic, 411 
algorithms and, 168 
call graphs, 327 
cyclomatic number, 263, 327, 450 
limitations of, 246 
NP-complete problems, 164 
partitioning in, 164 
user interfaces and, 314 
See also Tree analysis 

Graphical synchronized shadowing tool 
(GSST),60 

Graphical user interface (GUI), 189-190 
Graphics animation, 255-258 
Grep command, 63, 77 
GSST. See Graphical synchronized 

shadowing tool 
GUI. See Graphical user interface 

Halstead metrics, 263 
Hasse diagram, 230, 233, 238 
HOM. See Hypermedia Design Model 
Header files, 12,391 
Helper applications, 314 
Heuristic evaluation, 82-85, 91, 452 
Hierarchical algorithms, 79-80,137-138 

agglomerative, 167 
bottom-up, 167 
clustering, 143-144,452 
divisive, 167 

management and, 76-80 
pattern composition, 252-253 
refinement and, 258-259, 261 
remodularization and, 138, 154 
top-down, 167 

High cohesion principle, 162 
High-risk component, 24 
Hill-climbing algorithm, 163, 168 
Hook method, 122,272 
HTML. See Hypertext Markup Language 
HTTP. See Hypertext Transfer Protocol 
Human memory model, 32, 36 
Hyperlinked document, 12,331,343-348 
Hypermedia-based systems, 348-349, 354-

357,452 
Hypermedia Design Model (HOM), 348 
Hypertext Markup Language (HTML), 305, 

313,342,452 
hyperlinking, 344 
SGML and, 353, 355, 357 
tagging languages, 316, 346-347 

Hypertext Transfer Protocol (HTTP), 305, 
325,345,452 

ILl. See Intermediate language 
implementation 

Impact analysis, 204-208 
boundaries in, 9 
design metrics and, 219-221 
inheritance and, 220-221 

Indented list hierarchy, 80 
Information hiding principle, 169 
Information-retrieval metrics, 148 
Inheritance, 28, 34 

hierarchies and, 35,191 
impact and, 220-221 
links, 201 
metrics, 39-40 
migration and, 181 
non-object-oriented code, 9, 177-195 
thresholds, 37 
tree depth, 29, 220 
understandability and, 35 

Interclass metrics, 198 
Interfaces, 162, 169, 272 
Intermediate language implementation (ILl) 

structure, 320 
Intraclass metrics, 198 
Invocation link, 201 
ISODATA algorithms, 167 

Jaccard coefficient, 145, 165 
Java language, 7,98,177,368 

applets, 314 
C++, 97,189-190 
classes, 273 



www.manaraa.com

cloning in, 7, 95-111 
data types, 189 
flat programs, 39 
JavaCC,426 
JavaML,426 
JVM system, 177 
migration and, 180--181 
Modula-3 and, 106 
script handlers, 314 
web-based platforms, 9 

Java Mark-up Language (JavaML), 426 
Java Virtual Machine (NM), 177 
JavaScript handlers, 314 
Jersey system, 367-371 
Just-in-time comprehension, 52, 77 
NM. See Java Virtual Machine 

Kernighan-Lin method, 168 
Knowledge-based approach, 160 
Knowledge engineering, 331-332 

Lack of cohesion in methods (LCOM), 198 
Landscape tool, 314 
LCOM. See Lack of cohesion in methods 
Left recursion, 452 
Legacy systems, 7-9 

analysis tools, II 
C programs and, 9 
clustering. See Clustering 
defined, 159 
documentation, 296, 341-360 
importing of, 352 
inheritance in. See Inheritance 
Java and, 9, 177 
migration and, 177, 181 
mission-critical, 9 
modules in, 137 
object-oriented. See Object-oriented 

systems 
parsing. See Parsing 
remodularization, 8 
subsystems, 137 
See also specific codes. procedures. 

systems 
Linkages 

associations, 20 I 
C++, 203 
clustering and, 146, 151-153,453 
single, 146 
software bookshelf and, 310-311 
weighted average, 146 

Linux operating system, 163 
LivePage system, 350--354 
Local connectivity algorithms, 168 
Logistic regression, 26, 453 
Look-and-feel, \05 

Maintainability, 4-5, 23 
changeability and, 197 
cloning and, 4 
costs, 7 
defined, 453 

Index 463 

redundancy and, 9--10, 225-242 
software, 52 
testability and, 197 

Markup language, 453. See specific codes 
Master-slave patterns, 244 
Matching coefficient, 165 

simple, 145 
Memory models, 32, 37 
Message-passing coupling (MPC), 198, 250, 

261,329 
Message Passing Interface Forum (MPIF), 

250,261,453 
Meta-data, 307, 331 
Meta-language, 313, 347 
Method signature change, 211 
Metrics, 6, 119, 450. See specific types 
Migration, 179--182, 322 
MIMD. See Multiple Instruction Multiple 

Data 
MIME. See Multipurpose Internet Mail 

Extensions 
Minimum spanning tree (MST) algorithms, 

168 
Mission-critical applications, 9 
Model checking, 358 
ModelNiew/Controller (MVC), 453 
Modula-3 language, 7, 95-111 

Java and, \06 
Modularization, 137-138. See also 

Remodularization 
Modules 

abstract, 248-250 
chunking and, 33 
concrete, 247 
defined, 248,453 
replication, 251-252 
singleton, 250 
See also Remodularization; 

Modularization 
MOO. See MUD Object-Oriented 
Mozilla system, 237-239 
MPC. See Message-passing coupling 
MPIF. See Message Passing Interface Forum 
MST. See Minimum spanning tree 

algorithms 
MUD Object-Oriented (MOO), 366,453 
MUDs. See Multi-User Domains 
Mulitple Instruction Multiple Data (MIMD), 

453 
Multi-Universe MOO (MUM), 374-378 
Multi-User Domains (MUDs), 366, 369, 

380,453 
Multiheaded links, 306, 331 



www.manaraa.com

464 Index 

Multimedia, 380,454 
Multipurpose Internet Mail Extensions 

(MIME), 305, 313, 454 
MUM. See Multi-Universe MOO 
MVC. See Mode1Niew/Controller 

Name translation service, 311-312 
Named hierarchies, 79 
Namespace method, 277 
National Research Council (NRC), Canada, 

1,14 
Netscape Navigator, 237, 306 
Network-centric platforms, 9 
Network objects, 430, 432 
Non-object-oriented code, 9, 177-195 
Note-taking, 57 
Notification events, 375 
NP-complete problems, 164 
NRC. See National Research Council of 

Canada 

Object instantiation, 272 
Object-Oriented Hypermedia Design Model 

(OOHDM), 348, 349 
Object-oriented metrics, 6-7, 23-43 

class size, 38 
clustering and, 164 
cognitive theory of, 28-29, 32-33 
cohesion metrics, 41 
complexity and, 36 
coupling and, 37, 40 
defined, 449 
faults and, 38 
functionality, 31-32 
high-risk components, 25-26 
inheritance and, 37-40 
interconnected, 28 
practical use of, 24-28 
programming guidelines, 27-28 
summary of, 29-30 
system-level predictions, 24-25 
thresholds, 36-37, 41-42 

Object-oriented systems, 367 
association in, 165 
C++. See C++ language 
chunkingin,33,41 
complexity in, 33 
contexts, 27 
database management, 116,269,454 
design properties of, 9, 197-224 
evolvability of, 9,197-224 
features, 165 
hypermedia, 348, 349 
JA VA. See Java language 
legacy systems, 178 
libraries, 7 

representation of, 34 
similarity measures, 165 
small talk, 27, 31, 368-369 
software maintenance, 198-200 
three level model, 34 
tracing, 33 
understandability and, 34 
See also Object-oriented metrics 

Object server, 308 
Observation mechanism, 284, 286-287 
Observation sessions, 56-60 
Ontologies, 331 
OOHDM. See Object-Oriented Hypermedia 

Design Model 
Open architecture, 312 
Open source community, 237 
Optimized searches, 76-80 
Ownership architecture, 163 
OzWeb system, 329 

Packages, 278 
Page image systems, 356 
Pairwise distance measures (PDMs), 148 
Parallel applications, 10, 243-263 
Parallel computing, 244-246, 251 
Parent-child relationship, 198,249,259,454 
Pareto heuristics, 27 
Parsing, 316, 449, 451, 457 

AST and, 387-390 
C++ and, 387-406 
domain model approach, 412-423, 428 
environment-retargetable,407-435 
fuzzy, 388 
performance, 428 
program analysis, 409-411 
semantic, 434 
source code and, 132 
statistics for, 429 
tools for, 330 
tree structure, 387-390,454 

Partitioning algorithms, 144, 166-167 
Pascal programs, 32 
Patterns. See Design patterns 
PCSW. See Project Community Software 
PDF, 356 
PDMs. See Pairwise distance measures 
Performance measurement, 262-263 
Perl scripts, 250 
Petri nets, 64 
PLiI code, II, 64, 296 
Plug-ins, 64, 314 
POET system, 215 
Point-to-point message passing, 329 
Polymorphism, 38, 130 
PostScript format, 356 
Predictions, system-level, 24 
Preventative design, 24 



www.manaraa.com

Process capability, 23 
Product metrics, 23, 24,454 
Program clustering, 4 
Program comprehension, 2, 6, 8, 80, 137-

156 
Program representation, 454 
Project Community Software (PCSW), 380 
Propositional textbase, 34 

Quality management, 6, 23, 455 
Quantitative models, 56 
QuickSort procedure, 106 

Recall metric, 148,455 
Redundancies, 225-242, 325-328 
Refactoring, 178, 455 
Referential integrity, 346 
Refinement, 13,258-259,261 
Relational database management system 

(RDBMS), 455 
Reliability, 6, 23 
Remodularization, 137-139 

automatic, 139, 147 
clustering and, 8,137-156 
defined,450, 455 
expert criterion, 147 
hierarchical algorithms, 154 
legacy systems, 8 
manual approaches to, 139 
program comprehension and, 8, 137-

156 
Remote procedure calls (RPCs), 244 
Replication module, 252 
Replication skeleton, 258 
Repository architecture, 271-274 
Repository schema, 116,269,274-284 
Response for class (RFC), 198 
Retargetable parser generators, 407--435 
Reusable components, 163,260 
Reverse engineering, 114,225 

abstraction and, 10 
aims of, 269 
defined, 455 
growth of, 162 
information from, 291 
pattern-based, 8,121-130,124 
SPOOL and, 115-121 
stress testing, 434 
tools, 8-13 
UML and, 11,291 
visual reengineering and, 329 
See a/so specific junctions, systems 

RFC. See Response for class (RFC) 
Rigi Standard Format (RSF), 13,315,321 
Risk,25-26 
Role-based access, 358 

Index 465 

RPCs. See Remote procedure calls 
RSF. See Rigi Standard Format 
Rule-directed methods, 422 

S-expressions, 430 
Search methods, 119,353 
Semantic analysis, 10, 160,227,422-423, 

434 
Separation ofconcems, 261 
Server Side Includes (SSI), 313 
Severity rating, 83 
SGML language, 343, 347, 355-357 
Shadowing,7,51,57-60, 64,69,456 
Shared-neighbors technique, 162 
Shlaer-Mellor designs, 38 
Short-term memory, 36 
Sibling uses relationships, 140, 143, 150 
SIDOI system, 318-323, 325 
Similarity metrics, 456 

categories of, 145 
clustering and, 145-146 
evaluation of, 154 
objects and, 165 
queries and, 331 
relationships and, 141 

Singleton module, 250 
Situation model, 34 
Size thresholds, 36 
Skeleton, architectural, 246, 253, 258-260 
Skeleton library, 10 
Slicing tools, 330 
Small interfaces, 162 
Smalltalk, 27, 31, 368-369 
Snips, 228-230 
Software 

evolvability, 9 
large, 159 
syntactic conventions, 9 
understandability,32 

Software Bookshelf, 295-340 
building of, 299-318 
information repository, 306-312 
librarian, 297, 300-301 
patron, 297,302-303 
roles in, 297 
user interface, 306 

Sorensen-Dice coefficient, 145 
Sorting algorithm, 330 
Splitting, 229 
SPOOL design repository, 10-11,269-295 
SPOOL reverse engineering environment, 9, 

114-121 
SQL databases, 343 
SS!. See Server Sides Includes 
Stability, 161, 197 
Star system, 321 
Statechart formalism, 280 



www.manaraa.com

466 Index 

Static metrics, 26 
Stereotypes, 283-284 
Stress testing, 434 
Structure-based approaches, 161 
Stubs, 64 
Subjective metrics, 23 
Subprograms, 7 
Subscribable events, 375 
Subsystems, 137 
Synchronized shadowing, 7,10,51,57--60, 

64,69,456 
Syntactic analysis, 422 

AST. See Abstract Syntax Tree 
convention in, 9 
grammar and, 422-424, 449 
interactions, 161 
See also specific codes, methods 

System-level predictions, 7, 24-25 

Table of contents (TOC), 344, 351-353 
Tagging languages, 283,345-347, 355-356 
Target scope, 280 
Task analysis, 85 
Tcl scripts, 315-317 
Teleporting, 368 
Telos model, 303, 309, 311, 329, 414 
Template methods, 122 
Testability, 23,197 
Text processing algorithms, 225 
Textualredundancy,9-10,225-242,325-

328 
Think-aloud usability testing, 85, 86-88, 91 
Thresholds, 36 

faults and, 41,456 
object-oriented metrics, 41-42 

TKSee tool, 7 
features of, 79-80 
heirarchy and, 76-80 
searches with, 76-80 
types of problems, 84 
usefulness of, 73-94 

To-do lists, 79 
TOe. See Table of contents 
Tool integration, 187,313,428-434,457 
Top-down parser, 457 
Top-level classes, 274-275 
Tracing, 33 
Tracs system, 245 
Transitive reduction, 230 
Translation process, 424 
Translation service, 311-312 
Traversal routines, 277, 284-286 
Tree analysis, 449 

AST. See Abstract Syntax Trees 
divide-conquer, 260 
grammar and, 454 
graphs and, 259 

inheritance, 220 
parent-child relationship, 259 
parsing and, 387-390, 454 

Truth table, 204-205 
Two-step development process, 244 
Type casts, 179 

UCMs. See Use Case Maps 
Understandability, 32-35,160 
Unified Modeling Language (UML), 215, 

279,457 
metamodel, 271, 280-284 
pattern notation, 132 
reverse engineering and, II, 291 

Uniform Resource Locator (URL), 346, 457 
UNIX tools, 308, 317, 400 
Update rule problem, 167 
URL. See Uniform Resource Locator 
Usability, 10,73-75 

assessment of, 75 
defined,74,457 
partnership and, 90 
think-aloud tests, 85-88, 91 
TKSee and, 80-91 
usefulness and, 52 

Usage patterns, 9, 80-82 
Use Case Maps (UCMs), 7, 51-53, 61-62, 

69,457 
Usefulness, 52, 73-76 
User analysis, 85-86 
Utility, 73-75, 457 

Validation, defined, 457 
Variance analysis approach (ANOVA), 212 
Verbatim representation, 34 
Verification, 458 
Versions, of components, 458 
Virtual environments, 12,450 
Virtual reality (VR), 365, 458 
Visibility,280 
Visual programming techniques, 244 
Visual reengineering, 329 
VisualAge, 189,342,427 
Visualization tools, 314 
VR. See Virtual reality 

W ASS. See Work Analysis and 
Synchronized Shadowing 

Web. See World-Wide-Web 
Weighted methods per class (WMC), 30, 

198,209 
White box frameworks, 122 
WMe. See Weighted methods per class 
Work Analysis and Synchronized 

Shadowing (WASS), 53, 69 



www.manaraa.com

Work-flow diagrams, 64 
Work practices, 7, 51-70, 458 
Workstations, 10 
World-Wide-Web (WWW), 9,12,307-308, 

351-352. See a/so Hypertext 

XForms system, 215 
XML. See Extensible Markup Language 
XSL,347 

Index 467 

Y2K problem. See Year 2000 problem 
Year 2000 problem, 162,296 

Zero problem, 145-146, 150-151 




